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Abstract

In this work we study arrangements of k-dimensional subspaces V1, . . . , Vn ⊂ C`. Our main
result shows that, if every pair Va, Vb of subspaces is contained in a dependent triple (a triple
Va, Vb, Vc contained in a 2k-dimensional space), then the entire arrangement must be contained
in a subspace whose dimension depends only on k (and not on n). The theorem holds under
the assumption that Va ∩ Vb = {0} for every pair (otherwise it is false). This generalizes the
Sylvester-Gallai theorem (or Kelly’s theorem for complex numbers), which proves the k = 1 case.
Our proof also handles arrangements in which we have many pairs (instead of all) appearing in
dependent triples, generalizing the quantitative results of Barak et. al. [BDWY13].

One of the main ingredients in the proof is a strengthening of a Theorem of Barthe [Bar98]
(from the k = 1 to k > 1 case) proving the existence of a linear map that makes the angles
between pairs of subspaces large on average. Such a mapping can be found, unless there is an
obstruction in the form of a low dimensional subspace intersecting many of the spaces in the
arrangement (in which case one can use a different argument to prove the main theorem).

1 Introduction

The Sylvester-Gallai (SG) theorem states that for n points v1,v2, . . . ,vn ∈ R`, if for every pair
vi,vj there is a third point vk on the line passing through vi,vj , then all points must lie on a single
line. This was first posed by Sylvester [Syl93], and was solved by Melchior [Mel40]. It was also
conjectured independently by Erdös [EBW+43] and proved shortly after by Gallai. We refer the
reader to the survey [BM90] for more information about the history and various generalizations of
this theorem. The complex version of this theorem was proved by Kelly [Kel86] (see also [EPS06,
DSW14b] for alternative proofs) and states that if v1,v2, . . . ,vn ∈ C` and for every pair vi,vj
there is a third vk on the same complex line, then all points are contained in some complex plane
(over the complex numbers, there are planar examples and so this theorem is tight).

In [DSW14b] (based on earlier work in [BDWY13]), the following quantitative variant of the
SG theorem was proved. For a set S ⊂ C` we denote by dim(S) the smallest d such that S is
contained in a d-dimensional subspace of C`.

Theorem 1.1 ([DSW14b]). Given n points v1,v2, . . . ,vn ∈ C`, if for every i ∈ [n] there exists at
least δn values of j ∈ [n] \ {i} such that the line through vi and vj contains a third point vk, then
dim{v1,v2, . . . ,vn} ≤ 10/δ.
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(The dependence on δ is asymptotically tight). From here on, we will work with homogeneous
subspaces (passing through zero) instead of affine subspaces (lines/planes etc). The difference
is not crucial to our results and the affine version can always be derived by intersecting with a
generic hyperplane. In this setting, the above theorem will be stated for a set of one-dimensional
subspaces, each spanned by some vi (and no two vi’s being a multiple of each other) and collinearity
of vi,vj ,vk is replaced with the three vectors being linearly dependent (i.e., contained in a 2-
dimensional subspace).

One natural high dimensional variant of the SG theorem, studied in [Han65, BDWY13], replaces
3-wise dependencies with t-wise dependencies (e.g, every triple is in some coplanar four-tuple).
In this work, we raise another natural high-dimensional variant in which the points themselves
are replaced with k-dimensional subspaces. We consider such arrangements with many 3-wise
dependencies (defined appropriately) and attempt to prove that the entire arrangement lies in
some low dimensional space. We will consider arrangements V1, . . . , Vn ⊂ C` in which each Vi is
k-dimensional and with each pair satisfying Vi1 ∩ Vi2 = {0}. A dependency can then be defined
as a triple Vi1 , Vi2 , Vi3 of k-dimensional subspaces that are contained in a single 2k-dimensional
subspace. The pair-wise zero intersections guarantee that every pair of subspaces defines a unique
2k-dimensional space (their span) and so, this definition of dependency behaves in a similar way to
collinearity. For example, we have that if Vi1 , Vi2 , Vi3 are dependent and Vi2 , Vi3 , Vi4 are dependent
then also Vi1 , Vi2 , Vi4 are dependent. This would not hold if we allowed some pairs to have non zero
intersections. In fact, if we allow non-zero intersection then we can construct an arrangement of two
dimensional spaces with many dependent triples and with dimension as large as

√
n (see below).

We now state our main theorem, generalizing Theorem 1.1 (with slightly worse parameters) to the
case k > 1. We use the standard V + U notation to denote the subspace spanned by all vectors in
V ∪ U . We use big ‘O’ notation to hide absolute constants.

Theorem 1.2. Let V1, V2, . . . , Vn ⊂ C` be k-dimensional subspaces such that Vi ∩ Vi′ = {0} for all
i 6= i′ ∈ [n]. Suppose that, for every i1 ∈ [n] there exists at least δn values of i2 ∈ [n] \ {i1} such
that Vi1 + Vi2 contains some Vi3 with i3 6∈ {i1, i2}. Then

dim(V1 + V2 + · · ·+ Vn) = O(k4/δ2).

The condition Vi∩Vi′ = {0} is needed due to the following example. Set k = 2 and n = `(`−1)/2
and let {e1, e2, . . . , e`} be the standard basis of R`. Define the n spaces to be Vij = span{ei, ej}
with 1 ≤ i < j ≤ `. Now, for each (i, j) 6= (i′, j′) the sum Vij +Vi′j′ will contain a third space (since
the size of {i, j, i′, j′} is at least three). However, this arrangement has dimension ` >

√
n.

The bound O(k4/δ2) is probably not tight and we conjecture that it could be improved to
O(k/δ), possibly with a modification of our proof. One can always construct an arrangement
with dimension 2k/δ by partitioning the subspaces into 1/δ groups, each contained in a single 2k
dimensional space.

Overview of the proof: A preliminary observation is that it suffices to prove the theorem
over R. This is because an arrangement of k-dimensional Complex subspaces can be translated into
an arrangement of 2k-dimensional Real subspaces (this is proved at the end of Section 2). Hence,
we will now focus on Real arrangements.

The proof of the theorem is considerably simpler when the arrangement of subspaces V1, . . . , Vn
satisfies an extra ‘robustness’ condition, namely that every two spaces have an angle bounded
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away from zero. More formally, if for every two unit vectors v1 ∈ Vi1 and v2 ∈ Vi2 we have
|〈v1,v2〉| ≤ 1 − τ for some absolute constant τ > 0. This condition implies that, when we have
a dependency of the form Vi3 ⊂ Vi1 + Vi2 , every unit vector in Vi3 can be obtained as a linear
combination with bounded coefficients (in absolute value) of unit vectors from Vi1 , Vi2 . Fixing an
orthogonal basis for each subspace and using the conditions of the theorem, we are able to construct
many local linear dependencies between the basis elements. We then show (using the bound on
the coefficients in the linear combinations) that the space of linear dependencies between all basis
vectors, considered as a subspace of Rkn, contains the rows of an nk × nk matrix that has large
entries on the diagonal and small entries off the diagonal. Since matrices of this form have high
rank (by a simple spectral argument), we conclude that the original set of basis vectors must have
small dimension.

To handle the general case, we show that, unless some low dimensional subspace W intersects
many of the spaces Vi in the arrangement, we can find a change of basis that makes the angles
between the spaces large on average (in which case, the previous argument works). This gives us the
overall strategy of the proof: If such a W exists, we project W to zero and continue by induction.
The loss in the overall dimension is bounded by the dimension of W , which can be chosen to be
small enough. Otherwise (if such W does not exist) we apply the change of basis and use it to
bound the dimension.

The change of basis is found by generalizing a theorem of Barthe [Bar98] (see [DSW14a] for
a more accessible treatment) from the one dimensional case (arrangement of points) to higher
dimension. We state this result here since we believe it could be of independent interest. To state
the theorem we must first introduce the following, somewhat technical, definition.

Definition 1.3 (admissible basis set, admissible basis vector). Given a list of vector spaces V =
(V1, V2, . . . , Vn) (Vi ⊆ R`), a set H ⊆ [n] is called a V-admissible basis set if

dim(
∑
i∈H

Vi) =
∑
i∈H

dim(Vi) = dim(
∑
i∈[n]

Vi),

i.e. if every space with index in H has intersection {0} with the span of the other spaces with
indices in H, and the spaces with indices in H span the entire space

∑
i∈[n] Vi.

