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Abstract. This paper presents an algorithm for the structure embed-
ding problem: given two finite first-order structures over a common rela-
tional vocabulary, does there exist an injective homomorphism from one
to the other? The structure embedding problem is NP-complete in the
general case, but for monadic structures (each predicate has arity ≤ 1)
we observe that it can be solved in polytime by reduction to bipartite
graph matching. Our algorithm, MatchEmbeds, extends the bipartite
matching approach to the general case by using it as the foundation of
a backtracking search procedure. We show that MatchEmbeds outper-
forms state-of-the-art SAT, CSP, and subgraph isomorphism solvers on
difficult random instances and significantly improves the performance of
a client model checker for multi-threaded programs.

1 Introduction

This paper introduces and addresses the structure embedding problem, an algo-
rithmic problem in finite model theory. The task is to determine whether a given
first-order structure contains an isomorphic copy of another (e.g., if both struc-
tures in question are graphs, this is exactly the subgraph isomorphism problem).
The structure embedding problem is NP-complete in general, but applications
in software model checking demand algorithms that work well on instances that
arise in practice.

A finite relational structure (simply structure in the following) consists of a
finite set (the structure’s universe) and a collection of relations over that set.
For example, a graph is a structure where the universe is the set of vertices and
which has a single binary relation, incidence. Structures are objects of interest
in the fields of finite model theory and the theory of databases. A structure
embedding is an injective homomorphism from one structure to another, and the
structure embedding problem is to determine whether such an embedding exists
between two given structures.

In the context of model checking, the structure embedding problem arises in
abstract state space exploration of parameterized concurrent programs — multi-
threaded programs with arbitrarily many threads each running the same code.
Analogously to the way that the state of a (non-parameterized) program can be
modeled by a valuation of a finite set of predicates, the state of a parameterized
program can be modeled by a structure: the universe of the structure is a set
of threads, and each relation represents a collection of program properties that
hold. For example, a structure with universe {1, 2, 3} and two monadic relations
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X = {1} and Y = {2, 3} might represent a configuration with three threads
{1, 2, 3} where thread 1 is at location X and threads 2 and 3 are at location Y .
Inter-thread relationships are represented with higher-arity predicates — e.g.,
a linear order on process identifiers might be represented by a binary relation
PidLt = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}. The structure embedding problem is exactly the
problem of determining whether one such abstract state subsumes another (and
so can be pruned from the state exporation).

Predicate automata are an automaton model that has been proposed for use
in verification of multi-threaded programs [8,9], that utilizes structures to model
program states. The state space of a predicate automaton is infinite, and the
emptiness problem — the fundamental problem of interest for these automata
— is not decidable in general. However, Farzan et al [8] give a semi-algorithm
that can determine emptiness of a predicate automaton without enumerating all
reachable states, employing ideas from well-structured transition systems [1,10].
The idea is to exploit structure embeddings to prune the state space: if there is
an embedding from a structure A to another B and A cannot reach an accepting
state, then neither can B. By retaining only those states in the search space that
are minimal w.r.t. embedding, it is often possible to make the search space finite.
In particular, for monadic predicate automata (in which each relation has arity
≤ 1, corresponding to a program property that refers to the local variables of
only one thread), this is always the case.

A single predicate automaton emptiness problem can involve thousands of
structure embedding queries, and each structure embedding query can poten-
tially take exponential time. Fortunately, there are two properties that make
the situation less dire: first, we expect each embedding query to be small (e.g.,
we would not expect to observe a configuration involving hundreds of threads);
second, we can expect structures to be dominated by monadic predicates (i.e.,
the correctness argument of a multi-threaded program somewhat rarely requires
inter-thread properties).

This paper presents MatchEmbeds, an algorithm for the structure embed-
ding problem that is based on the observation that the embedding problem for
monadic structures can be solved in polynomial time by reduction to bipartite
graph matching. We develop a practical algorithm for general structure embed-
ding that uses bipartite graph matching as the backbone of a backtracking search
procedure. Graph matching is used to inform the backtracking search procedure
both on which decision points to branch on and which decisions to make. We
show that this algorithm is practical for both structure embedding problems
that result from predicate automaton emptiness checking and difficult randomly
generated instances.

Paper organization The remainder of the paper is structured as follows. Section 2
formalizes the structure embedding problem and presents the main contribution
of this paper: an efficient algorithm for the structure embedding problem. Sec-
tion 3 discusses various heuristics and implementation issues that are important
for practical performance. Section 4 presents experimental results, which com-
pares our embedding algorithm against state-of-the-art SAT, Constraint Satis-
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faction Problem (CSP), and subgraph isomorphism solvers. Section 5 discusses
related work, and Section 6 concludes.

2 Structure Embedding

This section describes our algorithm for the structure embedding problem. We
begin by formalizing finite relational structures and embeddings. We then de-
scribe a reduction of the special case of monadic structure embedding to bipartite
graph matching. Finally, we show how to use bipartite graph matching as the
core of a backtracking search algorithm for the general structure embedding
problem.

2.1 Finite Relational Structures and the Embedding Problem

First we recall the definition of finite relational vocabularies and structures:

Definition 1 (Vocabulary, structure). A (finite relational) vocabulary
σ = 〈Q, ar〉 is a pair consisting of a finite set of predicate symbols Q = {q1, ..., qn}
and a function ar : Q → N associating an arity to each predicate symbol. We
say that σ is monadic if for each predicate symbol q ∈ Q, the arity of q is at
most 1.

A (finite) σ-structure A = 〈A, {qA}q∈Q〉 consists of a finite universe A
together with an interpretation qA ⊆ Aar(q) of each predicate symbol q ∈ Q as a
relation over A of arity ar(q).

