
Princeton University
COS 217: Introduction to Programming Systems

A Subset of IA-32 Assembly Language

Instruction Operands

Immediate Operands

Syntax: $i
Semantics: Evaluates to i. Note that i could be a label...

Syntax: $label
Semantics: Evaluates to the memory address denoted by label.

Register Operands

Syntax: %r
Semantics: Evaluates to reg[r], that is, the contents of register r.

Memory Operands

Syntax: %section:disp(%base, %index, scale)

Semantics:

section is a section register (CS, SS, DS, or ES).
disp is a literal or label.
base is a general-purpose register.
index is any general purpose register except EBP.
scale is the literal 2, 4, or 8.

One of disp, base, or index is required. All other fields are optional.

Evaluates to the contents of memory at a certain address. That address consists of an offset into a
section.

The section is specified by section. Assembly language programmers typically rely on the default
section:

• CS for instruction fetches.
• SS for stack pushes and pops and references using ESP or EBP as base.
• DS for all data references except when relative to a stack or string destination.
• ES for the destinations of all string instructions.

The offset is computed using this expression:

reg[base] + (reg[index] * scale) + disp

The default disp is 0. The default scale is 0. If base is omitted, then reg[base] evaluates to 0. If
index is omitted, then reg[index] evaluates to 0.

Page 1 of 5

Commonly Used Memory Operands

Syntax Semantics Description
label disp: label

base: (none)
index: (none)
scale: (none)

mem[0+(0*0)+label]

mem[label]

Direct Addressing. The contents of memory at a
certain address. The offset of that address is
denoted by label.

Often used to access a long, word, or byte in the
bss, data, or rodata section.

(%r) disp: (none)
base: r
index: (none)
scale: (none)

mem[reg[r]+(0*0)+0]

mem[reg[r]]

Indirect Addressing. The contents of memory at
a certain address. The offset of that address is the
contents of register r.

Often used to access a long, word, or byte in the
stack section.

i(%r) disp: i
base: r
index: (none)
scale: (none)

mem[reg[r]+(0*0)+i]

mem[reg[r]+i]

Base-Pointer Addressing. The contents of
memory at a certain address. The offset of that
address is the sum of i and the contents of register
r.

Often used to access a long, word, or byte in the
stack section.

label(%r) disp: label
base: r
index: (none)
scale: (none)

mem[reg[r]+(0*0)+label]

mem[reg[r]+label]

Indexed Addressing. The contents of memory at
a certain address. The offset of that address is the
sum of the address denoted by label and the
contents of register r.

Often used to access an array of bytes (characters)
in the bss, data, or rodata section.

label(,%r,i) disp: label
base: (none)
index: r
scale: i

mem[0+(reg[r]*i)+label]

mem[(reg[r]*i)+label]

Indexed Addressing. The contents of memory at
a certain address. The offset of that address is the
sum of the address denoted by label, and the
contents of register r multiplied by i.

Often used to access an array of longs or words in
the bss, data, or rodata section.

Page 2 of 5

Instructions

Key:
src: a source operand
dest: a destination operand
I: an immediate operand
R: a register operand
M: a memory operand
label: a label operand

For each instruction, at most one operand can be a memory operand

Syntax Semantics (expressed using

C-like syntax)
Description

Data Transfer

mov{l,w,b} srcIRM, destRM dest = src; Move. Copy src to dest.
push{l,w} srcIRM reg[ESP] = reg[ESP] - {4,2};

mem[reg[ESP]] = src;
Push. Push src onto the stack.

pop{l,w} destRM dest = mem[reg[ESP]];
reg[ESP] = reg[ESP] + {4,2};

Pop. Pop from the stack into dest.

lea{l,w} srcM, destR dest = &src; Load Effective Address. Assign the
address of src to dest.

cltd reg[EDX:EAX] = reg[EAX]; Convert Long to Double Register. Sign
extend the contents of register EAX into
the register pair EDX:EAX, typically in
preparation for idivl.

cwtd reg[DX:AX] = reg[AX]; Convert Word to Double Register. Sign
extend the contents of register AX into the
register pair DX:AX, typically in
preparation for idivw.

cbtw reg[AX] = reg[AL]; Convert Byte to Word. Sign extend the
contents of register AL into register AX,
typically in preparation for idivb.

leave Equivalent to:
 movl %ebp, %esp
 popl %ebp

Pop a stack frame in preparation for
leaving a function

Arithmetic

add{l,w,b} srcIRM, destRM dest = dest + src; Add. Add src to dest.
sub{l,w,b} srcIRM, destRM dest = dest - src; Subtract. Subtract src from dest.
inc{l,w,b} destRM dest = dest + 1; Increment. Increment dest.
dec{l,w,b} destRM dest = dest - 1; Decrement. Decrement dest.
neg{l,w,b} destRM dest = -dest; Negate. Negate dest.
imull srcRM

reg[EDX:EAX] = reg[EAX]*src;

Multiply. Multiply the contents of
register EAX by src, and store the product
in registers EDX:EAX.

imulw srcRM reg[DX:AX] = reg[AX]*src;

Multiply. Multiply the contents of
register AX by src, and store the product
in registers DX:AX.

imulb srcRM reg[AX] = reg[AL]*src;

Multiply. Multiply the contents of
register AL by src, and store the product in
AX.

idivl srcRM reg[EAX] = reg[EDX:EAX]/src;
reg[EDX] = reg[EDX:EAX]%src;

Divide. Divide the contents of registers
EDX:EAX by src, and store the quotient in
register EAX and the remainder in register
EDX.