A V-admissible basis vector is any indicator vector 1H of some V-admissible basis set H (where
the i-th entry of 1H equals 1 if i ∈ H and 0 otherwise).

The following theorem is proved in Section 3.

Theorem 1.4. Given a list of vector spaces V = (V1, V2, . . . , Vn) (Vi ⊆ R`) with V1+V2+ · · ·+Vn =
R` and a vector p ∈ Rn in the convex hull of all V-admissible basis vectors. Then for any ε > 0,
there exists an invertible linear map M : R` 7→ R` such that∥∥∥ n∑

i=1

pi ProjM(Vi)−I`×`
∥∥∥ ≤ ε,

where ‖ · ‖ is the spectral norm and ProjM(Vi) is the orthogonal projection matrix onto M(Vi).

The connection to the explanation given in the proof overview is as follows: If there is no
subspace W of low dimension that intersects many of the spaces V1, . . . , Vn then, one can show
that there exists a vector p in the convex hull of all V-admissible basis vectors such that the entries
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of p are not too small. This is enough to show that the average angle between pairs of spaces is
large since otherwise one can derive a contradiction to the inequality which says that the sum of
orthogonal projections of any unit vector must be relatively small.

The proof of the one dimensional case in [Bar98] (which does not have an ε error) proceeds by
defining a strictly convex function f(t1, . . . , tm) on Rm and shows that the function is bounded.
This means that there must exist a point in which all partial derivatives of f vanish. Solving
the resulting equations gives an invertible matrix that defines the required change of basis. We
follow a similar strategy, defining an appropriate bounded function f(t1, . . . , tm, R1, . . . , Rn) in more
variables, where the extra variables R1, . . . , Rn represent the action of the orthogonal group O(k)
on each of the spaces. However, in our case, we cannot show that f is strictly convex and so a
maximum might not exist. However, we are still able to show that there exists a point in which all
partial derivatives are very small (smaller than any ε > 0), which is sufficient for our purposes.

Connection to Locally Correctable Codes. A q-query Locally Correctable Code (LCC)
over a field F is a d-dimensional subspace C ⊂ Fn that allows for ‘local correction’ of codewords
(elements of C) in the following sense. Let y ∈ C and suppose we have query access to y′ such that
yi = y′i for at least (1 − δ)n indices i ∈ [n] (think of y′ as a noisy version of y). Then, for every
i, we can probabilistically pick q positions in y′ and, from their (possibly incorrect values), recover
the correct value of yi with high probability (over the choice of queries). LCC’s play an important
role in theoretical computer science (mostly over finite fields but recently also over the Reals, see
[Dvi11]) and are still poorly understood. In particular, when q is constant greater than 2, there are
exponential gaps between the dimension of explicit constructions and the proven upper bounds.
In [BDYW11] it was observed that q-LCCs are essentially equivalent to configurations of points
with many local dependencies1. A variant of Theorem 1.1 shows for example that the maximal
dimension of a 2-LCC in Rn has dimension bounded by (1/δ)O(1). Our results can be interpreted in
this framework as dimension upper bounds for 2-query LCC’s in which each coordinate is replaced
by a ‘block’ of k coordinate. Our results then show that, even under this relaxation, the dimension
still cannot increase with n. The case of 3-query LCC’s over the Reals is still wide open (some
modest progress was made recently in [DSW14a]) and we hope that the methods developed in this
work could lead to further progress on this tough problem.

Organization. In Section 2, we define the notion of (α, δ)-systems (which generalizes the
SG condition) and reduce our k-dimensional Sylvester-Gallai theorem to a more general theorem,
Theorem 2.8, on the dimension of (α, δ)-systems (this part also includes the reduction from Com-
plex to Real arrangements). Then, in Section 3, we prove the generalization of Barthe’s theorem
(Theorem 1.4). Finally, in section 4, we prove the our main result regarding (α, δ)-systems.

2 Reduction to (α, δ)-systems

The notion of an (α, δ)-system is used to ‘organize’ the dependent triples in the arrangement in
a more convenient form so that each space is in many triples and every pair of spaces is together
only in a few dependent triples. We also allow dependent pairs as those might arise when we apply
a linear map on the arrangement.

1One important difference is that LCC’s give rise to configurations where each point can repeat more than once.
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Definition 2.1 ((α, δ)-system). Given a list of vector spaces V = (V1, V2, . . . , Vn) (Vi ⊆ R`), we
call a list of sets S = (S1, S2, . . . , Sw) an (α, δ)-system of V (α ∈ Z+, δ > 0) if

1. Every Sj is a subset of [n] of size either 3 or 2.

2. If Sj contains 3 elements i1, i2 and i3, then Vi1 ⊆ Vi2 +Vi3, Vi2 ⊆ Vi1 +Vi3 and Vi3 ⊆ Vi1 +Vi2.
If Sj contains 2 elements i1 and i2, then Vi1 = Vi2.

3. Every i ∈ [n] is contained in at least δn sets of S.

4. Every pair {i1, i2} (i1 6= i2 ∈ [n]) appears together in at most α sets of S.

Note that we allow δ > 1 in an (α, δ)-systems. This is different from the statement of the
Sylvester-Gallai theorem where δ ∈ [0, 1]. We have the following simple observations.

Lemma 2.2. Let S = (S1, S2, . . . , Sw) be an (α, δ)-system of some vector space list V. Then
δn2/3 ≤ w ≤ αn2/2 and δ/α ≤ 3/2.

Proof. We consider the sum
∑

j∈[w] |Sj |. By the definition of (α, δ)-system,

n · δn ≤
∑
j∈[w]

|Sj | ≤ 3w =⇒ δn2/3 ≤ w.

Then we consider the number of pairs
∑

j∈[w]
(|Sj |

2

)
, we can see

w ≤
∑
j∈[w]

(
|Sj |
2

)
≤ α

(
n

2

)
≤ αn2/2.

It follows that δ/α ≤ 3/2.

Lemma 2.3. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of vector spaces and S = (S1, S2, . . . , Sw)
be a list of sets. If w ≥ δn2 and S satisfies the first, second and fourth requirements in Definition 2.1,
then there exists a sublist V ′ of V and a sublist S ′ of S such that |V ′| ≥ δn/(2α) and S ′ is an
(α, δ/2)-system of V ′.

Proof. We iteratively remove all Vi’s that appear in less than δn/2 sets, and the sets they appear
in. There are n Vi’s in total, so we can remove at most n · δn/2 sets. When the procedure ends,
we still have at least δn2 − δn2/2 ≥ δn2/2 sets. So we do not remove all of V1, V2, . . . , Vn. For
a remaining Vi, since it appears in at least δn/2 sets, we must still have at least δn/(2α) vector
spaces left. Let V ′ be the list of these spaces and S ′ be the list of the remaining sets. We can see
that S ′ is an (α, δ/2)-system of V ′.

Lemma 2.4. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of vector spaces with an (α, δ)-system
S = (S1, S2, . . . , Sw). Then for any linear map P : R` 7→ R`, S is also an (α, δ)-system of
V ′ = (V ′1 , V

′
2 , . . . , V

′
n), where V ′i = P (Vi).

Proof. This is trivial since, if Vi1 ⊆ Vi2 + Vi3 , then

V ′i1 = P (Vi1) ⊆ P (Vi2 + Vi3) = P (Vi2) + P (Vi3) = V ′i2 + V ′i3 .
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Lemma 2.5. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of vector spaces with an (α, δ)-system
S = (S1, S2, . . . , Sw). Suppose we remove all zero ({0}) spaces in V in the following way:

1. Let n′ be the number of nonzero (not {0}) vector spaces in V, and φ be a one-to-one mapping
from the indices of nonzero spaces to [n′]. We define V ′1 = Vφ−1(1), V

′
2 = Vφ−1(2),. . . , V ′n′ =

Vφ−1(n′) to be all the nonzero spaces.

2. For each Sj (j ∈ [w]), we define S′j = {φ(i) : i ∈ Sj , Vi 6= {0}}.

3. We remove the Sj’s that are empty.

Let S ′ be the list of the remaining sets in S′1, S
′
2, . . . , S

′
w. Then S ′ is an (α, δ′)-system of V ′ =

(V ′1 , V
′
2 , . . . , V

′
n′), where δ′ = δn/n′.

