COS 318 - Operating System

L*
|

Assignment 4

Inter-Process Communication and
Process management

IIII'IIV

Fall 2004

Main tasks

" |Inter-Process Communication
— Implement Mailboxes
— Keyboard Input

i iInimizing interrupt disabling

irocess Management
%e able to load a program from disk

=tra credit options

IIII'IIV

Mailbox -

AT TR N L
.:.:.:,:.:.:.:.:.:.:.:.

iffer

as fixed size
a FIFO
able size

ﬁage

Bounded Bufter

— Put data into the buffer

= Multiple consumers
— Remove data from the
buffer
= Blocking operations

— Sender blocks if not
enough space

— Receiver blocks if no
message

Mailbox - Implementation

= Buffer management
— Circular buffer: head and tail pointers

L
‘% Bounded buffer problem

ﬁ Use locks and condition variables to solve
ithls problem as shown in class

=2 condition variables: moreData and

oreSpace

e mbox.h and mbox.c

Keyboard - Overview

— An hardware interrupt (IRQ1) is generated
when a key is pressed or released

— Interrupt handler talks to the hardware and
. . gets the scan code back.

_If itis SHIFT/CTRL/ALT, some internal
| states are changed.

gherwme the handler converts the scan
into an ASCII character depending on
ates of SHIFT/CTRL/ALT.

E = How the keyboard interacts with OS
\

T

Keyboard - Overview

= How the keyboard interacts with OS

— An hardware interrupt (IRQ1) is generated
when a key is pressed or released

— init_idt() in kernel.c sets handler to
irg1_entry in entry.S

. _~irg1_entry calls keyboard_interrupt in
e

O |
o
Q
-
o
@

1\

.
Keyboard - Overview

- = keyboard_handler talks to the hardware
- and gets the scan code back.

* key = inb(0x60);
* Call key specific handler

ulﬂll'IIV‘

% Keyboard - Overview
= |fitis SHIFT/CTRL/ALT, some internal
B
Otherwise normal_handler converts the
- .scan code into an ASCI| character.
x| ormal_handler calls putchar() to add
=racter to keyboard buffer
® You need to implement putchar()

B B * Also getchar() which is called by the

m

states are changed.
E

Keyboard - Implementation

" |t's a bounded buffer problem
— S0, use mailbox.

;
% But, there are some variations
. — Single producer (IRQ1 handler)

- Multiple consumers (more than one
rocesses could use keyboard)

:oducer can't block - discard character if

a‘er is full.

Keyboard - Subtle points

* Producer shouldn’t be blocked

| LL — Solution: check and send message only if
= mailbox is not full, otherwise discard it.

|\
I B . _ \iake use of mbox_stat() function

B N
‘ that all ?

. —What if a process being interrupted by
am is currently calling getchar()?

- . — Address how to fix this issue in design

1

Reducing interrupt disabling

= Disable interrupt only when necessary.

. = Motivation

. — Otherwise, could lose hardware events
* For instance, keyboard or timer events

i/here to reduce

ﬁlery little we can do with scheduler.c

;Swnchmg stacks, manipulating ready queue
icks, condition variables
rl

ﬁead C

Reducing interrupt disabling

= Alternative to interrupt disabling

— Use spinlock to guarantee atomicity
spinlock _acquire(int *l) { while (ITAS(])); }
spinlock_release(int *) { *I = 0; }
see thread.c

ine spinlock per lock/condition variable

T

typedef struct {
int spinlock;
. struct pcb *waiting;

; status;

+
Using spinlock - An example

= Code from project 3
void lock _acquire (lock t *I){

if (I->status == UNLOCKED) {
I->status = LOCKED:;
}else {

block(&l->waiting);
}

i—?’l TICAL_SECTION_END;

L CRITICAL_SECTION_BEGIN;

= Using spinlock

void lock_acquire(lock t *l) {
use spinlocks to achieve same thing
(part of design review)

/

NOTE: block now takes any extra
argument - spinlock
— the spinlock is released in block()

Process Management

= So far, we only handle processes booted
along with the OS.

% the followings:
N v Separate address space for each process

| X Asimple file system format describing how

rocesses reside on a disk
memory manager

-shell ¢ to find out the commands it

~ supports

Separate Address Space

= Each process has its own CS and DS
segment selector, and the program

always starts at address 0x1000000
(16MB mark).

asic paging only -- no paging to disk

L.
¥ This is done for you

T

Paging in x86

Linear Address

[31..30] [29..21] [20..12] [11..00]

PTR OFFSET

Page Directory Potnter

Page Directory Potnter

M Page Directory Pointer

4K Page Frame

4K PDE

4K PDE
2M or 4K PDE
Page Directory Entry

Page Directory Potnter

T

CR3

PTE
Page Table Entry

Image courtesy x86.org. (Intel manual vol. 3 for more information)

Paging — shared mapping

1dentity-mapped
memory with
kernel privilege

BIOS data

0x1000—»

Kernel code/data

STACK_MIN),

aCCECSS

Needed for interrupts to work

STACK_MAX,,

Kernel stacks of
processes and threads

kernel’s
space

L 0xB8000

Video mem

MEM_START),.

available_meg

Process 1 code/data

Process 1 user stack

process’s
physical
space

Memory pool

MEM_END_j.