Example 1. Consider the class of non-deterministic finite automata (NFA) over
the alphabet Σ = {a, b}. This class of NFAs can be represented as σNFA(Σ)-
structures, where σNFA(Σ) is the vocabulary consisting of two monadic predi-
cates Start and Final (representing the start and final states of an automaton,
respectively), and two binary relations ∆a and ∆b (representing the transition
relation on the letters a and b, respectively).

For example, the automaton pictured below to the left (which recognizes
sequences consisting of pairs of a and b followed by an even number of as) can
be represented by the σNFA(Σ)-structure F pictured below to the right.

12 3

4 5

a

b b

ab a

a

a
b b

F , 〈{1, 2, 3, 4, 5},StartF,FinalF, ∆F
a , ∆

F
b 〉,

where:

StartF , {1}
FinalF , {4}

∆F
a , {〈1, 2〉, 〈1, 5〉, 〈3, 1〉, 〈4, 5〉, 〈5, 4〉}

∆F
b , {〈1, 3〉, 〈1, 4〉, 〈2, 1〉, 〈4, 4〉, 〈5, 5〉}

Next, we define structure homomorphisms and embeddings. Intuitively, one
structure embeds into another if a “copy” of it appears in the second structure
(modulo renaming of universe elements). Formally,
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Definition 2 (Homomorphism, embedding). Let σ = 〈Q, ar〉 be a vocabu-
lary, and let A and B be σ-structures. A homomorphism is a function h : A→
B such that for all q ∈ Q and all 〈a1, ..., aar(q)〉 ∈ qA, we have 〈h(a1), ..., h(aar(q))〉 ∈
qB. We say that a homomorphism is an embedding if h is injective.

Note that the usual notion of embedding from model theory additionally re-
quires that a “reverse homomorphism” condition hold: if 〈h(a1), ..., h(aar(q))〉 ∈ qB
then we must have 〈a1, ..., aar(q)〉 ∈ qA. This condition is not required within the
scope of this paper, but if it is desired it can be encoded by introducing for each
relation q in the vocabulary a second relation qC that holds the complement of
q: a function that is homomorphic w.r.t. qC is reverse homomorphic w.r.t. q.

The structure embedding problem is as follows: given two finite struc-
tures over a common relational vocabulary, determine whether there is an embed-
ding from one to the other. The structure embedding problem is NP-complete,
following immediately from the fact that subgraph isomorphism is a special case.

2.2 Monadic Structure Embedding

Although the structure embedding problem is NP-complete in the general case, it
can be solved in polytime for monadic structures. This section describes a poly-
time reduction from monadic structure embedding to bipartite graph matching,
which can be solved in O(N5/2) time (where N is the number of vertices) [13].

First, recall the definitions of bipartite graphs and matchings:

Definition 3 (Bipartite graph, matching). A bipartite graph G = 〈U, V,E〉
consists of two sets of vertices U and V and a set of edges E ⊆ U×V . A match-
ing in G is a set M ⊆ E of edges such that no two edges share a common vertex.
A matching M is total if its cardinality is equal to that of U . A total match-
ing defines an injective function fM : U ↪→ V where for each u ∈ U , fM (u) is
defined to be the unique v ∈ V such that 〈u, v〉 ∈M .

The reduction of the monadic structure embedding problem to bipartite
graph matching is based on the observation that the homomorphism condition
acts on each element of the universe independently. That is, a function h : A→ B
is a homomorphism of monadic structures iff for each a ∈ A, h(a) satisfies all
the monadic predicates in B that a does in A (and additionally, the nullary
predicates that hold in A also hold in B, which is trivially checked). To capture
this idea, we introduce signatures and signatures graphs.

Definition 4 (Signature, Signature graph). Let σ = 〈Q, ar〉 be a vocabu-
lary, let A be a σ-structure, and let a ∈ A be a member of its universe. The
signature sig(A, a) of a in A is defined to be

sig(A, a) , {q ∈ Q : ∃〈a1, ..., an〉 ∈ qA.∃i.a = ai}

Let A and B be structures over a common vocabulary. The signature graph
of A and B is a bipartite graph Sig(A,B) = 〈A,B,E〉 where the vertices E ,
{〈a, b〉 ∈ A×B : sig(A, a) ⊆ sig(B, b)}.
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The intuitive idea behind the above definition is that b is a candidate target
of a homomorphism for a iff sig(A, a) ⊆ sig(B, b). The signature graph Sig(A,B)
draws an edge from each element of A’s universe to its candidate targets in B.
There is an embedding from A to B precisely when it is possible to select a
distinct candidate target for each element of the universe — that is, there exists
a total matching for Sig(A,B). Summarizing:

Observation 1 Let A and B be structures over a common vocabulary σ.

1. For any embedding f : A ↪→ B, the graph of f (the set {〈a, f(a)〉 : a ∈ A})
is a total matching in Sig(A,B).

2. If σ consists only of monadic predicates, then for every total matching M in
Sig(A,B), fM is an embedding.

Example 2. Two monadic structures A and B over the vocabulary consisting of
two monadic predicates q and r appears below to the left. In the center is the
signature graph Sig(A,B); the signature of each element appears below it. To
the right are the two total matchings of the signature graph (equivalently, the
two embeddings of A into B).

A , 〈{1, 2, 3}, qA, rA〉,
B , 〈{1, 2, 3}, qB, rB〉
where:

qA , {1}
rA , {2, 3}
qB , {1, 2, 3}
rB , {1, 3}

1

2

3

{q}

{r}

{r}

1

2

3

{q, r}

{q}

{q, r}

A B Total Matchings:
M1 = {〈1, 2〉, 〈2, 1〉, 〈3, 3〉}
M2 = {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}

2.3 General Structure Embedding

This section presents the MatchEmbeds algorithm, the main contribution of
this paper. MatchEmbeds is a backtracking search algorithm that uses bipartite
graph matching to guide search. The algorithm is designed to be fast on monadic
(or nearly monadic — contains at most a small constant number of non-empty,
non-monadic relations) structures, and have good practical performance on gen-
eral structures. In the case that MatchEmbeds is applied to monadic structures,
it operates in polytime, effectively applying the reduction to matching described
in the previous section. In general (non-monadic structures) it can (in the worst
case) take time proportional to the number of total matchings in the signature
graph for the instance.

