
1

Why study / use Javascript?

• pretty easy to start with
• easy to do useful things with it
• all browsers process Javascript

– can use it in your own web pages
– can understand what other web pages are doing (and steal from them if

desired)
• ideas carry over into other languages

• there are good reasons not to use Javascript too:
– limited functionality for general use, outside of web pages
– many irregularities and surprising behaviors
– no browsers match ostensible standards exactly
– doesn't illustrate much about how big programs are built

Javascript components

• Javascript programming language
– statements that tell the computer what to do

get user input, display output,
set values, do arithmetic,
test conditions, branch, loop, …

• libraries, built-in functions
– pre-fabricated pieces that you don't have to create yourself

math functions, text manipulation

• access to browser and web pages
– buttons, text areas, images, page contents, ...

2

Basic example: add 2 numbers

• Javascript code between <script>...</script> tags

<html>
<body>
<P> add2.html: adds 2 numbers
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>

Variation: concatenate two strings of characters
<html>
<body>
<P> name2.html: concatenates 2 names
<script>

var num1, num2, sum
num1 = prompt("Enter last name")
num2 = prompt("Enter first name ")
sum = num2 + num1
alert("hello, " + sum)

</script>

3

Adding up numbers: addup.html

• variables, operators, expressions, assignment
statements

• while loop, relational operator

<html>
<body>
<script>

var sum = 0
var num
num = prompt("Enter new value, or 0 to end")
while (num != 0) {

sum = sum + parseInt(num)
num = prompt("Enter new value, or 0 to end")

}
alert("Sum = " + sum)

/

Find the largest number: max.html

• needs an If to test whether new number is bigger
– another relational operator

• needs parseInt or parseFloat to treat input as a number

var max = 0
var num
num = prompt("Enter new value, or 0 to end")
while (num != 0) {

if (parseFloat(num) > max)
max = num

num = prompt("Enter new value, or 0 to end")
}
document.write("<P> Max = " + max)

4

Programming language components

• statements: instructions that say what to do
• variables: places to hold data in memory while program is running

– numbers, text, ...
• syntax: grammar rules for determining what's legal

– what's grammatically legal? how are things built up from smaller things?
• semantics: what things mean

– what do they compute?

• most languages are higher-level and more expressive than the
assembly language for the toy machine
– statements are much richer, more varied, more expressive
– variables are much richer, more varied
– grammar rules are more complicated
– semantics are more complicated

• but it's basically the same idea

Variables, constants, expressions, operators

• a variable is a place in memory that holds a value
– has a name that the programmer gave it, like sum or Area or n
– in Javascript, can hold any of multiple types, most often

numbers like 1 or 3.14, or
sequences of characters like "Hello" or "Enter new value"

– always has a value
– has to be set to some value initially before it can be used
– its value will generally change as the program runs
– ultimately corresponds to a location in memory
– but it's easier to think of it just as a name for information

• a constant is an unchanging literal value like 3 or "hello"
• an expression uses operators, variables and constants

to compute a value
3.14 * rad * rad

• operators include + - * /

5

Computing area: area.html
var rad, area;
rad = prompt("Enter radius")
while (rad != null) {

area = 3.14 * rad * rad
document.write("<P> radius = " + rad + ", area = " + area)
rad = prompt("Enter radius")

}

• how to terminate the loop
– 0 is a valid data value
– prompt returns null for Cancel and "" for OK without typing

• string concatenation to build up output line
• no exponentiation operator so we use multiplication

Types, declarations, conversions

• variables have to be declared in a var statement

• each variable holds information of a specific type
– really means that bits are to be interpreted as info of that type
– internally, 3 and 3.00 and "3.00" are represented differently

• Javascript usually infers types from context, does conversions
automatically
– "radius = " + rad

• sometimes we have to be explicit:
– parseInt(string) if can't tell from context that string is meant as an

integer
– parseFloat() if it could have a fractional part

6

Errors:

• Javascript is very bad at reporting errors!