—»

PROCESS_START

Process virtual space

Paging — shared mapping

1dentity-mapped
memory with
kernel privilege
access

1dentity-mapped

BIOS data

0x1000—»

Kernel code/data

STACK_MIN),

STACK_MAX,,

Kernel stacks of
processes and threads

kernel’s
space

0xBRK0OOO >

Video mem

memory with
user access

Direct write to screen for progs

MEM_START),.

available_meg

Process 1 code/data

Process 1 user stack

process’s
physical
space

Memory pool

MEM_END_j.

—»

PROCESS_START

Process virtual space

Paging — shared mapping

1dentity-mapped
memory with
kernel privilege

BIOS data

0x1000—»

Kernel code/data

STACK_MIN),

aCCECSS

1dentity-mapped

STACK_MAX,,

Kernel stacks of
processes and threads

kernel’s
space

0xBRK0OOO >

memory with
user access

1dentity-mapped

Video mem

MFM_QTAR'T‘>

memory with
kernel privilege
access

For mem mgmt. etc

available_meg>

Process 1 code/data

Process 1 user stack

process’s
physical
space

Memory pool

MEM_END

—»
PROCESS_START

Process virtual space

Paging — per process mapping

BIOS data
0x1000— > \
Kernel code/data
STACK_MINp, >kernel’ S
Process 1 address space mapped to Kernel stacks of P
. .o . processes and threads
location it 1s loaded into STACK_MAXp.)
0xB8000_p
Video mem

process’s
physical
space

awaﬂable_mem> Process 1 user stack

Memo ool
MEM_END_j. P

§

PROCESS_START Process virtual space

T

Simple File System

= A bootblock followed by 0 or
1 kernel image.
\

A process directory, the ith
%entry records the offset and
- length of process i.

1% Bootblock only loads kernel.
nel loads the shell only

initially.
& Some calculation involved in

(Oh

siz{

Bootblock

Kernel,
or nothing
(program disk)

Process directory

Process 1

Process 2

Process n

% Memory Manager (memory.c)
E = alloc_memory() allocates a requested
L

size of memory from the available
memory pool.

mifree _memory() frees a memory block, (it

i s nothing right now.)
tra credit:

:) a better job here, actually free a block,

ﬁ implement some sophisticated
. algorithm such as Best Fit.

Runtime memory layout

BIOS data

" The user stack ~ oxw000—>
IS allocated In STACK_MINp

Kernel code/data

Kernel stacks of
processes and threads

kernel’s
space

% process’'s own
—; address space STkMax

0xB8000—»

ernel stack is

available _me

Video mem

OCated -

Process 1 user stack

process’s
space

SS space

MEM_END

Memory pool

v

LLoading a program

= |load <process#> shell command loads a
~ process.

ﬁ 1' process# is number reported by “Is” command
ﬂ -, of shell.
® Process# simply aSS|gned incrementaly
!nethmg the fs supports.
readd|r and process# to determine
I . 'ﬁd roc to load process

artmg from O — this is inside shell and not
- location of process

+ Syscall readdir

= | ocate process directory location.

LL' Read the sector containing the process
. directory.

Syscall loadproc

= Allocate a memory big enough to hold
~ the code/data plus 4K stack

Read process image from disk

llocate and initialize a PCB including:

AIIocate new CS/DS selectors

ﬁllocate user/kernel stack
;sert it to the ready queue

- ;ate _process does this part for you.

18

Floppy interface

= File: floppy.c

. * You will only need to use 3 functions
. — floppy_start_motor: get lock and start
B

motor
= floppy read: read a block into memory
ack

!Ioppy stop_motor: stop motor and release

¥ floppy write: next assignment.
for update to go back to usb.

Extra credit

= Memory deallocation after process
termination

‘; Better memory management
s command in shell

#® Kill command in shell
ite: shell is a process, so don’t call

!ing in the kernel directly.

Notes

®" Process 0 is the shell itself. Do not

-~ reload it.

| L: You have to write about 350 lines of

Il code total

! ead the provided code to see how it
s changed and what new things have

n added — it's a good way to learn.
‘ss 3 and 4 to test mbox

v

