* CS318 Project #1

Bootup Mechanism

i Basic Information

= Lab is in 010 Friend Center

= Use your OIT username/password

= If you get the error “unable to mount
/u/username” contact me, (most student
should have it setup)

= Use scp/sftp to move files from arizona to
lab machines
» Eventually will be able to smbmount your cs

home directory, wait for mailing list
notification.

* OS Bootup Process

= When a PC is booted:

» Startup code in ROM (BIOS*) loads boot
sector (Floppy, hard disk or USB flash disk)
and jumps to it.

= You might need to change your home machine’s
BIOS setup to let it boot from USB flash disk first.
(Older machines might not support boot from USB
flash disk.)

= Boot sector code loads OS kernel (start at

sector:2) and jumps to it

= BIOS supplies minimal but sufficient hardware support
(screen, disk, keyboard etc.)

i Bootstrapping Layout

Disk layout
A{Bootblock p 1 BIOS data
/ N
B N
BIOS - Kernel ——=.
2 AN Kernel
N
N
N
A Y
N
[Bootblock
Stack
1: Done by
BIOS code Video RAM
2: Done by
bootblock code
BIOS

Mem 0 I'y I ayO Ut (segment:offset)

0x00000

0x01000
(0x0000:0x1000)

0x07c00
(0x7c0:0x0000)
0x90000
0x9fffe

(0x9000: 0xFffe)

0xb8000

OXFFFff

i What You Must Do

= Design review

= Have a bootblock that can print a string
= Have print_char and print_string assembly functions

= bootblock.s
= Load the kernel
= Setup stack, data segments
= Transfer control to kernel
= Createimage.c
= Extract code and data from executables

= Assemble into boot disk (bootblock image +
kernel image)

Too Hard? Too easy?

= bootblock.s

= About 80 lines of assembly

= Mostly mov instructions and BIOS calls
= Createimage.c

= About 200 lines of C

= Use ELF headers and fopen, fseek, fread
= Little debugging ability

= No printf or gdb to debug with

= Can use BIOS print print (int $0x10) or just
write directly to screen buffer in memory

:_L x86 Structures

= Real Mode
= Memory limited to 1Mbyte (bytes)

= Originally 16-bit registers (Can only
address 216 = 64K bytes)

= Segment : offset
= Segment << 4 + offset (Can address)
= Protected Mode

= Still segment : offset

= Virtual address instead of physical
addrecc

i X86 Structures - Register Set

General purpose registers Segment registers

31 16 8 0 16Bit 32 bit 15 0
AH [AL | AX EAX CS
BH | BL BX EBX DS
CH|CL]| cx ECX SS
DH | DL | DX EDX ES
BP EBP FS
Sl ESI GS
DI EDI
SP ESP
Status & control registers
31 16 8 0
EFLAGS
EIP

i GNU Assembly arat syntax)

= Data representations
= Registers: %eax,%ax,%ah,%al
= Definitions (.equ): BOOT_SEGMENT, 0x07c0
« Constants: $0x0100, $1000
= Memory contents: (0x40), %es:(0x40), (label)
= Labels
= Terminated by colon
= Represent instruction pointer location
= Comments
= /* enclosed like this */

= # or to the end of a line o

i GNU Assembly (atat syntax)

= Data operations
= mov{b,w,l}, lods{b,w,I}, ...
= Logic and arithmetic
= cmp{b,w,I}, xor{b,w,I}, ...
= Process control
= jmp, ljmp, call, ret, int, jne, ...
= Directives

= .equ, .byte, .word, .ascii, .asciz

11

:_L A Bit on Memory Access

= segment:[base+index*scale+disp] (Intel syntax)
= segment:disp(base, index, scale) (AT&T syntax)
= (segment)Default: Override:

movw $0xb800,%bx

movw %bx,%ds
movw $0x074b,(0x40)

movw $0xb800,%bx
movw %bx,%es
movw $0x074b,%es:(0x40)