Proof. We first consider an Sj containing 3 elements i1, i2 and i3. If none of Vi1 , Vi2 , Vi2 is {0},
we have S′j = {φ(i1), φ(i2), φ(i3)} and it satisfies the second requirement. If exactly one of them
is {0}, say Vi3 = {0}, we can see S′j = {φ(i1), φ(i2)} and V ′φ(i1) = V ′φ(i2) by Vi1 ⊆ Vi2 + {0},
Vi2 ⊆ Vi1 + {0}. If exactly two of them are {0}, say Vi2 = Vi3 = {0}, then Vi1 ⊆ Vi2 + Vi3 must
also be {0}, contradiction. If all Vi1 , Vi2 , Vi3 are {0}, S′j = ∅ and it is removed.

We then consider an Sj containing 2 elements i1 and i2. If neither of Vi1 , Vi2 is {0}, we have
S′j = {φ(i1), φ(i2)} and V ′φ(i1) = V ′φ(i2). If one of them is {0}, the other must be {0} by Vi1 = Vi2 ,

and S′j is removed.
In summary, the first two requirements of the definition of (α, δ)-system are satisfied. We

can also see that each i ∈ [n′] is contained in at least δ′n′ = δn sets and each pair {i1, i2} with
i1 6= i2 ∈ [n′] is contained in at most α sets, because we have only removed the sets containing only
indices of zero spaces. Therefore the third and fourth requirements are also satisfied.

Combining the above two lemmas, we have the following corollary.

Corollary 2.6. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of vector spaces with an (α, δ)-system,
and P : R` 7→ R` be any linear map. Define V ′ = (V ′1 , V

′
2 , . . . , V

′
n′) to be the list of nonzero spaces

in P (V1), P (V2), . . . , P (Vn). Then V ′ has an (α, δ′)-system, where δ′ = δn/n′.

Theorem 1.2, will be derived from the following, more general statement, saying that the di-
mension d is small if there is a (α, δ)-system.

Definition 2.7 (k-bounded). A vector space V ⊆ R` is k-bounded if dimV ≤ k.

Theorem 2.8. Let V = (V1, V2, . . . , Vn) (Vi ⊆ R`) be a list of k-bounded vector spaces with an
(α, δ)-system and d = dim(V1 + V2 + · · ·+ Vn), then d = O(α2k4/δ2).

We can easily reduce the high dimensional Sylvester-Gallai problem in C` (Theorem 1.2) to the
setting of Theorem 2.8 in R` as shown below.

Proof of Theroem 1.2 using Theorem 2.8. Let Bj = {vj1,vj2, . . . ,vjk} be a basis of Vj . Define

V ′j = span
{

Re(vj1),Re(vj2), . . . ,Re(vjk), Im(vj1), Im(vj2), . . . , Im(vjk)
}
∀j ∈ [n].

Claim 2.9. V ′j = {Re(v) : v ∈ Vj} for every j ∈ [n].
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Proof. For every v′ ∈ V ′j , there exist λ1, λ2, . . . , λk, µ1, µ2, . . . , µk ∈ R such that

v′ =
k∑
s=1

(
λs Re(vjs) + µs Im(vjs)

)
=

k∑
s=1

(
λs Re(vjs) + µs Re(−ivjs)

)
= Re

(
k∑
s=1

(λs − iµs)vjs

)
.

Since λ1, λ2, . . . , λk, µ1, µ2, . . . , µk can take all values in R, we can see the claim is proved.

Claim 2.10 ([BDWY13, Lemma 2.1]). Given a set A with r ≥ 3 elements, we can construct a
family of r2 − r triples of elements in A with following properties: 1) Every triple contains three
distinct element; 2) Every element of A appears in exactly 3(r − 1) triples; 3) Every pair of two
distinct elements in A is contained together in at most 6 triples.

We call a 2k-dimensional subspace U ⊂ C` special if it contains at least three of V1, V2, . . . , Vn.
We define the size of a special space as the number of spaces among V1, V2, . . . , Vn contained in
it. For a special space with size r, we add the r2 − r triples of indices of the spaces in it with the
properties in Claim 2.10. Let S be the family of all these triples. We claim that S is a (6, 3δ)-system
of V = (V ′1 , V

′
2 , . . . , V

′
n).

For every triple {j1, j2, j3} ∈ S, we can see that Vj1 , Vj2 , Vj3 are contained in the same 2k-
dimensional special space. And by Vj1 ∩ Vj2 = {0}, the space must be Vj1 + Vj2 and hence Vj3 ⊆
Vj1 + Vj2 . By Claim 2.9,

V ′j3 = {Re(v) : v ∈ Vj3} ⊆ {Re(u) + Re(w) : u ∈ Vj1 ,w ∈ Vj2} = V ′j1 + V ′j2 .

Similarly, V ′j1 ⊆ V ′j2 + V ′j3 and V ′j2 ⊆ V ′j1 + V ′j3 . One can see every pair in [n] appears in at most 6
triples because the corresponding two spaces are contained in at most one special space, and the
pair appears at most 6 times in the triples constructed from this special space. For every j ∈ [n],
there are at least δn values of j′ ∈ [n] \ {j} such that there is a special space containing Vj and Vj′ .
This implies that the number of triples that j appears in is∑

special space U
Vj⊆U

3
(

size(U)− 1
)

= 3
∑

special space U
Vj⊆U

∣∣{j′ 6= j : Vj′ ⊆ U}
∣∣ ≥ 3δn.

Therefore S is a (6, 3δ)-system of V. By Theorem 2.8,

dim(V ′1 + V ′2 + · · ·+ V ′n) = O(62(2k)4/(3δ)2) = O(k4/δ2).

Note that

V1 + V2 + · · ·+ Vn ⊆ span
{

Re(vjs), Im(vjs)
}
j∈[n],s∈[k] (span with complex coefficients),

V ′1 + V ′2 + · · ·+ V ′n = span
{

Re(vjs), Im(vjs)
}
j∈[n],s∈[k] (span with real coefficients).

We thus have dim(V1 + V2 + · · ·+ Vn) ≤ dim(V ′1 + V ′2 + · · ·+ V ′n) = O(k4/δ2).
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3 A generalization of Barthe’s Theorem

We prove Theorem 1.4 in the following 3 subsections. In the fourth and last subsection, we state
a convenient variant of the theorem (Theorem 3.8) that will be used later in the proof of our main
result. The idea of the proof is similar to [Bar98] (see also [DSW14a, Section 5]), which considers
the maximum point of a function, and using the fact that all derivatives are 0 the result is proved.
Here we consider a similar function f defined in Section 3.1. However, since our problem is more
complicated, it is unclear whether we can find a maximum point at which all derivatives are 0.
Instead we will show that there is a point with very small derivatives in Section 3.2, which is
sufficient for our proof of the theorem in Section 3.3.

3.1 The function and basic properties

Let k1, k2, . . . , kn be the dimensions of V1, V2, . . . , Vn respectively and m = k1 + k2 + · · · + kn.
Throughout our proof, we use pairs (i, j) with i ∈ [n], j ∈ [ki] to denote the element of [m] of
position

∑
i′<i ki′ + j. We define a vector γ ∈ Rm as

γij = pi ∀i ∈ [n], j ∈ [ki].

For every i ∈ [n], we fix {vi1,vi2, . . . ,viki} to be some basis of Vi (not necessarily orthonormal). A
set I ⊆ [m] is called a good basis set if

I =
⋃
i∈H

{
(i, 1), (i, 2), . . . , (i, ki)

}
for some V-admissible basis set H. We can see that for any good basis set I, the set {vij : (i, j) ∈ I}
is a basis of R`. For a list of vectors a1,a2, . . . ,aq (q ∈ Z+), we use [a1,a2, . . . ,aq] to denote the
matrix consisting of columns a1,a2, . . . ,aq.

Let O(s) be the group of s × s orthogonal matrices. The function f : Rm ×O(k1) ×O(k2) ×
· · · ×O(kn) 7→ R is defined as

f(t, R1, . . . , Rn) = 〈γ, t〉 − ln det

 ∑
i∈[n],j∈[ki]

etijxijx
T
ij

 ,

where, for every i ∈ [n], the vectors xij are given by

[xi1, . . . ,xiki ] = [vi1, . . . ,viki ]Ri.

We note that here for every i ∈ [n], j ∈ [ki], xij is a function of Ri and {xi1, . . . ,xiki} is another
basis of Vi.