First, we give an example showing why the reduction to bipartite graph
matching does not work for general structures:

Running Example 1. Consider a vocabulary σ consisting of one monadic relation
p and two binary relations q, r, and the two σ-structures A and B visualized in
Figure 1(a) and (b). Members of the monadic relation p are illustrated with
double circles; the binary relations are illustrated with labeled edges.
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(a) Structure A

1 5

4 2 3

q

q

q

r r

(b) Structure B

1

2

3

4

{p, q}

{q}

{q, r}

{r}

1

2

3

4

5

{p, q}

{q, r}

{p, q}

{q}

{q, r}

A B

(c) Signature graph Sig(A,B).

M1 = {〈1, 1〉, 〈2, 4〉, 〈3, 2〉, 〈4, 5〉}
M2 = {〈1,1〉, 〈2,4〉, 〈3,5〉, 〈4,2〉}
M3 = {〈1, 3〉, 〈2, 4〉, 〈3, 2〉, 〈4, 5〉}
M4 = {〈1, 3〉, 〈2, 4〉, 〈3, 5〉, 〈4, 2〉}
M5 = {〈1, 1〉, 〈2, 3〉, 〈3, 2〉, 〈4, 5〉}
M6 = {〈1, 1〉, 〈2, 3〉, 〈3, 5〉, 〈4, 2〉}
M7 = {〈1, 3〉, 〈2, 1〉, 〈3, 2〉, 〈4, 5〉}
M8 = {〈1, 3〉, 〈2, 1〉, 〈3, 5〉, 〈4, 2〉}

(d) Total matchings (Embeddings).

Fig. 1: Running example.

The signature graph Sig(A,B) is depicted in Figure 1(c). All edges (dotted
and solid) belong to Sig(A,B); the solid edges belong to an embedding, dotted
do not. Observe while Sig(A,B) has eight total matchings, only one of them
corresponds to an embedding.

Intuitively, the reason that the reduction to bipartite graph matching does
not work for general structures is that the homomorphism condition for relations
of arity greater than one is not captured by the signature graph. As a result, for
a given candidate matching M there may be tuples belonging to relations of the
source structure that have no corresponding tuple in the image of fM . This idea
is encapsulated by the following definition of conflict :

Definition 5 (Conflict set). Let A and B be structures over a common vo-
cabulary σ = 〈Q, ar〉, and let f : A→ B be a function. The conflict set of f is
the set

conflict(f) , {q(a1, ..., an) : q ∈ Q, 〈a1, ..., an〉 ∈ qA, 〈f(a1), ..., f(an)〉 /∈ qB} .

Note that f is a homomorphism iff its conflict set is empty.

Running Example 2. Conflict sets for M1, . . . ,M8.
conflict(fM1

) , {q(1, 3)} conflict(fM5
) , {q(1, 2), q(1, 3)}

conflict(fM2
) , ∅ conflict(fM6

) , {q(1, 2)}
conflict(fM3

) , {q(1, 2)} conflict(fM7
) , {q(1, 2)}

conflict(fM4
) , {q(1, 2), q(1, 3)} conflict(fM8

) , {q(1, 2), q(1, 3)}
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The MatchEmbeds algorithm searches the space of total matchings of Sig(A,B),
trying to find a matching that corresponds to an embedding (following point 1 of
Observation 1). If a given candidate matching is not an embedding, its conflict
set tells us what went wrong, which we can use to guide the search away from the
current candidate matching and hopefully other candidates that will fail for the
same reason. The choices that can be made to guide search away from a failed
candidate matching are encapsulated by decisions:

Definition 6 (Decision). Let A and B be structures over a common vocabulary
σ, G = 〈A,B,E〉 a bipartite graph over A and B, and M a total matching on G.
A decision of M is an edge 〈a, b〉 ∈M such that (1) the degree of a is greater
than one in G (i.e., there is some other choice available for a), and (2) there is
some conflict q(a1, ..., aar(q)) ∈ conflict(fM ) that involves a (a = ai for some i).

MatchEmbeds represents a search space of candidate matchings as a bipar-
tite graph G. It can split the search space by choosing a decision 〈a, b〉 and either
committing to it (by removing every edge incident to a and b in G excluding
〈a, b〉) or eliminating it (by removing 〈a, b〉 from G). But in either case, we would
like to avoid exhaustively searching through all candidate matchings. Further-
more, when we explore the branch of the search space in which we commit to the
decision 〈a, b〉 (which we know was part of a conflict in the “current” candidate
matching) we would like to be able to make progress — to remove matchings
from the search space that fail for the same essential reason. Both of these goals
are accomplished by employing constraint propagation, a classic technique in
CSP solving (more precisely, generalized arc consistency) [23, Ch. 6]. The idea
is to identify edges in G that cannot be part of any embedding and to remove
them (and thereby eliminate any matching that uses them). We formalize this
idea with the notion of consistent graphs (which do not contain such edges):

Definition 7 (Consistency). Let A and B be structures over a common vo-
cabulary σ = 〈Q, ar〉. Given a bipartite graph G = 〈A,B,E〉, we say that an
edge 〈a, b〉 ∈ E is consistent with 〈a1, ..., aar(q)〉 ∈ qA when for all positions

i ∈ [1, ar(q)] such that a = ai, there is some 〈b1, ..., bar(q)〉 ∈ qB such that b = bi
and for all positions j ∈ [1, ar(q)], 〈aj , bj〉 ∈ E. We say that G is consistent
when for all 〈a, b〉 ∈ E, all q ∈ Q, and all α ∈ qA, 〈a, b〉 is consistent with α.