• if you do something wrong, the browser may not tell you at all

• if you use Mozilla, turn on the Javascript console (Tools)

Control flow statements: decisions and loops

• if-else is the Javascript version of compare and goto

if (condition is true) {
do this part

} else {
do this part instead

}

• while is a Javascript version of a loop

while (condition is true) {
do these statements

}

7

if-else examples (sign.html)
if (i >= 0) {

alert(i + " is positive")
}

if (i >= 0) {
alert(i + " is positive")

} else {
alert(i + " is negative")

}

• can include else-if sections for a series of decisions:
if (i > 0) {

print i, " is greater than zero"
} else if (i == 0) { // note: ==

alert(i + " is zero")
} else {

alert(i + " is negative")
}

Control flow statements: while loop

• counting or "indexed" loop:
i = 1
while (i <= 10) {

do something with i
i = i + 1

}

• the most general loop; can simulate all others
var n = prompt("Enter number")
while (n != null) {

i = 0
while (i <= n) {

document.write("
" + i + " " + i*i)
i = i + 1

}
n = prompt("Enter number")

}

8

Functions

• a function is a group of statements that does some computation

– the statements are collected into one place and given a name
– other parts of the program can "call" the subroutine

that is, use it as a part of whatever they are doing
– can give it values to use in its computation (arguments or parameters)
– computes a value that can be used in expressions
– the value need not be used

• Javascript provides some useful functions

• you can write your own functions

Function examples

• syntax
function name (list of "arguments") {

the statements of the function
}

• function definition:
function area(r) {

return 3.14 * r * r
}

• function uses:
rad = prompt("Enter radius")
alert("radius = " + rad + ", area = " + area(rad))

alert("area of ring =" + area(1.75) - area(0.6))

9

Ring.html
var r1, r2;
r1 = prompt("Enter radius 1")
while (r1 != null) {

r2 = prompt("Enter radius 2")
alert("area = " + (area(r1) - area(r2))) // parens needed!
r1 = prompt("Enter radius 1")

}

function area(r) {
return 3.14 * r * r

}

Why use functions?

• if a computation appears several times in one program
– a function collects it into one place

• breaks a big job into smaller, manageable pieces
– that are separate from each other

• defines an interface
– implementation details can be changed as long as it still does the same

job
• multiple people can work on the program
• a way to use code written by others long ago and far away

– most of Javascript's library of useful stuff is accessed through
functions

10

Javascript library functions, etc.

• Math
– sqrt, max, min, random, ...

• String
– searching, subsstring, case conversion, convert to HTML,

• "Regular expression"
– pattern matching

• Date/Time
– current time, elapsed time, conversions

• Array
– set of related items, accessible by index
– use for things like sorting

A working sort example
var name, i = 0, j, temp
var names = new Array()

// fill the array with names
name = prompt("Enter new name, or OK to end")
while (name != "") {

names[names.length] = name
name = prompt("Enter new name, or OK to end")

}
// insertion sort
for (i = 0; i < names.length-1; i++) {

for (j = i+1; j < names.length; j++) {
if (names[i] > names[j]) {

temp = names[i]
names[i] = names[j]
names[j] = temp

}
}

}
// print names
for (i = 0; i < names.length; i++) {

document.write("
 " + names[i])
}

11

Summary: elements of (most) programming languages

• constants: literal values like 1, 3.14, "Error!"
• variables: places to store data and results during computing
• declarations: specify name (and type) of variables, etc.
• expressions: operations on variables and constants to produce new

values
• assignment: store a new value in a variable
• statements: assignment, input/output, loop, conditional, call
• conditionals: compare and branch; if-else
• loops: repeat statements while a condition is true
• functions: package a group of statements so they can be

called/used from other places in a program
• libraries: functions already written for you

How Javascript works

• recall the compiler -> assembler -> machine instruction process
for Fortran, C, etc.

• Javascript is analogous, but differs significantly in details

• when the browser sees Javascript in a web page,
– checks for errors (may or may not report them usefully)
– compiles your program into instructions in an "assembly language" for

something like the toy machine
but richer, more complicated, higher level

– runs a simulator program (like the toy demo) that interprets these
instructions

• the simulator is usually called
"interpreter" (older term) or
"virtual machine" (newer, as in Java)

