
1

CS318 Project #3

Preemptive Kernel

2

Continuing from Project 2
Project 2 involved:

Context Switch
Stack Manipulation
Saving State

Moving between threads, but in a 
single threaded environment

3

Multi-Threading
Now you have to deal with the 
possibility of your context switch 
being interrupted

Timer Interrupt (10 ms)
Page Fault
TLB Miss

4

What do you have to do?
Implement locking primitives (thread.c)

Lock
Acquire & Release

Condition
Signal, Wait, Broadcast

Semaphore
Up & Down

Barrier (Extra Credit)
Wait

Timer Interrupt (entry.S)
Also handle irq7 - call fake_irq7 instead of 
scheduler_entry



5

Lock
Acquiring and releasing a lock must be 
done atomically
Otherwise …

Release Lock

Thread 1 Thread 2

Acquire Lock

Critical Section Critical Section

Release Lock

Acquire Lock

6

Lock (cont.)
Acquiring and Releasing of the lock 
should be done in a single threaded 
context

How do you do this?
Turn interrupts off for as small a 
window as possible

7

Condition Variables
Wait operation cause the current thread to 
block on put itself of a wait list
Signal causes a random thread on the wait 
list to start running
Broadcast wakes up all waiting threads
Condition Variables can “lose” signals if no 
thread is on the wait list to receive it

8

Semaphore
Use when you need a way to store 
wakeup signals

Producer-Consumer Problem
Two operations

Up -> Called to wakeup a thread, if no 
thread is ready to be woken up, the 
wakeup signal is stored
Down -> Called to see if a wakeup 
signal is stored, otherwise sleep



9

Mutex
A semaphore used for mutual 
exclusion

Semaphore should only ever have 
values 0 and 1

Useful when only one thread should 
execute a piece of code at a time

10

Barrier
Used to synchronize multiple threads 
at a single point

Usually the boundary between passes 
of phases of an algorithm
Count number of threads stopped
Count number of threads started

11

Scheduling
With preemptive kernel we can 
implement scheduling algorithms

Round-Robin (default)
Priority (Extra Credit)
Priority w/Queue
Random

12

Handling Interrupts
Handle the timer interrupt (irq0) & irq7 
plus system call interrupts (traps)

For irq7 call fake_irq7
For all interrupts

Save the current state
Interrupt controller will suspend further interrupts 
when generating a non-system interrupt
Tell the Interrupt Controller to allow more interrupts
Process the interrupt

Call scheduler to move to next process on 
timer interrupt



13

The End
Questions?