The next lemma shows that the function f is bounded over its domain. The proof is similar to
Proposition 3 in [Bar98]. For completeness, we include the proof here.

Lemma 3.1. There is a constant C ∈ R such that f(t, R1, . . . , Rn) ≤ C for all t ∈ Rm and
Ri ∈ O(ki) (i ∈ [n]).
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Proof. In this proof, we use F =
([m]
`

)
to denote the family of all `-subsets of [m]. For a set I ⊆ [m],

let 1I ∈ {0, 1}m be the indicator vector of I, i.e. the i-th entry is 1 iff i ∈ I. By the definition of
the vector γ, we can pick µI ∈ [0, 1],

∑
I∈F µI = 1 so that

γ =
∑
I∈F

µI1I ,

and µI 6= 0 only when I is a good basis set.
In the proof, we will use the Cauchy-Binet formula which states that for a `×m matrix A and

an m× ` matrix B,

det(AB) =
∑
I∈F

det(AI) det(BI), (1)

where AI denotes the `× ` matrix that consists of the subset of A’s columns with indices in I, and
BI denotes the `× ` matrix that consists of the subset of B’s rows with indices in I.

We use tI to denote the sum of the entries in t with indices in I, and LI be the `× ` submatrix
of [x11, . . . , . . . ,xnkn ] containing only the columns with indices in I. We then have

〈γ, t〉 =
〈∑

I

µI1I , t
〉

=
∑
I

µItI . (2)

Using equations (1) and (2),

det

 ∑
i∈[n],j∈[ki]

etijxijx
T
ij

 = det

[x11, . . . ,xnkn

] et11xT11
...

etnknxTnkn




=
∑
I∈F

etI det(LI) · det(LTI ) (By (1))

=
∑

I∈F :µI 6=0

µI

(
etI

µI

)
det(LI)

2 +
∑

I∈F :µI=0

etI det(LI)
2

≥
∏

I∈F :µI 6=0

(
etI det(LI)

2

µI

)µI
+ 0 (AM-GM inequality)

= e〈γ,t〉 ·
∏

I∈F :µI 6=0

(
det(LI)

2

µI

)µI
(By (2)).

Take the logarithm of both sides,

f(t, R1, . . . , Rn) = 〈γ, t〉 − ln det

 ∑
i∈[n],j∈[ki]

etijxijx
T
ij

 ≤ ∑
I:µI 6=0

µI ln

(
µI

det(LI)2

)
.

The right side is a function of the orthogonal matrices R1, R2, . . . , Rn because LI is a function
of them. We use f̃(R1, R2, . . . , Rn) to denote the right side of the above inequality. For µI 6=
0, I must be a good basis set. Hence det(LI) 6= 0 no matter what the orthogonal matrices
R1, R2, . . . , Rn are, and f̃ is a well-defined continuous function. Since f̃ is defined on the compact
set O(k1) × O(k2) × · · · × O(kn), it must have a finite upper bound. And that is also an upper
bound for the function f .
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3.2 Finding a point with small derivatives

We first define some notations. Let

X =
∑

i∈[n],j∈[ki]

etijxijx
T
ij

be a matrix valued function of t, R1, R2, . . . , Rn. Then

f(t, R1, . . . , Rn) = 〈γ, t〉 − ln det(X).

Note that X is always a positive definite matrix, since for any w 6= 0,

wTXw =
∑

i∈[n],j∈[ki]

etij 〈xij ,w〉2 > 0,

when x11, . . . , . . . ,xnkn span the entire space (implied by V1 + V2 + · · · + Vn = R`). Define M
to be the ` × ` full rank matrix satisfying MTM = X−1. We note that M is also a function of
t, R1, R2, . . . , Rn.

In a later part of the proof we will show that the linear map defined by M satisfies the require-
ment in Theorem 1.4 when t, R1, R2, . . . , Rn take appropriate values. We first find an appropriate
value of (R1, R2, . . . , Rn) = (R∗1(t), R∗2(t), . . . , R∗n(t)) for every t ∈ Rm, and then find some t∗ with
specific properties.

Lemma 3.2. For every t ∈ Rm, there exists
(
R∗1(t), R∗2(t), . . . , R∗n(t)

)
satisfying

1. f
(
t, R∗1(t), R∗2(t), . . . , R∗n(t)

)
= maxR1,R2,...,Rn

{
f(t, R1, R2, . . . , Rn)

}
.

2. For every i ∈ [n], if tij = tij′ for some j 6= j′ ∈ [ki], then

〈Mxij ,Mxij′〉 = 0,

where [xi1, . . . ,xiki ] = [vi1, . . . ,viki ]R
∗
i (t).

Proof. The first condition can be satisfied by the compactness of O(k1) × O(k2) × · · · × O(kn).
We will show how to change (R∗1(t), R∗2(t), . . . , R∗n(t)), which already satisfies the first condition,
so that it satisfies the second condition while preserving the first condition.

Fix an i ∈ [n] and partition the indices of (ti1, ti2, . . . , tiki) into equivalence classes J1, J2, . . . , Jb ⊆
[ki] such that for j, j′ in the same class tij = tij′ and for j, j′ in different classes tij 6= tij′ . We use
tJr to denote the value of tij for j ∈ Jr, and LJr to denote the matrix consisting of all columns xij
with j ∈ Jr. The terms in X that depend on Ri are

∑
r∈[b]

etJr ∑
j∈Jr

xijx
T
ij

 =
∑
r∈[b]

(
etJr · LJrLTJr

)
=
∑
r∈[b]

(
etJr · LJrQrQTr LTJr

)
,

where Qr can be taken to be any |Jr|× |Jr| orthogonal matrix. This means that if we change R∗i (t)
to R∗i (t) diag(Q1, . . . , Qb) (here diag(Q1, . . . , Qb) denotes the matrix in which the submatrix with
row and column indices Jr is Qr), or equivalently change LJr to LJrQr for every r ∈ [b], the matrix
X does not change, hence M and f do not change, and the first condition is preserved as f is still
the maximum for the fixed t.
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For every r ∈ [b], we can find a Qr such that the columns of MLJrQr are orthogonal (consider
the singular value decomposition of MLJr). Change R∗i (t) to R∗i (t) diag(Q1, . . . , Qb) and the second
condition is satisfied while preserving the first condition. Doing this for every i we can obtain an
(R∗1(t), R∗2(t), . . . , R∗n(t)) satisfying both conditions.

From now on we use R∗1(t), R∗2(t), . . . , R∗n(t) to denote the matrices satisfying the conditions in
Lemma 3.2.

Lemma 3.3. For any ε > 0, there exists t∗ ∈ Rm such that for every i ∈ [n], j ∈ [ki].∣∣∣∣ ∂f∂tij
(
t∗, R∗1(t∗), R∗2(t∗), . . . , R∗n(t∗)

)∣∣∣∣ ≤ ε.
This lemma follows immediately from the following more general lemma.

Lemma 3.4. Let A ⊆ Rh (h ∈ Z+) be a compact set. Let f : Rm × A 7→ R and y∗ : Rm 7→ A be
functions satisfying the following properties:

1. f(x, y) is bounded and continuous on Rm ×A.

2. For every x ∈ Rm, f(x, y∗(x)) = maxy∈A{f(x, y)}.

3. For every fixed y ∈ A, f(x, y) as a function of x is differentiable on Rm.

Then, for every ε > 0, there exists an x∗ ∈ Rm such that for every i ∈ [m],∣∣∣∣ ∂f∂xi
(
x∗, y∗(x∗)

)∣∣∣∣ ≤ ε.
Proof. We denote by f∗(x) = f

(
x, y∗(x)

)
. For the sake of contradiction, assume that for any

x ∈ Rm, there is an index i ∈ [m] such that∣∣∣∣ ∂f∂xi
(
x, y∗(x)

)∣∣∣∣ > ε. (3)

In particular, there is a derivative greater than ε at x = 0. Therefore there exists an x0 6= 0 such
that

f∗(x0)− f∗(0) ≥ f
(
x0, y

∗(0)
)
− f

(
0, y∗(0)

)
≥ 0.9ε · ‖x0 − 0‖ = 0.9ε · ‖x0‖.

Define
g(x, y) = f(x, y)− f∗(0)− 0.9ε · ‖x‖,

and
G =

{
(x, y) ∈ Rm ×A : g(x, y) ≥ 0

}
= g−1

(
[0,+∞)

)
.