Definition 8 (Maximum Consistent Sub-Graph). Let A and B be struc-
tures over a common vocabulary σ. Given a bipartite graph G = 〈A,B,E〉, the
maximum consistent sub-graph of G is a graph G′ = 〈A,B,E′〉 such that
(1) E′ ⊆ E (2) G′ is consistent (3) there is no G′′ such that 1 and 2 hold and
|G′| < |G′′| (G′′ contains more edges than G′). For any G, we define filter(G)
to be the maximum consistent sub-graph of G.

Efficient implementation of filter is discussed in Section 3. The crucial prop-
erty of filtering is that it preserves all embeddings:

Proposition 1. Let A and B be structures and let G = 〈A,B,E〉 be a bipartite
graph. For any embedding f : A ↪→ B such that G contains the graph of f (for
all a ∈ A, 〈a, f(a)〉 ∈ E), filter(G) also contains the graph of f .
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Running Example 3. The picture to the right illustrates
the maximum consistent subgraph of the signature
graph from the running example (Figure 1(c)). The edge
〈2, 1〉 is inconsistent with the constraint q(1, 2) (i.e., 2
cannot map to 1 because 2 has an incoming q-edge in
A and 1 has no incoming q-edge in B); similarly, the
edge 〈2, 3〉 is inconsistent with the constraint q(1, 2).
The edges 〈2, 1〉 and 〈2, 3〉 are removed from the sig-
nature graph, which eliminates half of the candidate to-
tal matchings (M5 through M8). The one total match-
ing corresponding to an embedding (M2) remains, along
with three other candidate total matchings.

1

2

3

4

1

2

3

4

5

A B

Now we have all of the machinery necessary to define our algorithm. We
define MatchEmbeds in terms of the recursive sub-procedure embeds as shown
in Algorithm 1. At a high-level, embeds explores the space of total matchings
in the given bipartite graph G, searching for an embedding (G is initially the
signature graph, Sig(A,B)). We first try to compute a total matching on G.
If we fail then we backtrack, returning false if no further decision is left to
backtrack. Otherwise, we have a candidate total matching M and we check if
fM is an embedding. If so, we return true; otherwise, we select a decision 〈a, b〉
and branch on it.

Some more care is needed to understand how a decision 〈a, b〉 is selected
from M . How can we be assured that there is some decision to select? When
control reaches the decision selection point, we know that (1) G is consistent,
(2) it contains a total matching M , and (3) fM is not an embedding. Since fM
is not an embedding, it must have at least one conflict — say q(a1, ..., aar(q)).
Some 〈ai, fM (ai)〉 must be a decision, because if none are then G is inconsistent
with 〈a1, ..., aar(q)〉. Thus, there is always at least some decision to choose. How
do we choose which one? While any choice is enough to ensure correctness of
MatchEmbeds, in practice we found that choosing a decision 〈a, b〉 that min-
imizes the degree of a works well (this is essentially the minimum remaining
values heuristic in CSP literature).

Next, we remark on the design choice that MatchEmbeds explores the branch
that commits to the decision 〈a, b〉 first (after all, we know that 〈a, b〉 is involved
in a conflict). The reason is two-fold. First, observe that for a binary proposition
p(a1, a2) to be involved in a conflict, both 〈a1, fM (a1)〉 and 〈a2, fM (a2)〉 must
be decisions (otherwise, G is inconsistent) — we must change one of the deci-
sions, but which one is arbitrary. In either case, the same matching M cannot
be computed in the next recursive call to the algorithm. (For a conflict involving
an n-ary predicate, we must decide on n − 1 decisions in the conflict to ensure
we discard the candidate matching). Second, observe that we need not recom-
pute a matching from scratch: many edges may be shared between the previous
candidate and the next one. Our implementation uses the algorithm of Ford and
Fulkerson [11] to compute matchings, which benefits from starting from a partial
matching consisting of the edges of the previous candidate matching that were
not removed by filter.
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Algorithm 1: MatchEmbeds

Data: A and B finite structures over a relational vocabulary σ = 〈Q, ar〉.
Result: true ⇐⇒ there exists an embedding from A to B.

Function embeds(G)
G← filter(G)
M ← maximum matching(G)
if |M | 6= |G.A| then

return false
end
if fM is an embedding then

return true
end
Select a decision 〈a, b〉 of M
if embeds(G \ {〈u, v〉 ∈ E : u = a xor v = b}) then

return true
else

return embeds(G \ {〈a, b〉})
end

if there is some q ∈ Q with ar(q) = 0, qA 6= ∅, and qB = ∅ then
return false

else
return embeds(Sig(A,B))

end

Running Example 4. Figure 2 illustrates the execution of MatchEmbeds on the
embedding instance from the Running Example. We start by computing a total
matching M on G. We observe that fM is not an embedding, and compute its
conflicts and decisions. We select the decision 〈3, 2〉 and filter the graph — the
result is empty. Unable to compute a total matching, we backtrack and blame
the decision 〈3, 2〉; we remove it from the graph and once again filter. We then
compute another total matching on the graph. This matching corresponds to an
embedding from A to B, so we return true.

