
Compositional Bitvector Analysis For Concurrent
Programs With Nested Locks

Zachary Kincaid
joint work with Azadeh Farzan

University of Toronto

September 14, 2010

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 1 / 25



Contribution

Algorithm for solving bitvector problems for concurrent programs
• Handles dynamic synchronization precisely
• Thread compositional

• Scales in # of threads

• Solves the problem for every fact and every location simultaneously

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 2 / 25



Bitvector Analyses

• Let D be a finite set of data flow facts
• For each statement s, define

• gen(s) ⊆ D: set of facts generated by s
• kill(s) ⊆ D: set of facts killed by s
• JsK(in) = (in \ kill(s)) ∪ gen(s)

• Let D = Bn (B = {tt ,ff })
• JsK(〈in1, . . . , inn〉) = 〈JsK1(in1), . . . , JsKn(inn)〉

s

in

in \ kill(s) ∪ gen(s)

∪ ∪

• Examples: Reaching definitions, available expressions, live variables, ...
• We will concentrate on forwards flow, may analyses (e.g. reaching

definitions)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 3 / 25



Bitvector Analyses

• Let D be a finite set of data flow facts
• For each statement s, define

• gen(s) ⊆ D: set of facts generated by s
• kill(s) ⊆ D: set of facts killed by s
• JsK(in) = (in \ kill(s)) ∪ gen(s)

• Let D = Bn (B = {tt ,ff })
• JsK(〈in1, . . . , inn〉) = 〈JsK1(in1), . . . , JsKn(inn)〉

s

in

in \ kill(s) ∪ gen(s)

∪ ∪

• Examples: Reaching definitions, available expressions, live variables, ...
• We will concentrate on forwards flow, may analyses (e.g. reaching

definitions)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 3 / 25



Bitvector Analyses

• Let D be a finite set of data flow facts
• For each statement s, define

• gen(s) ⊆ D: set of facts generated by s
• kill(s) ⊆ D: set of facts killed by s
• JsK(in) = (in \ kill(s)) ∪ gen(s)

• Let D = Bn (B = {tt ,ff })
• JsK(〈in1, . . . , inn〉) = 〈JsK1(in1), . . . , JsKn(inn)〉

s

in

in \ kill(s) ∪ gen(s)

∪ ∪

• Examples: Reaching definitions, available expressions, live variables, ...
• We will concentrate on forwards flow, may analyses (e.g. reaching

definitions)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 3 / 25



Related work

• Parallelism for free! [Knoop et al, TOPLAS96]
• Precise bitvector analysis for cobegin/coend parallelism
• Some generalizations [Esparza & Knoop, FOSSACS99; Esparza & Podelski,

POPL00; Seidl & Steffen, ESOP00; Knoop, Euro-Par98]

• Nested locks [Kahlon & Gupta, POPL07]
Determine whether two local paths (run suffixes) can be interleaved

• Compute local lock information for each path
• Locksets, acquisition histories

• Consistency check on local lock information

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 4 / 25



Program model

• Finite set of threads
• Optional: infinitely many copies of each thread run simultaneously

• Finite set of locks
• All threads start executing at the beginning of the program
• No locks are held in the initial state
• Each thread releases locks in the reverse order they were acquired

Not allowed: acq(l); acq(m); rel(l); rel(m)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 5 / 25



Concurrent Bitvector Analyses

• Optimal solution (sequential case): meet over paths
• Optimal solution (concurrent case): meet over feasible runs

• A run is feasible if
• When projected onto a single thread, it corresponds to a path in the CFG
• No two threads hold the same lock simultaneously

Thread 1
acquire(l)
acquire(m)
x = x + 1
release(m)
x = x * 2
release(l)

Thread 2
acquire(m)
x = 0
x = 1
y = 0
release(m)

Feasible run

acquire(l)
acquire(m)
x = x + 1
release(m)
acquire(m)
x = 0
x = x * 2

Infeasible run

acquire(m)
acquire(l)
x = 0
acquire(m)
x = x + 1

Threads 1 & 2 hold m

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 6 / 25



Concurrent Bitvector Analyses

• Optimal solution (sequential case): meet over paths
• Optimal solution (concurrent case): meet over feasible runs

• A run is feasible if
• When projected onto a single thread, it corresponds to a path in the CFG
• No two threads hold the same lock simultaneously

Thread 1
acquire(l)
acquire(m)
x = x + 1
release(m)
x = x * 2
release(l)

Thread 2
acquire(m)
x = 0
x = 1
y = 0
release(m)