= Result = (0xb800<<4) + 0x40 = 0xb8040
s Bootblock loaded at 0x07c0:0x0000
s Kernel need to be loaded at 0x0000:0x1000

12

i Common mistakes

i Bootstrapping Layout

DISk Memor segment:otise
= Don’'t use movw 4, %ax, when you Bt Y oo
mean to use: movw $4, %0ax 0x01000
. . B IOS Kernel \ (0x0000:0x1000)
= Pair up with pushw and popw ; > Kernel
= Setup ds, ss before using memory d
Bootblock | X07¢90 .,
reference and stack 0x80000
_ Stack | oyofre
= Use int $0x10 BIOS call, rather than Qoo e
int $10
OXFFFFF
13 14
:_L Layout (to scale) bootblock.s
= =B = Setup stack and segment registers
Low \
\ = bootblock and kernel use same stack
= = - Set up (ssisp)
oA transiont | [P A = Stack pointer at the bottom
Proérargézéia; [os000] = Set bootblock data segment (ds=0x7c0)
= bootblock code segment (cs=0x0, offset = 0x7c0)
set by BIOS before executing bootblock code.
! stk = Read the kernel into memory
T — = + Kemel sarts at 0x0:0x1000
T = Use hardcoded kernel size
(384K) | |90 oxoeo00 » (0s_size: number of sectors)
H/'gh v 0xf0000 BIOS system ROM 0x0f000 15 16

i bootblock.s (cont'd)

= Set the kernel data segment

= Set data segment (ds) to 0x0
= Long jump to kernel

= Ijmp 0x0,0x1000

= This automatically sets code segment (cs)
to 0x0

17

i ELF

= What's ELF?
= Executable & Linkable Format

= ELF header, Program header table &
segments

= Utilities: objdump, readelf.

18

:_L createimage.c

= Read a list of

i Executable

executable files (ELF) ELF Header

= Write segments (real (EIf32_Ehdr)
code) into bootblock Program Header Table
+ kernel image file (EIf32_Phdr list)

= Note: Segments Segment 1
expand when loaded
into memory (need Segment 2
padding)

19

:_L createimage.c (cont'd)

= Read ELF header to find offset of
program header table

= Read program header to find start
o< address, size and location of segment

= Pad and copy segment into image file

= Write kernel size to hardcoded

location in image file (in bootblock and be
used when loading kernel)

20

i ELF to Image Example

Bootblock ELF

*In decimal for clarity

Bootdisk Image

Kernel ELF 0
Bootblock Segment 0 Loaded
ELF Header (EIf32_Ehdr) - by BIOS to
e_phoff e_phnum=2 Padding (sector boundary) 512 0X7¢00:0x0
Program Header 0 (EIf32_Phdr) Kernel Segment 0
: Padding (memsz>filesz> ;(152
Padding (sector boundary) Loaded

1024 | by bootblock to
0x0:0x1000

p:filesz=300 p_memsz=300

Padding (start addreE
1312

Segment 0 Kernel Segment 1
1612
/ Padding (sector boundary)
Segment 1

2048

Other ELFs

‘ Segment image file Location = p_vaddr-

0x1000+512
(4096) 21

elf.h yusr/inciudeseit.ny

= Utilize the EIf32_Ehdr and EIf32_Phdr
structures
= Use fseek() and fread() to get them
= Example:
/* .. %
EIf32_Ehdr elfHdr;
/x . *
ret=fread(&elfHdr,1,sizeof(elfHdr),fd);

22

FAQ

Cylinders, Heads, Tracks?

= Use 0x13 BIOS call to get parameters. (webpage)
Use 32bit registers in real mode?

= You can, but it's not necessary.
Won't a big kernel overwrite the bootblock?

= Yes. For extra credit, you can move the bootblock
elsewhere first.

= Int13 can only load 36 sectors at once. For large
kernels, you might load one sector at a time...

How many files should createimage handle?

= As many as are in the command line (bootblock,
kernel, and any number of others)

23