We can see G 6= ∅ by x0 ∈ G. By Property 1, f(x, y) is bounded and any (x, y) with sufficiently
large ‖x‖ cannot be in G. Hence G is bounded. Since g(x, y) is a continuous function by Property 2,
the set G = g−1

(
[0,+∞)

)
must be closed. Therefore G is compact. Thus we can find

Z = max
(x,y)∈G

{
‖x‖

}
.
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Pick (x1, y1) ∈ G with ‖x1‖ = Z. The point (x1, y1) is in the compact set

BZ =
{
x ∈ Rm : ‖x‖ = Z

}
×A.

Let
(
x∗1, y

∗(x∗1)
)
∈ BZ be any point where f is maximized over BZ . By (x1, y1) ∈ G, we have

f∗(x∗1)− f∗(0) ≥ f(x1, y1)− f∗(0) ≥ 0.9ε · ‖x1‖ = 0.9ε · ‖x∗1‖. (4)

By (3), there must be an x2 6= x∗1 such that

f∗(x2)− f∗(x∗1) ≥ f
(
x2, y

∗(x∗1)
)
− f

(
x∗1, y

∗(x∗1)
)
≥ 0.9ε · ‖x2 − x∗1‖. (5)

Note that f∗(x2) is strictly greater than f∗(x∗1). By the maximality of f
(
x∗1, y

∗(x∗1)
)

on BZ , we
can see ‖x2‖ 6= Z. There are two cases:

1. ‖x2‖ < Z. This implies that the maximum value of f over

B≤Z =
{
x ∈ Rm : ‖x‖ ≤ Z

}
×A

is at least f∗(x2) > f∗(x∗1). Say f archives the maximum value over B≤Z at (x, y) =(
x3, y

∗(x3)
)
. Then we have ‖x3‖ < Z by the maximality of f

(
x∗1, y

∗(x∗1)
)

on BZ . And
x = x3 must be a local maximum of f

(
x, y∗(x3)

)
with y = y∗(x3) fixed. Therefore

∂f

∂xi

(
x3, y

∗(x3)
)

= 0 ∀i ∈ [m],

violating (3).

2. ‖x2‖ > Z. By (4) and (5), we have

f∗(x2)− f∗(0) = f∗(x2)− f∗(x∗1) + f∗(x∗1)− f∗(0)

≥ 0.9ε · ‖x2 − x∗1‖+ 0.9ε · ‖x∗1‖
≥ 0.9ε · ‖x2‖.

Therefore
(
x2, y

∗(x2)
)
∈ G. By the definition of Z, there should be ‖x2‖ ≤ Z, contradiction.

Thus the lemma is proved.

3.3 Proof of Theorem 1.4

We apply Lemma 3.3 with ε′ = ε/m and obtain a t∗. In the remaining proof we will use X, M and
xij (i ∈ [n], j ∈ [ki]) to denote their values when t = t∗ and Ri = R∗i (t

∗) (i ∈ [n]).

Lemma 3.5. 〈Mxij ,Mxij′〉 = 0 for every i ∈ [n] and j 6= j′ ∈ [ki].

Proof. We fix i0 ∈ [n], j0 6= j′0 ∈ [ki0 ] and prove 〈Mxi0j0 ,Mxi0j′0〉 = 0. If t∗i0j0 = t∗i0j′0
, this is

guaranteed by Lemma 3.2. We only consider the case that t∗i0j0 6= t∗i0j′0
.

Let θ ∈ R be a variable, and define x′ij for i ∈ [n], j ∈ [ki] as follows.

x′ij =


cos θ · xi0j0 − sin θ · xi0j′0 (i, j) = (i0, j0),

sin θ · xi0j0 + cos θ · xi0j′0 (i, j) = (i0, j
′
0),

xij otherwise.
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We consider the following function h : R 7→ R,

h(θ) = 〈γ, t∗〉 − ln det

 ∑
i∈[n],j∈[ki]

et
∗
ijx′ijx

′
ij
T

 .

Claim 3.6. h(θ) has a maximum at θ = 0.

Proof. Let R(θ) be the ki0 × ki0 orthogonal matrix obtained from the identity matrix by changing
the (j0, j0), (j′0, j

′
0) entries to cos θ, the (j0, j

′
0) entry to sin θ, and the (j′0, j0) entry to − sin θ. We

can see R(0) is the identity matrix and

[x′i01, . . . ,x
′
i0ki0

] = [xi01, . . . ,xi0ki0 ]R(θ).

Therefore for all θ ∈ R.

h(θ) = f
(
t∗, R∗1(t∗), . . . , R∗i0−1(t

∗), R∗i0(t∗) ·R(θ), R∗i0+1(t
∗), . . . , R∗n(t∗)

)
≤ f

(
t∗, R∗1(t∗), . . . , R∗i0−1(t

∗), R∗i0(t∗), R∗i0+1(t
∗), . . . , R∗n(t∗)

)
= h(0).

Thus the claim is proved.

Using d
ds ln det(A) = tr(A−1 ddsA) for invertible matrix A (Theorem 4 in [Lax07, Chapter 9]), we

can calculate the derivative of h.

dh

dθ
(0) =− tr

[
X−1

(
e
t∗i0j0

d

dθ

∣∣∣∣
θ=0

x′i0j0x
′
i0j0

T
+ e

t∗
i0j
′
0
d

dθ

∣∣∣∣
θ=0

x′i0j′0
x′i0j′0

T
)]

=− tr
[
X−1

(
e
t∗i0j0

d

dθ

∣∣∣∣
θ=0

(cos θ · xi0j0 − sin θ · xi0j′0)(cos θ · xi0j0 − sin θ · xi0j′0)T

+ e
t∗
i0j
′
0
d

dθ

∣∣∣∣
θ=0

(sin θ · xi0j0 + cos θ · xi0j′0)(sin θ · xi0j0 + cos θ · xi0j′0)T
)]

=− et
∗
i0j0 tr

[ d

dθ

∣∣∣∣
θ=0

(cos θ ·Mxi0j0 − sin θ ·Mxi0j′0)(cos θ ·Mxi0j0 − sin θ ·Mxi0j′0)T
]

− e
t∗
i0j
′
0 tr

[ d

dθ

∣∣∣∣
θ=0

(sin θ ·Mxi0j0 + cos θ ·Mxi0j′0)(sin θ ·Mxi0j0 + cos θ ·Mxi0j′0)T
]

=− et
∗
i0j0

[
− 2 · 〈Mxi0j0 ,Mxi0j′0〉

]
− e

t∗
i0j
′
0

[
2 · 〈Mxi0j0 ,Mxi0j′0〉

]
=2(e

t∗i0j0 − e
t∗
i0j
′
0 ) · 〈Mxi0j0 ,Mxi0j′0〉.

Since h(0) is the maximum, we have dh
dθ (0) = 0. By t∗i0j0 6= t∗i0j′0

, the above equation implies

〈Mxi0j0 ,Mxi0j′0〉 = 0.

Finally we are able to prove Theorem 1.4.
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Proof of Theorem 1.4. With a slight abuse of notation, we also use M to denote the linear map
defined by the matrix M . We show that M satisfies the requirement in Theorem 1.4. Let uij =
Mxij/‖Mxij‖ (i ∈ [n], j ∈ [ki]). Then {ui1,ui2, . . . ,uiki} is an orthonormal basis of M(Vi), and

ProjM(Vi) = [ui1,ui2, . . . ,uiki ]

 uTi1
...
uTiki

 =

ki∑
j=1

uiju
T
ij . (6)

We define

εij =
∂f

∂tij

(
t∗, R∗1(t∗), R∗2(t∗), . . . , R∗n(t∗)

)
∈ [− ε

m
,
ε

m
].

Note that d
ds ln det(A) = tr(A−1 ddsA) for invertible matrix A (Theorem 4 in [Lax07, Chapter 9]).

We have

εij = pi − tr
(
X−1et

∗
ijxijx

T
ij

)
= pi − et

∗
ij · tr

(
Mxijx

T
ijM

T
)

= pi − et
∗
ij · ‖Mxij‖2.

By the definition of X and M ,

M−1(MT )−1 = X =
∑

i∈[n],j∈[ki]

et
∗
ijxijx

T
ij =⇒

∑
i∈[n],j∈[ki]

et
∗
ij (Mxij)(Mxij)

T = I`×`.