Page 3 of 5

idivw srcRM reg[AX] = reg[DX:AX]/src;
reg[DX] = reg[DX:AX]%src;

Divide. Divide the contents of registers
DX:AX by src, and store the quotient in
register AX and the remainder in register
DX.

idivb srcRM reg[AL] = reg[AX]/src;
reg[AH] = reg[AX]%src;

Divide. Divide the contents of register
AX by src, and store the quotient in
register AL and the remainder in register
AH.

Bitwise

and{l,w,b} srcIRM, destRM dest = dest & src; And. Bitwise and src into dest.
or{l,w,b} srcIRM, destRM dest = dest | src; Or. Bitwise or src nito dest.
xor{l,w,b} srcIRM, destRM dest = dest ^ src; Exclusive Or. Bitwise exclusive or src

into dest.
not{l,w,b} destRM dest = ~dest; Not. Bitwise not dest.
sal{l,w,b} srcIR, destRM dest = dest << src;

Shift Arithmetic Left. Shift dest to the
left src bits, filling with zeros.

sar{l,w,b} srcIR, destRM dest = dest >> src;

Shift Arithmetic Right. Shift dest to the
right src bits, sign extending the number.

shl{l,w,b} srcIR, destRM (Same as sal) Shift Left. (Same as sal.)
shr{l,w,b} srcIR, destRM (Same as sar) Shift Right. Shift dest to the right src bits,

filling with zeros.

Control Transfer

cmp{l,w,b} srcIRM1,srcRM2

reg[EFLAGS] =
 srcRM2 comparedwith
srcIRM1

Compare. Compare src2 with src1, and
set the condition codes in the EFLAGS
register accordingly.

jmp label reg[EIP] = label; Jump. Jump to label.
j{e,ne,l,le,g,ge} label if (reg[EFLAGS] appropriate)

 reg[EIP] = label;
Conditional Jump. Jump to label iff the
condition codes in the EFLAGS register
are set appropriately.

call label reg[ESP] = reg[ESP] - 4;
mem[reg[ESP]] = reg[EIP];
reg[EIP] = label;

Call. Call the function that begins at
label.

call *srcR reg[ESP] = reg[ESP] - 4;
mem[reg[ESP]] = reg[EIP];
reg[EIP] = reg[srcR];

Call. Call the function whose address is in
src.

ret reg[EIP] = mem[reg[ESP]];
reg[ESP] = reg[ESP] + 4;

Return. Return from the current function.

int srcIRM Generate interrupt number src Interrupt. Generate interrupt number src.

Page 4 of 5

Assembler Directives

Syntax Description
label: Record the fact that label marks the current location within the

current section
.section “.sectionname” Make the sectionname section the current section
.skip n Skip n bytes of memory in the current section
.byte bytevalue1, bytevalue2, ... Allocate one byte of memory containing bytevalue1, one byte of

memory containing bytevalue2, ... in the current section
.word wordvalue1, wordvalue2, ... Allocate two bytes of memory containing wordvalue1, two

bytes of memory containing wordvalue2, ... in the current
section

.long longvalue1, longvalue2, ... Allocate four bytes of memory containing longvalue1, four
bytes of memory containing longvalue2, ... in the current section

.ascii “string1”, “string2”, ... Allocate memory containing the characters from string1,
string2, ... in the current section

.asciz “string1”, “string2”, ... Allocate memory containing string1, string2, ..., where each
string is NULL terminated, in the current section

.string “string1”, “string2”, ... (Same as .asciz)

.globl label1, label2, ... Mark label1, label2, ... so they are available to the linker

.equ name, value Define name as a symbolic alias for value

.type label,@function Mark label so the linker knows that it denotes the beginning of a
function

Copyright © 2004 by Robert M. Dondero, Jr.

Page 5 of 5

	Instruction Operands
	Immediate Operands
	Register Operands
	Memory Operands
	Commonly Used Memory Operands
	Syntax
	Semantics
	Description
	Instructions

	Semantics (expressed using C-like syntax)

	Data Transfer
	Move. Copy src to dest.
	Push. Push src onto the stack.
	Pop. Pop from the stack into dest.
	lea{l,w} srcM, destR
	Load Effective Address. Assign the address of src to dest.
	Convert Long to Double Register. Sign extend the contents o
	Convert Word to Double Register. Sign extend the contents o
	Convert Byte to Word. Sign extend the contents of register
	leave
	Pop a stack frame in preparation for leaving a function
	Arithmetic
	Add. Add src to dest.
	dest = dest - src;
	Subtract. Subtract src from dest.
	Increment. Increment dest.
	dest = dest - 1;
	Decrement. Decrement dest.
	Negate. Negate dest.
	Multiply. Multiply the contents of register EAX by src, and
	Multiply. Multiply the contents of register AX by src, and
	Multiply. Multiply the contents of register AL by src, and
	Divide. Divide the contents of registers EDX:EAX by src, an
	Divide. Divide the contents of registers DX:AX by src, and
	Divide. Divide the contents of register AX by src, and stor
	Bitwise
	And. Bitwise and src into dest.
	Or. Bitwise or src nito dest.
	Exclusive Or. Bitwise exclusive or src into dest.
	Not. Bitwise not dest.
	Shift Arithmetic Left. Shift dest to the left src bits, fil
	Shift Arithmetic Right. Shift dest to the right src bits, s
	Shift Left. (Same as sal.)
	Shift Right. Shift dest to the right src bits, filling with
	Control Transfer
	Compare. Compare src2 with src1, and set the condition code
	Jump. Jump to label.
	Conditional Jump. Jump to label iff the condition codes in
	Call. Call the function that begins at label.
	Call. Call the function whose address is in src.
	Return. Return from the current function.
	Interrupt. Generate interrupt number src.
	Assembler Directives
	Syntax
	Description