3 Discussion

This section discusses some additional ideas that are important for the practical
performance of MatchEmbeds. We also discuss a data structure for organizing
a collection of structures for a multi-source single-target variation of the struc-
ture embedding problem, which is useful for our target application of testing
emptiness of predicate automata.
Refined signatures Definition 4 shows how to associate a bipartite graph
with a pair of structures A and B over a common vocabulary σ = 〈Q, ar〉 by
drawing an edge from a ∈ A to b ∈ B iff the set of predicates that involve a in
A — the signature of a in A — is a subset of the predicates that involve b in
B. A simple generalization of this idea is to define a partial order 〈P,≤〉 and a
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Compute Matching:

1

2

3

4

1

2

3

4

5

A B

Compute Conflicts:

conflict(fM ) = {q(1, 3)}

decisions of M :
{〈1, 1〉, 〈3, 2〉}

Decide 〈3, 2〉 and filter:

1

2

3

4

1

2

3

4

5

A B

Backtrack 〈3, 2〉:

1

2

3

4

1

2

3

4

5

A B

Compute Matching:

1

2

3

4

1

2

3

4

5

A B

Compute Conflicts

conflict(fM ) = ∅

return true

Fig. 2: The operation of MatchEmbeds on the running example.
function sig(·, ·) that maps a structure and a member of its universe into P such
that

1. If h : A ↪→ B is an embedding, then sig(A, a) ≤ sig(B, h(a)), and
2. If sig(A, a) ≤ sig(B, b) then for all monadic q ∈ Q such that a ∈ qA we have
b ∈ qB.

The associated bipartite graph for such a refined notion of signature is formed
by drawing an edge from a to b iff sig(A, a) ≤ sig(B, b).

Signatures can be used to encode various properties that are monotone w.r.t
homomorphism (e.g., the size of the connected component of a binary relation
to which an element belongs). Using a more refined notion of signature can
yield smaller signature graphs, which results in graph matching being a more
informative heuristic. In our implementation of MatchEmbeds, we use the partial
order (Q × N) → N (i.e., multisets of predicates indexed by the position an
element appears), with

sig(A, a)(q) , |{(〈a1, ..., aar(q)〉, i) : 〈a1, ..., aar(q)〉 ∈ qA ∧ ai = a}|

E.g., for the special case of a binary predicate e, sig(A, a)(e) is the total degree
of a in the graph 〈A, eA〉.
An algorithm for enforcing consistency A crucial factor in the practical
performance of MatchEmbeds is the algorithm filter that enforces consistency of
a graph. To support this operation we make use of an auxiliary bipartite graph
Gq = 〈qA, qB, Eq〉 for each predicate q of arity ≥ 2. Our implementation of
filter repeatedly iterates over each Gq as well as the graph G = 〈A,B,E〉 while
performing the following update rules:
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1. If (〈a1, ..., aar(q)〉, 〈b1, ..., bar(q)〉) ∈ Eq and 〈ai, bi〉 /∈ E for some i, remove it
from Eq.

2. If 〈a, b〉 ∈ E, 〈a1, ..., aar(q)〉 ∈ qar(q) with a = ai, and there is no edge
〈〈a1, ..., aar(q)〉, 〈b1, ..., bar(q)〉〉 ∈ Eq with b = bi, remove 〈a, b〉 from E.

The filter algorithm keeps applying these two rules until no more apply (a fixed
point is reached).
A structure embedding database In the context of predicate automaton
emptiness checking, the problem of interest is to check whether any structure
within a given set of structures (i.e., the states of the automaton that have
already been explored) embeds into another given structure (i.e., some new can-
didate state). To solve this problem, we require a data structure that stores a
set of structures, and that supports an embedding query operation that can test
if any member of this set embeds into a given structure (ideally without simply
testing embedding for each structure in the set).

We use k-d trees [2] to organize the database of structures, and use range
queries to support multi-source single-target embedding problems. The idea is
to associate each structure A with a vector v(A) ∈ Nd (for some fixed dimension
d) such that if A embeds into B, then v(A) ≤ v(B). By storing structures
in a k-d-tree-based map that is keyed by these vectors, we can support multi-
source embedding queries by using a range query to search for structures keyed
by vectors less than a given target vector, and attempt structure embedding
only for the subset of structures returned. In our implementation, we use |Q|-
dimensional binary vectors where v(A)q = 0 if qA = ∅ and v(A)q = 1 otherwise.

4 Experiments

In this section, we evaluate the performance of MatchEmbeds by comparing it
against three CSP solvers (Gecode [24], HaifaCSP [27], and Google’s or-tools
[20]), two SAT solvers (Lingeling [3] and CryptoMiniSat [26]), and two subgraph
isomorphism solvers (Boost’s implementation of VF2 [19] and Glasgow [16]).
Our experiments are designed to answer three questions:

1. Does MatchEmbeds improve the performance of its intended client appli-
cation of subsumption checking in state-space exploration of parameterized
concurrent programs?

2. Does the k-d tree data structure improve the performance of many-to-one
structure embedding queries in predicate automata emptiness checking?

3. Is MatchEmbeds capable of solving difficult problem instances?

4.1 Predicate automata emptiness

We integrated MatchEmbeds into a prototype implementation of the software
model checking algorithm proposed in [8]. The model checking algorithm op-
erates by iteratively constructing a predicate automaton that recognizes a safe
set of executions and checking whether all program traces are contained inside
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the safe one (so a single verification task involves many predicate automaton
emptiness tests, each of which involves many structure embedding instances).
We experimented with small synthetic benchmark programs that were designed
to stress-test the structure embedding procedure. While these programs are small
and synthetic it allows us to control both the universe and arity of predicates
involved in any structure. We used the API provided with Gecode and Boost to
integrate it into the prototype. We used the text interface provided by HaifaCSP,
or-tools, Lingeling, and CryptoMiniSat which bears a performance penalty.