Therefore ∑
i∈[n],j∈[ki]

(pi − εij)uijuTij =
∑

i∈[n],j∈[ki]

et
∗
ij‖Mxij‖2

(
Mxij
‖Mxij‖

)(
Mxij
‖Mxij‖

)T
= I`×`.

By (6), ∥∥∥ n∑
i=1

pi ProjM(Vi)−I`×`
∥∥∥ =

∥∥∥ ∑
i∈[n],j∈[ki]

εijuiju
T
ij

∥∥∥ ≤ ε

m

∑
i∈[n],j∈[ki]

‖uijuTij‖ ≤ ε.

Thus Theorem 1.4 is proved.

3.4 A convenient form of Theorem 1.4

We give Theorem 3.8 which is implied by Theorem 1.4 and is the form that will be used in our
proof. Before stating the theorem, we need to define admissible sets and admissible vectors as
Definition 3.7, which have weaker requirements than admissible basis sets and admissible basis
vectors (Definition 1.3) as they are not required to span the entire arrangement.

Definition 3.7 (admissible set, admissible vector). Given a list of vector spaces V = (V1, V2, . . . , Vn)
(Vi ⊆ R`), a set H ⊆ [n] is called a V-admissible set if dim(

∑
i∈H Vi) =

∑
i∈H dim(Vi), i.e. if every

space with index in H has intersection {0} with the span of the other spaces with indices in H. A
V-admissible vector is any indicator vector 1H of some V-admissible set H.
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Theorem 3.8. Given a list of vector spaces V = (V1, V2, . . . , Vn) (Vi ⊆ R`) and a vector p ∈ Rn in
the convex hull of all V-admissible vectors. Then there exists an invertible linear map M : R` 7→ R`
such that for any unit vector w ∈ R`,

n∑
i=1

pi‖ProjM(Vi)(w)‖2 ≤ 2,

where ProjM(Vi)(w) is the projection of w onto M(Vi).

Note that with a slight abuse of notation we use ProjM(Vi) to denote both the projection matrix
and the projection map.

Proof. We use V to denote V1 + V2 + · · · + Vn. Let d = dim(V ) and {b1, b2, . . . , bd} be some
orthonormal basis of V . We construct (V ′,p′) satisfying the conditions in Theorem 1.4 in the
following 2 steps.

1. In this step, we construct Ṽ and p′ so that p′ is in the convex hull of all Ṽ-admissible basis
vectors. Define Vn+1 = span{b1}, Vn+2 = span{b2}, . . . , Vn+d = span{bd} and

Ṽ = (V1, V2, . . . , Vn, Vn+1, Vn+2, . . . , Vn+d).

For every V-admissible set H ⊆ [n], we can see that H is also Ṽ-admissible, and there is a
subset G ⊆ {n+1, n+2, . . . , n+d} such that H ′ = H∪G is a Ṽ-admissible basis set. Assume

p =
∑

V-admissible H

µH1H ,

where µH ∈ [0, 1] and
∑
µH = 1. We define

p′ =
∑

V-admissible H

µH1H′ ,

where H ′ is the Ṽ-admissible basis set extended from H as above. We can see that p is a
prefix of p′, and p′ is in the convex hull of all Ṽ-admissible basis vectors.

2. In this step, we construct V ′ based on Ṽ so that the vector spaces span the entire Euclidean
space. We find an isomorphism linear map P : V 7→ Rd such that P (bi) = ei for i ∈ [d],
where {e1, e2, . . . , ed} is the standard basis of Rd. Define

V ′ =
(
V ′1 , V

′
2 , . . . , V

′
n+d

)
=
(
P (V1), P (V2), . . . , P (Vn+d)

)
.

We can see that V ′1 + V ′2 + · · · + V ′n+d = Rd and p′ is in the convex hull of all V ′-admissible
basis vectors. Hence (V ′,p′) satisfy the conditions in Theorem 1.4.

Apply Theorem 1.4 on (V ′,p′) with ε = 1. There exist an invertible linear map M ′ : Rd 7→ Rd
such that ∥∥∥ n+d∑

i=1

p′i ProjM ′(V ′i )−Id×d
∥∥∥ ≤ 1.
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For every unit vector w′ ∈ Rd, we have

1 ≥ wT

(
n+d∑
i=1

p′i ProjM ′(V ′i )−Id×d

)
w =

n+d∑
i=1

p′i‖ProjM ′(V ′i )(w)‖2 − 1,

=⇒
n+d∑
i=1

p′i‖ProjM ′(V ′i )(w)‖2 ≤ 2.

Note that the linear map P defined in Step 2 only changes orthonormal basis. We find an invertible
linear map M : R` 7→ R` such that M(v) = P−1(M ′(P (v))) for every v ∈ V . Then for every unit
vector w ∈ V ,

n+d∑
i=1

p′i‖ProjM(Vi)(w)‖2 ≤ 2.

It is easy to see that the same inequality holds for every unit vector w ∈ R`. Recall that in
Step 1, p is a prefix of p′. The theorem is proved because the above inequality is stronger than the
required.

4 Proof of the main Theorem

Theorem 2.8 will follow from the following theorem using a simple recursive argument.

Theorem 4.1. Let V = (V1, V2, . . . , Vn) (Vi ∈ R`) be a list of k-bounded vector spaces with an
(α, δ)-system and d = dim(V1 + V2 + · · · + Vn), then for any β ∈ (0, 1), at least one of these two
cases holds:

1. d ≤ 400αk3/(βδ),

2. There is a sublist of q ≥ δn/(20α) spaces (Vi1 , Vi2 , . . . , Viq) such that there are nonzero vectors
z1 ∈ Vi1 , z2 ∈ Vi2 , . . . ,zq ∈ Viq with

dim(z1, z2, . . . ,zq) ≤ βd.

Proof. Initially let V(0) = (V
(0)
1 , V

(0)
2 , . . . , V

(0)
n0 ) = V, δ0 = δ and d0 = d, where n0 = n and

V
(0)
i = Vi.

Starting with t = 0, V(t) = (V
(t)
1 , V

(t)
2 , . . . , V

(t)
nt ) is a list of k-bounded vectors spaces with an

(α, δt)-system and dt = dim(V
(t)
1 + V

(t)
2 + · · ·+ V

(t)
nt ). We apply Theorem 4.1 on V(t).

• If the first case of Theorem 4.1 holds, i.e. dt ≤ 400αk3/(βδt), terminate.

• If the second case of Theorem 4.1 holds, i.e. there exist z1, z2, . . . ,zq from q ≥ δtnt/(20α)
spaces such that dim(z1, z2, . . . ,zq) ≤ βd.

We find a linear map P : R` 7→ R` whose kernel equals span{z1, z2, . . . ,zq}. Define

V(t+1) = (V
(t+1)
1 , V

(t+1)
2 , . . . , V (t+1)

nt+1
)

as the list of nonzero spaces in P (V
(t)
1 ), P (V

(t)
1 ), . . . , P (V

(t)
nt ). By Corollary 2.6, V(t+1) has an

(α, δt+1)-system for δt+1 = δtnt/nt+1.

Let t← t+ 1 and repeat the procedure.
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In the above procedure, we can see δtnt = δt−1nt−1 = · · · = δ0n0 = δn. Note that each step we
map vectors from q ≥ δtnt/(20α) = δn/(20α) spaces to 0, hence

dimV
(t+1)
1 + dimV

(t+1)
2 + · · ·+ dimV (t+1)

nt+1
≤ dimV

(t)
1 + dimV

(t)
2 + · · ·+ dimV (t)

nt
− δn

20α
.

Since initially dimV1 + dimV2 + · · ·+ dimVn ≤ kn, we must terminate after at most

kn

δn/(20α)
=

20αk

δ

steps.
At the t-th step,

dt ≥ (1− β)dt−1 ≥ · · · ≥ (1− β)td0 = (1− β)td.

And if the t-th step is the last step we have dt ≤ 400αk3/(βδt) ≤ 400αk3/(βδ) by δt ≥ δ (implied
by δtnt = δn and nt ≤ n). Therefore

d ≤
(

1

1− β

)20αk/δ

· 400αk3

βδ
.

