* X86 assembly quick tutorial

i Memory model

= Real mode (address up to 2720 bytes)

= Memory access is done by
Segment:offset | =18yte

Segment 16 bits ’ ‘
+ | Offset 16 bits ’ ‘

Real address = 20bits ’ ‘ ‘

i Memory access

= Remember the default segment register

= Data access: (general registers)
Movw (%osi), Y%ax
== movw %ds: (%si), Yoax

» Stack access: (%bp, %osp)
Movw 4(%bp), %ax
== movw %ss : 4(%bp), Yoax

i Memory access (cont)

= Code access:

Normally you do not explicitly change %lIP.
Use jmp, jz, call etc instead.

= Short jump: jmp label
actually this is to jmp %cs, offset of label
= Long jump: ljmp NEW_CS, offset

i Calling convention (Gcc style)

int foo2(int n) {

return n + 2;

}
int foo(intn) {

return foo2(n - 1);

C -> Assembly (passing

parameter)
int foo2(int n)
{

return n + 2;
}

foo2:

pushl %ebp
movl %esp, %ebp

movl 8(%ebp), Yoeax

} addl $2, %eax
int main (void) { leave
return foo(5); ret
}
C -> assembly: (local
variable) i Stack view
%06ss:
int foo3(int n) pushl %ebp o Yeeh 0
{ movl %esp, %ebp P P
0 movl %esp, %ebp
int i subl $4, %esp -4(%ebp) o
(Setup for function) ocal var
i=n+2: movl 8(%ebp), Yeax %ebp 1st local var
Saved BP
return i: addl $2, %eax Returm [P
}h movl %eax, -4(%ebp) 8(%ebp) “|15t parameter
0 0 leave 2nd parameter
movl -4(%ebp), Yoeax Ret Last function
leave :
(restore) %SS:
ret Oxfffe

i Calling a function i Note for project 1

90SS:

0 = In our project, the bootloader is
working in real mode (16 bits).
hw % . T
PUShW - ~oax 2(%ebp) = The gcc example given earlier is
callfoo2 P A compiled in 32 bits mode.
@ "Saved BP = SO0 beware of the difference of
(%ax can be - Return IP accessing the calling parameter:
accessed by 8(%bp) | | 8(6€bP) L perameter = 32 bits -> 8(%ebp)
within function) Last function = 16 bits -> 4(%bp)
%SS:
Oxfffe

i More notes for bootloader

= Bootloader code is loaded by BIOS, so it did
not have %ds, %oss, %sp setup properly
when it is loaded.

= You shall put strings and extra instructions
after “over:” so that BIOS will not run into
those code.

= In bootloader, all the code and data share the
same 512 bytes. So data will have the same
segment as code.