Count threads : we consider a family of programs wherein the main thread
spawns some number of threads N , each of which atomically increments a global
variable count, and then finally asserts that count is no greater than N . We
expect the count threads benchmark to produce monadic, or nearly monadic
structures, but to vary in size with many structures having a universe size close
to N , as we need to explore the execution of all threads to verify that the
assertion holds.

main():

count = 0

for i = 1 to N:

fork thread

assert(count <= N)

thread():

count = count + 1

Secret sharing : we consider a family of programs wherein all threads execute
a protocol that results in having a shared secret. The significance is that the
shared secret forces the use of a binary predicate that expresses that two threads
have the same secret value. The correct protocol is shown in main safe below:
it allocates a secret positive number, spawns an arbitrary number of threads,
sends it to each using the to variable, then checks if it has received a message
in the from variable. If so, it asserts that the received message is equal to its
secret. The incorrect protocol is shown in main bug. It does the same, except
that it computes a new secret for every N threads, where N is a parameter
to the system. The assertion may fail if at least N threads are spawned. The
correct version can be verified in 0.77 seconds with MatchEmbeds, 0.78 with
VF2, 0.80 with Gecode, 5.36 with Lingeling, 11.02 with CryptoMiniSat, 30.99
with HaifaCSP, and 41.25 with or-tools.

main safe():

local secret = *

assume(secret > 0)

from = 0

while (*):

to = secret

fork thread

while (to > 0): skip

if (from > 0):

assert(from == secret)

main bug():

from = 0

while (*):

local secret = *

assume(secret > 0)

for (i = 1 to N):

to = secret

fork thread

while (to > 0): skip

if (from > 0):

assert(from == secret)

thread():

local m = to

to = 0

from = m

We expect the secret sharing benchmark to produce mostly binary structures,
that form a hub-and-spoke topology, since the local threads only interact with
the main thread.
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Fig. 3: Proof Space Benchmarks: Count Threads (Left), Secret Sharing (Right).
Solid line indicates k-d tree, dashed line indicates list data structure.

In Figure 3, we compare the results of each tool, with and without the use of
the k-d tree data structure, on the Count Threads and Secret Sharing paramet-
ric benchmarks. In the Count Threads benchmark, MatchEmbeds substantially
outperforms all other solvers, verifying up to 85 threads; HaifaCSP and Crypto-
MiniSat, the two next closest, reached up to 25. In the Secret Sharing benchmark
we see a different story: almost identical performance from each solver, but a
large performance gain from the k-d tree. When using the k-d data structure,
only a small fraction — less than 1/50th — of the time was spent on embed-
ding queries. In contrast, without the k-d tree data structure almost the entirety
of the verification task was spent solving embedding instances. We see similar
improvements in the Count Threads benchmark when using MatchEmbeds. For
the 30 thread secret sharing benchmark, we see that the k-d tree only performs
220 thousand embedding queries while the naive method explores 318 million
embeddings. We note a similar reduction in number of embedding queries for
all benchmarks. We suspect the similar performance of all solvers in the Secret
Sharing benchmark is due to the topology of the structures resulting in easy
embedding instances.

4.2 Hard instances

The previous experiment demonstrates that MatchEmbeds is able to very quickly
solve the (typically easy) embedding problems that arise in predicate automa-
ton emptiness checking. The second question we would like to answer is whether
MatchEmbeds also works well for larger, more difficult instances. To answer this
question, we compared the performance of MatchEmbeds against SAT, CSP,
and subgraph isomorphism solvers on a suite of hard randomly generated bench-
marks.
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(a) Monadic Structures (b) Unlabeled Graphs

(c) Binary Structures (c) Ternary Structures

Fig. 4: Embedding instances solved within time for each benchmark.

4.3 Random embedding

Results We randomly generated a suite of difficult monadic, binary, and ternary
structure embedding problems, pictured in Figure 4. For each monadic instance,
the source universe size is 40, target universe size is 50, and the vocabulary
consists of 3 monadic predicates; the suite has 53 satisfiable and 47 unsatisfi-
able instances. For each binary instance, the source universe size is 20, target
universe size is 30, and the vocabulary has 3 monadic and 3 binary predicates;
the suite has 46 satisfiable, 49 unsatisfiable, and 5 unsolved instances. For each
ternary instances, the source universe size is 10, the target universe size is 30,
the vocabulary had 3 monadic, 3 binary, and 3 ternary predicates; the suite has
35 satisfiable, 32 unsatisfiable, and 33 unsolved instances.

Cactus plots comparing the performance of the structure embedding solvers
on the random embedding instances are pictured in Figure 4. In a cactus plot,
the x-axis denotes the total number of instances solved, and the y-axis denotes
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time. A point (x, y) denotes that within a timeout of y, x of the instances can
be solved.

For monadic structures, both HaifaCSP and MatchEmbeds perform well: all
instances can be solved in less than a second—their graphs are barely visible
above the x-axis; the next best solvers, CryptoMiniSat and lingeling, solved 87
and 86 instances respectively. For binary structures, MatchEmbeds is able to
solve 95 instances, solving 60 of these in under one second. CryptoMiniSat,the
next best solver, solved 64 instances and required substantially longer to solve 40
of those instances. VF2 solves 58, OrTools 56, Lingeling 53, HaifaCSP 31, and
Gecode 27 in the 100s time limit. For the ternary benchmark, MatchEmbeds
was able to solve 65 instances where the next best solvers, OrTools and Gecode
could solve only 29 instances, taking more time on many of those instances. VF2
does not appear in the ternary figure as it failed to solve any instances.

Method We now describe our methodology for randomly generating hard prob-
lem instances.