We assign β = min{1/2, δ/(αk)}. It is easy to verify that 1/(1−β)αk/δ ≤ 4 in both cases δ/(αk) <
1/2 and δ/(αk) ≥ 1/2. Therefore

d ≤ 420 · 400αk3

βδ
= O(α2k4/δ2),

and Theorem 2.8 is proved.

4.1 Proof of Theorem 4.1 – a special case

In this subsection, we consider the case that all vector spaces are ‘well separated’.

Definition 4.2. Two vector spaces V, V ′ ⊆ R` are τ -separated if |〈u,u′〉| ≤ 1− τ for any two unit
vectors u ∈ V and u′ ∈ V ′.

We will use the following two simple lemmas about τ -separated spaces.

Lemma 4.3. Given two vector spaces V, V ′ ⊆ R` that are τ -separated and let B = {u1,u2, . . . ,uk1}
and B′ = {u′1,u′2, . . . ,u′k2} be orthonormal bases for V, V ′ respectively. For any unit vector u ∈
V + V ′, if we write u as

u = λ1u1 + λ2u2 + · · ·+ λk1uk1 + µ1u
′
1 + µ2u

′
2 + · · ·+ µk2u

′
k2 ,

then the coefficients satisfy λ21 + λ22 + · · ·+ λ2k1 + µ21 + µ22 + · · ·+ µ2k2 ≤
1
τ .

Proof. Let v = λ1u1 + λ2u2 + · · ·+ λk1uk1 and w = µ1u
′
1 + µ2u

′
2 + · · ·+ µk2u

′
k2

. We have

1 = ‖u‖2 = ‖v +w‖2 = ‖v‖2 + ‖w‖2 + 2〈v,w〉 ≥ ‖v‖2 + ‖w‖2 − 2(1− τ)‖v‖‖w‖
≥ τ(‖v‖2 + ‖w‖2)
= τ(λ21 + λ22 + · · ·+ λ2k1 + µ21 + µ22 + · · ·+ µ2k2).
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Lemma 4.4. Given two vector spaces V, V ′ ⊆ R` and let B = {u1,u2, . . . ,uk1} be an orthonormal
basis of V . If V and V ′ are not τ -separated, there must exist j ∈ [k1] such that ‖ProjV ′(uj)‖2 ≥
(1− τ)2/k1, where ProjV ′(uj) is the projection of uj onto V ′.

Proof. Let u ∈ V , u′ ∈ V ′ be unit vectors such that |〈u,u′〉| > 1 − τ . Then ‖ProjV ′(u)‖ ≥
|〈u,u′〉| > 1− τ . Suppose u = λ1u1 +λ2u2 + · · ·+λk1uk1 , where λ21 +λ22 + · · ·+λ2k1 = 1. We have

(1− τ)2 < ‖ProjV ′(u)‖2 ≤
( k1∑
j=1

|λj | · ‖ProjV ′(uj)‖
)2
≤
( k1∑
j=1

λ2j

)( k1∑
j=1

‖ProjV ′(uj)‖2
)

=

k1∑
j=1

‖ProjV ′(uj)‖2.

Therefore there exists j ∈ [k1] such that ‖ProjV ′(uj)‖2 ≥ (1− τ)2/k1.

We will need the following lower bound for the rank of a diagonal dominating matrix. The
same lemma for Hermitian matrices was proved in [BDWY13]. Here we change the proof slightly
and show that the consequence also holds for an arbitrary matrix.

Lemma 4.5. Let D = (dij) be a complex m × m matrix and L,K be positive real numbers. If
dii = L for every i ∈ [m] and

∑
i 6=j |dij |2 ≤ K, then rank(D) ≥ m−K/L2.

Proof. Let r be the rank of D. Consider the singular value decomposition of D, say D = UΣV ,
where U, V are unitary matrices and Σ is a non-negative diagonal matrix. Let σ1, σ2, . . . , σr be the
nonzero singular values on the diagonal of Σ.

(mL)2 = tr(D)2 = tr(UΣV )2 = tr(Σ(V U))2 ≤ (σ1 + · · ·+ σr)
2 ≤ r(σ21 + · · ·+ σ2r )

= r‖D‖2F ≤ r(mL2 +K).

Therefore r ≥ (mL)2/(mL2 +K) = m2/(m+K/L2) ≥ m−K/L2.

The following theorem handles the ‘well separated case’ of Theorem 4.1.

Theorem 4.6. Let V = (V1, V2, . . . , Vn) (Vi ∈ R`) be a list of k-bounded vector spaces with an
(α, δ)-system S = (S1, S2, . . . , Sw) and d = dim(V1 + V2 + · · · + Vn). If for every j ∈ [w] and
{i1, i2} ⊆ Sj, Vi1 and Vi2 are τ -separated, then d ≤ αk/(τδ).

Proof. Let k1, k2, . . . , kn be the dimensions of V1, V2, . . . , Vn, and m = k1 + k2 + · · ·+ kn. For every
i ∈ [n], fix Bi = {ui1,ui2, . . . ,uiki} to be some orthonormal basis of Vi. We use A to denote the
m× ` matrix whose rows are uT11, . . . , . . . ,u

T
nkn

. We will bound d = rank(A) by constructing a high
rank m×m matrix D satisfying DA = 0.

For s ∈ [m], we use ψ(s) ∈ [n] to denote the number satisfying

k1 + k2 + · · ·+ kψ(s)−1 + 1 ≤ s ≤ k1 + k2 + · · ·+ kψ(s)−1 + kψ(s).

In other words, the s-th row of A is a vector in Bψ(s).

Claim 4.7. For every s ∈ [m], there is a vector ys ∈ Rm satisfying yTs A = 0T , yss = dδne, and∑
t6=s y

2
st ≤ αdδne/τ .
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Proof. Say the s-th row of A is uT , where u ∈ Bψ(s). Let J ⊆ [w] be a set of size |J | = dδne such
that for every j ∈ J , Sj contains ψ(s). We construct a vector cj for every j ∈ J as following.

• If Sj contains 3 elements {ψ(s), i, i′}, we have λ1, λ2, . . . , λki , µ1, µ2, . . . , µki′ ∈ R such that

u− λ1ui1 − λ2ui2 − · · · − λkiuiki − µ1ui′1 − µ2ui′2 − · · · − µki′ui′ki′ = 0.

We can obtain from this equation a vector cj such that cTj A = 0T , cjs = 1, and by Lemma 4.3

∑
t6=s

c2jt = λ21 + λ22 + · · ·+ λ2ki + µ21 + µ22 + · · ·+ µ2ki′ ≤
1

τ
.

• If Sj contains 2 elements {ψ(s), i}, there exist λ1, λ2, . . . , λki with λ21 +λ22 + · · ·+λ2ki = 1 such
that

u− λ1ui1 − λ2ui2 − · · · − λkiuiki = 0.

We can obtain from this equation a vector cj such that cTj A = 0T , cjs = 1, and∑
t6=s

c2jt = λ21 + λ22 + · · ·+ λ2ki = 1 ≤ 1/τ.

In either case we obtain a cj such that cTj A = 0T , cjs = 1 and
∑

t6=s c
2
jt ≤ 1/τ . We define

ys =
∑
j∈J

cj .

We have yTs A = 0T and yss = dδne. We consider
∑

t6=s y
2
st. From the above construction of cj , we

can see cjt 6= 0 (t 6= s) only when ψ(t) 6= ψ(s) and {ψ(s), ψ(t)} ⊆ Sj . Hence for every t 6= s, there
are at most α nonzero values in {cjt}j∈J . It follows that

∑
t6=s

y2st =
∑
t6=s

∑
j∈J

cjt

2

≤ α
∑
t6=s

∑
j∈J

c2jt

 = α
∑
j∈J

∑
t6=s

c2jt

 ≤ αdδne
τ

.

Thus the claim is proved.

Define D to be the matrix consists of rows yT1 ,y
T
2 , . . . ,y

T
m. Then every entry on the diagonal

of D is dδne, and the sum of squares of all entries off the diagonal is at most αdδnem/τ . Apply
Lemma 4.5 on D, and we have

rank(D) ≥ m− αdδnem/τ
dδne2

= m− αm

τdδne
≥ m− αk

τδ
.

By DA = 0, the rank of A is d ≤ αk/(τδ).
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4.2 Proof of Theorem 4.1 – general case

Now we prove Theorem 4.1. We assume that the first case of Theorem 4.1 does not hold, i.e.
d > 400αk3/(βδ). We will show the second case holds.