Generalizing the Erdős-Rényi method for generating random graphs, we gen-
erate random structures as follows: given as parameters a universe size n, a finite
relational vocabulary σ = 〈Q, ar〉, and a density function d : Q→ [0, 1], we gen-
erate a random structure A(n, σ, d) by iterating over all k-tuples (a1, ..., ak) ∈
{1, ..., n}k and including the proposition q(a1, ..., an) in A(n, σ, d) with proba-
bility d(q). We generate a random embedding problem by generating two such
random structures (with the same vocabulary, but possibly different universe
sizes and density functions).

We now turn to the problem of how to randomly sample parameters (universe
sizes and predicate densities) that result in hard problem instances, following the
insight of Cheeseman et. al. that hard random instances lie near the phase shift —
the parameters used to generate the instances have probability ∼0.5 to produce
satisfiable instances [5]. Similarly to McCreesh et al.’s method for generating
hard subgraph ismorphism instances [17], we fix the source and target universe
sizes and the vocabulary, and search only over densities. We aim to sample
density functions that achieve near parity between the number of satisfiable and
unsatisfiable embedding instances.

Our method is based on the assumption that parameters with similar ex-
pected number of solutions also have similar probabilities of there existing at
least one solution. The expected number of solutions for a given set of pa-
rameters, which we denote E(n,m, dA, dB), has a simple closed form formula
(which we derive below). Using this formula, we find a target expected number
T (n,m, dA, dB) experimentally, using a binary search for an expected number
such that the ratio between satisfiable and unsatisfiable instances, estimated by
generating 10 instances at random, is nearly 1/2 (there is a 5-5 or 6-4 split). We
then generate a random hard instance as follows. First, we randomly sample pa-
rameters that achieve (nearly) the target number of solutions by using stochastic
gradient decent to minimize |T (n,m, dA, dB)−E(n,m, dA, dB)|. Specifically, we
uniformly at random pick a parameter, and perform 1 iteration of stochastic
gradient descent using the partial derivative w.r.t. the chosen parameter, and
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repeat this process until E converges (within 0.005) to T . We then use these
parameters to produce random embedding problems until we find one that is
non-trivial (at least one solver takes more than 1 second to solve). To generate
the benchmark suites pictured in Figure 4, we repeat this process 100 times.

We conclude with a derivation of a formula to calculate the expected number
of embeddings for a random embedding problem. Observe that the number of
injective functions from a set of size n to a set of size m is given by m!/(m−n)!.
For any given injective function h, recall that an ar(q)-tuple belongs to qA with
probability dA(q) and its image, 〈h(a1), ..., h(aar(q))〉, belongs to qB with prob-

ability dB(q); thus the probability that h satisfies the homomorphism condition
for a given predicate q and ar(q)-tuple is dA(q)dB(q) + (1− dA(a)). Since there
are nar(q) such tuples and each event is independent, we raise the probability
to the nar(q) power to get the probability of all ar(q)-tuples satisfying the ho-
momorphism conditions for q. Taking the product over all q ∈ Q, then gives
the probability that h is a homomorphism. We can multiply this probability
by the total number of injective functions to arrive at the function E that com-
putes the expected number of embeddings for structures sampled using the given
parameters:

E(n,m, dA, dB) =
m!

(m− n)!

∏
q∈Q

(dA(q)dB(q) + (1− dA(q)))n
ar(q)

4.4 Unlabeled subgraph isomorphism

(Unlabeled) subgraph isomorphism is a special case of the structure embedding
problem that has received considerable attention (see Section 5). Figure 4(b)
compares the performance of CSP, SAT, and subgraph isomorphism solvers on a
suite of 200 hard random subgraph isomorphism instances from [17]. We included
the Glasgow subgraph isomorphism solver in this benchmark, as it was the lead-
ing solver in [17]; it is excluded from our other experiments because it does not
support labeled subgraph isomorphism. In this benchmark, all source graphs
consist of 30 vertices and all target graphs contain 150 vertices. Glasgow outper-
forms all other solvers on these instances, solving 118; MatchEmbeds performs
second best, solving just 13 instances in the 1000s time limit. All other solvers
solved at most one instance. The poor performance of MatchEmbeds (relative to
the previous experiments) is expected: MatchEmbeds matching-based heuristic
search is uninformative in this setting. Since the signature of any vertex in an
unlabeled graph is exactly the total degree of that vertex and random graphs are
likely to have many vertices with similar degree, the expectation is that signature
graphs will be dense and MatchEmbeds will have little information to exploit.
We expect more informative signatures to result in MatchEmbeds performing
better on unlabeled graphs.
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4.5 Encoding structure embedding into CSP

A constraint satisfaction problem consists of a finite set of variablesX = {x1, ..., xn},
with each variable xi ∈ X associated with a finite domain Di that determines
which values that xi, and a finite set of constraints among those variables. Given
two structures A and B over a common vocabulary 〈Q, ar〉, we construct the
following CSP. We introduce a variable xa for each a ∈ A with domain Da =
{b ∈ B : sig(A, a) ⊆ sig(B, b)}. We add the constraint alldifferent(X), which
asserts that each a must map to a unique b (i.e. ∀xa, xa′ ∈ X.xa 6= xa′). Then for
each 〈a1, ..., an〉 ∈ qA we introduce a constraint Cα =

∨
〈b1,...,bn〉∈qB(

∧
i xai = bi)

to ensure the homomorphism condition. The CSP is satisfiable iff A embeds into
B.

4.6 Encoding structure embedding into SAT

Let A and B be structures over a common vocabulary 〈Q, ar〉. For each edge
〈a, b〉 in the signature graph 〈A,B,E〉 = Sig(A,B), we introduce one proposi-
tional variable pa,b, with the interpretation that pa,b is set iff a maps to b in an
embedding from A to B. For each a ∈ A we introduce a constraint

∨
〈a,b〉∈E pa,b

to encode that a must have an image. We encode that a has at most one image
ensuring that for each a ∈ A, at most one of {pa,b|b ∈ Adj(a)} holds, using the
sequential counter encoding of that at-most-1 constraint [25]. Similarly, we en-
force injectivity by ensuring that for each b ∈ B, at most one of {pa,b|a ∈ Adj(b)}
holds. Finally, for each q ∈ Q and 〈a1, ..., an〉 ∈ qA, we introduce a constraint∨

〈b1,...,bn〉∈qB(pa1,b1 ∧· · · ∧ pan,bn) to encode the homomorphism condition. The
resulting formula is satisfiable iff A embeds into B.

4.7 Encoding structure embedding into labeled subgraph
isomorphism

Given a structures A with vocabulary 〈Q, ar〉, we generate a graph G(A). For
each q ∈ Q we introduce a vertex label, lq and for each i ∈ [1, ar(q)] we introduce
an edge label lqi. Then for each universe element, a ∈ A, we introduce a vertex a
in G. Additionally, for each tuple α ∈ qA, we introduce a vertex vα and for each
i ∈ [1, ar(q)] we introduce an edge 〈vα, ai〉 with edge label lqi. Note, for both
the binary and monadic embeddings, the VF2 implementation allows labeling
vertices and edges with sets of labels and using set inclusion for matching vertex
and edge labels, we are able to directly encode monadic and binary structures
without adding any additional vertices and edges (i.e. l(v) = {q : v ∈ qA} and
l(〈u, v〉) = {q : 〈u, v〉 ∈ qA}).
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5 Related Work

Constraint satisfaction problems Constraint satisfaction problems (CSPs)
are a broad class of combinatorial problems that includes structure embedding.
A good introduction appears in [23, Ch. 6]. MatchEmbeds employs several ideas
that are commonly used in resolution algorithms for CSPs, including backtrack-
ing search, filtering (constraint propagation), and heuristics for decision selection
(variable and value selection). The hypothesis of our work, validated in Section 4,
was that by exploiting the injectivity feature of structure embedding we could
outperform general-purpose CSP solvers.

Of particular relevance to structure embedding is work on the alldifferent
constraint, which requires a specified subset of variables in the problem to be
assigned distinct values (mirroring the injectivity condition of structure embed-
dings). The work most relevant to ours is Régin’s domain consistency algorithm
for alldifferent. Régin’s algorithm uses biparite graph matching to discover
all edges in a value graph of a CSP (analogous to the signature graph of a struc-
ture embedding problem) that do not belong to any total matching and deletes
them. Efficient algorithms for weaker notions of consistency (namely bounds
consistency) have also been developed [21,15]. A survey on the alldifferent

constraint can be found in [12]. Considering the CSP solvers included in Sec-
tion 4: HaifaCSP implements Régin’s algorithm [22] and Gecode and or-tools
implement the algorithm of Lopez-Ortiz et al [15]. The superior performance of
HaifaCSP (particularly for monadic structures) demonstrates the importance of
the alldifferent constraint.

A commonality of these works is that they are constraint propagation tech-
niques: they infer additional constraints on the problem that must be satisfied
by any solution. In contrast, the algorithm presented in Section 2.3 uses graph
matching as the central search mechanism, guiding both which decisions to make
and when to make them (value and variable selection in the terminology of
constraint programming). Our algorithm exploits the fact that structure embed-
ding problems involve an alldifferent constraint on all variables, which makes
matching more informative for structure embedding than it is for general CSPs.
Subgraph isomorphism Given two graphs G and H, the subgraph isomor-
phism problem is to determine if there exists a subgraph of H that is isomorphic
to G, or equivalently, to determine whether there exists an injective homomor-
phism from G to H. Subgraph isomorphism has a number of applications, includ-
ing subcircuit identification [18] and finding motifs in biochemical graph data
[4] — see [6] for a broad survey of techniques for and applications of subgraph
isomorphism. An accessible account describing the differences between some sub-
graph isomorphism algorithms and an experimental comparison between them
can be found in [14].

The subgraph isomorphism problem is a special case of structure embedding,
where the vocabulary of structures is fixed to the vocabulary of graphs consisting
of a single binary incidence relation. A reduction from structure embedding to
labelled subgraph isomorphism (wherein the signature consists only of monadic
and binary predicates) is also possible through constraint binarization [23, Ch.
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6]. However, the applications of subgraph isomorphism differ from the setting
of this paper: typically, the source graph is small and the target is very large,
and the problem of interest is to enumerate all injective homomorphisms. In
this paper, the problem of interest is the decision problem to determine whether
there is at least one injective homomorphism, and the expectation is that the
source and target are of similar size.

A common theme in algorithms for subgraph isomorphism is to exploit lo-
cal edge structure. In contrast, the algorithm we propose exploits the global
structure of the problem by using graph matching as the foundation of the
backtracking search. We are not aware of an existing algorithm for subgraph
isomorphism that operates in polytime for labelled graphs without edges, which
is the analogue of monadic structures. We see from Figure 4 that VF2 is not
competitive on monadic structures, unable to exploit any local edge structure.

6 Conclusion

In this paper we presented MatchEmbeds, a practical algorithm for the problem
of testing whether one finite relational structure embeds into another. The core
idea is to use bipartite graph matching to drive a backtracking search proce-
dure. The algorithm operates in polytime for monadic structures, but may take
exponential time for general structures. The procedure has been shown to be
effective for problems that arise in practice and for difficult random instances.

It would be interesting to apply matching-based search to other problems
where injectivity constraints are important. For instance, in entailment checking
for separation logic formulas, separately conjoined heap cells in a source formula
must map to separately conjoined heap cells in a target formula. Entailment
checking for the list fragment can be done in polytime using graph homomor-
phism [7], but entailment checking for formulas with existential quantifiers may
benefit from matching-based search.
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