Lemma 4.8. At least one of the following two cases holds:

1. The second case of Theorem 4.1 holds, i.e. there exists a sublist of q ≥ δn/(20α) spaces
(Vi1 , Vi2 , . . . , Viq) such that there are nonzero vectors z1 ∈ Vi1 , z2 ∈ Vi2 , . . . ,zq ∈ Viq with

dim(z1, z2, . . . ,zq) ≤ βd.

2. There exist a distribution D on V-admissible sets and an I ⊆ [n] with |I| ≥ (1 − δ/(10α))n
such that for every i ∈ I,

Pr
H∼D

[i ∈ H] ≥ βd

4kn
.

Proof. We sample a V-admissible set as follows: Initially let F = ∅. In each step we pick a space
Vi0 among V1, V2, . . . , Vn with Vi0

⋂∑
i∈F Vi = {0}, and add i0 to F . If such a Vi0 does not exist,

the procedure terminates. Let H be the final value of F . Clearly, H is V-admissible. Let D be the
distribution of H. We will show that if there does not exist an I ⊆ [n] such that D and I satisfy
the second case, the first case must hold.

In the above random procedure, if it is possible that dim(
∑

i∈H Vi) ≤ βd, then there are nonzero
vectors z1 ∈ V1, z2 ∈ V2, . . . , zn ∈ Vn contained in

∑
i∈H Vi, which has dimension at most βd.

Since δ/α ≤ 3/2 by Lemma 2.2, we have n ≥ δn/(20α) and the lemma is proved. In the remaining
proof we assume that H always satisfies dim

(∑
i∈H Vi

)
> βd. This implies that there are always

at least βd/k elements in H. Fix t = dβd/(2k)e < |H| (recall our assumption d > 400αk3/(βδ)),
and let Vj1 , Vj2 , . . . , Vjt be the first t spaces.

We assume that the second case of the lemma does not hold, i.e. there is a set X of at least
δn/(10α) i’s with Pr[i ∈ H] ≤ βd/(4kn) ≤ t/(2n). We will show the first case holds.

Claim 4.9. For every i ∈ X, Pr
[
Vi ∩ (Vj1 + Vj2 + · · ·+ Vjt) 6= {0}

]
≥ 1

2 .

Proof. The proof is similar to Claim 6.4 in [DSW14a]. There are 3 disjoint events

E1 : Vi ∩ (Vj1 + Vj2 + · · ·+ Vjt) = {0},
E2 : i ∈ {j1, j2, . . . , jt}, i.e. i is picked in the first t steps,

E3 : i /∈ {j1, j2, . . . , jt} and Vi ∩ (Vj1 + Vj2 + · · ·+ Vjt) 6= {0}.

As long as i is not picked, the s-th (s ∈ [t]) element js, conditioned on E1∪E2, is sampled uniformly
at random from ([n] \ Js) ∪ {i}, where Js = {j ∈ [n] : Vj ∩ (Vi + Vj1 + Vj2 + · · · + Vjs−1) 6= {0}.
Therefore the probability that Vi is not picked in the first t steps conditioning on E1 ∪ E2 is

Pr[E1 | E1 ∪ E2] ≤ (1− 1

n
)(1− 1

n− 1
) · · · (1− 1

n− t+ 1
) =

n− t
n

.

Hence t/(2n) ≥ Pr[i ∈ H] ≥ Pr[E2] ≥ (t/n) Pr[E1 ∪ E2]. It follows that

Pr
[
Vi ∩ (Vj1 + Vj2 + · · ·+ Vjt) 6= {0}

]
≥ Pr[E3] = 1− Pr[E1 + E2] ≥ 1− 1

2
=

1

2
.

Thus the claim is proved.
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Therefore the expected number of i’s in X with Vi ∩ (Vj1 + Vj2 + · · · + Vjt) 6= {0} is at least
|X|/2 ≥ δn/(20α). Each of these Vi’s has a nonzero vector contained in Vj1 + Vj2 + · · ·+ Vjt . The
first case is proved by dim(Vj1 + Vj2 + · · ·+ Vjt) ≤ kt ≤ βd.

To prove Theorem 4.1, we only need to consider the second case in Lemma 4.8. Let pi (i ∈ [n])
be the probability that i is contained in H ∼ D, and I ⊆ [n] be the set such that |I| ≥ (1−δ/(10α))n
and pi ≥ βd/(4kn) for every i ∈ I. We use k1, k2, . . . , kn to denote the dimensions of V1, V2, . . . , Vn.

Lemma 4.10. The vector p = (p1, p2, . . . , pn) is in the convex hull of V-admissible vectors.

Proof. For every V-admissible set H, we use qH to denote the probability that H is picked according
to D, and 1H to denote the V-admissible vector corresponding to H. Then,

p = (p1, p2, . . . , pn) =
∑

V-admissible H

qH1H

and pi is exactly the probability that i ∈ H.

We apply Theorem 3.8 with the p = (p1, p2, . . . , pn), and obtain an invertible linear map M :
R` 7→ R` such that for any unit vector w ∈ R`,

n∑
i=1

pi‖ProjV ′i (w)‖2 ≤ 2,

where V ′i denotes M(Vi). Since pi ≥ βd/(4kn) for every i ∈ I, we have∑
i∈I
‖ProjV ′i (w)‖2 ≤ 8kn

βd
. (7)

We will reduce the problem to the special case discussed in the previous subsection. We say a
pair {i1, i2} ⊆ [n] is bad if V ′i1 , V

′
i2

are not 0.5-separated. Let S = (S1, S2, . . . , Sw) be the (α, δ)-
system of V. By Lemma 2.4, S is also an (α, δ)-system of V ′ = (V ′1 , V

′
2 , . . . , V

′
n). We estimate the

number of sets among S1, S2, . . . , Sw containing a bad pair.

Lemma 4.11. For every i0 ∈ I, there at most δn/(10α) values of i ∈ I such that V ′i0 and V ′i are
not 0.5-separated.

Proof. Let {u1,u2, . . . ,uki0} be an orthonormal basis of V ′i0 . For any i that V ′i0 and V ′i are not
0.5-separated, by Lemma 4.4, there must be j ∈ [ki0 ] such that

‖ProjV ′i (uj)‖2 ≥
1

4ki0
≥ 1

4k
.

For every j0 ∈ [ki0 ], we set w = uj0 in inequality (7). The number of i’s that ‖ProjV ′i (uj0)‖ ≥
1/(4k) is at most

8kn

βd

/
1

4k
=

32k2n

βd
.

Since there are ki0 ≤ k values of j0 ∈ [ki0 ], the number of i’s that V ′i0 and V ′i are not 0.5-separated
is at most

k · 32k2n

βd
≤ 32k3n

βd
≤ δn

10α
.

In the last inequality we used the assumption d > 400αk3/(βδ).
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The number of bad pairs is at most

|[n] \ I| · n+ |I| · δn
10α

≤ δn2

10α
+
δn2

10α
=
δn2

5α
.

We remove all Sj ’s that contains a bad pair and use S ′ to denote the list of the remaining sets.
Since each pair appears at most α times, we have removed at most δn2/5 sets. Originally we have at
least δn2/3 sets by Lemma 2.2. Now we have at least δn2/3−δn2/5 ≥ δn2/10 sets. By Lemma 2.3,
there is a sublist V ′′ = (V ′i1 , V

′
i2
, . . . , V ′iq) (q ≥ δn/(20α)) of V ′ and a sublist S ′′ of S ′ such that S ′′

is an (α, δ/20)-system of V ′′.
Since we have removed all bad pairs, V ′′ and S ′′ must satisfy the conditions of Theorem 4.6.

By Theorem 4.6,

dim(V ′i1 + V ′i2 + · · ·+ V ′iq) ≤ αk

0.5 · δ/20
=

40αk

δ
≤ βd.

In the last inequality we used the assumption d > 400αk3/(βδ). Recall that the linear map M
is invertible. So the space Vi1 + Vi2 + · · · + Viq has the same dimension as V ′i1 + V ′i2 + · · · + V ′iq .
Therefore there are q ≥ δn/(20α) spaces Vi1 , Vi2 , . . . , Viq within dimension βd. The second case of
Theorem 4.1 holds. In summary, under the assumption d > 400αk3/(βδ) we have shown the second
case of Theorem 4.1 is always satisfied. Therefore Theorem 4.1 is proved. �
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