Feasible run

acquire(l)
acquire(m)
x = x + 1
release(m)
acquire(m)
x = 0
x = x * 2

Infeasible run

acquire(m)
acquire(l)
x = 0
acquire(m)
x = x + 1

Threads 1 & 2 hold m

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 6 / 25



Concurrent Bitvector Analyses

• Optimal solution (sequential case): meet over paths
• Optimal solution (concurrent case): meet over feasible runs

• A run is feasible if
• When projected onto a single thread, it corresponds to a path in the CFG
• No two threads hold the same lock simultaneously

Thread 1
acquire(l)
acquire(m)
x = x + 1
release(m)
x = x * 2
release(l)

Thread 2
acquire(m)
x = 0
x = 1
y = 0
release(m)

Feasible run

acquire(l)
acquire(m)
x = x + 1
release(m)
acquire(m)
x = 0
x = x * 2

Infeasible run

acquire(m)
acquire(l)
x = 0
acquire(m)
x = x + 1

Threads 1 & 2 hold m

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 6 / 25



Motivation

• Optimization
• Reaching definitions analysis can be used to construct dependence

graphs, which may be useful for:
• Slicing
• Bootstrapping more sophisticated analyses (e.g. interval analysis)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 7 / 25



Parallelism for free!

Observation: there are 3 monotone functions on B:
• id = λx.x

• gen = λx.tt

• kill = λx.ff

A fact f reaches t iff there exists a witness run:

id
tgen

Witness
acquire(m)
z = 2
acquire(l)
release(m)
acquire(m)
x = 0
x = 1
y = 0
release(m)
z = z - 1
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 8 / 25



Parallelism for free!

Observation: there are 3 monotone functions on B:
• id = λx.x y = 0

• gen = λx.tt x = 1

• kill = λx.ff x = 0

A fact f reaches t iff there exists a witness run:

id
tgen

Witness
acquire(m)
z = 2
acquire(l)
release(m)
acquire(m)
x = 0
x = 1
y = 0
release(m)
z = z - 1
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 8 / 25



Projection

• For every feasible run ρ and every thread T , there
exists a second feasible run with the same transitions
in the same order, except no transitions of T are
executed [Kahlon et al., CAV05]

Witness
acquire(m)
z = 2
acquire(l)
release(m)
acquire(m)
x = 0
x = 1
y = 0
release(m)
z = z - 1
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 9 / 25



Projection

• For every feasible run ρ and every thread T , there
exists a second feasible run with the same transitions
in the same order, except no transitions of T are
executed [Kahlon et al., CAV05]

• For every witness ρ and every thread T , there exists
a second witness with the same transitions in the
same order, except no transitions of T are executed

Witness
acquire(m)
z = 2
acquire(l)
release(m)
acquire(m)
x = 0
x = 1
y = 0
release(m)
z = z - 1
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 9 / 25



Projection

• For every feasible run ρ and every thread T , there
exists a second feasible run with the same transitions
in the same order, except no transitions of T are
executed [Kahlon et al., CAV05]

• For every witness ρ and every thread T , there exists
a second witness with the same transitions in the
same order, except no transitions of T are executed

Witness
acquire(l)
acquire(m)
x = 0
x = 1
y = 0
release(m)
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 9 / 25



Projection

• For every feasible run ρ and every thread T , there
exists a second feasible run with the same transitions
in the same order, except no transitions of T are
executed [Kahlon et al., CAV05]

• For every witness ρ and every thread T , there exists
a second witness with the same transitions in the
same order, except no transitions of T are executed

• If there is a witness for a t, there is a witness
involving 1 or 2 threads

Witness
acquire(l)
acquire(m)
x = 0
x = 1
y = 0
release(m)
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 9 / 25



Strategy

Compute 1-thread and 2-thread witnesses, then combine the results
• 1-thread witness computation = sequential bitvector analysis
• 2-thread witness computation

• For each thread, compute its set of generating and preserving runs
• For each pair of transitions from different threads, determine whether there

is a generating run and preserving run that can be interleaved
• Questions:

1 When can generating and preserving run can be interleaved?
2 How can the (possibly infinite) sets of generating and preserving runs be

represented?

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 10 / 25



Local structure of witnesses

gen t
id

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 11 / 25



Local structure of witnesses

gen t
id

Project onto 2

gen
id

phase 1 phase 2

generating run

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 11 / 25



Local structure of witnesses

gen t
id

Project onto 2 Project onto 1

gen
id

phase 1 phase 2

generating run

t
id

phase 1 phase 2

preserving run

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 11 / 25



Local structure of witnesses

Generating run

acquire(m)
x = 0
x = 1
y = 0
release(m)

Witness
acquire(l)
acquire(m)
x = 0
x = 1
y = 0
release(m)
acquire(m)

x = x + 1

Preserving run
acquire(l)

acquire(m)

x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 12 / 25



Compositional approach to bitvector analysis

generating run

preserving run

phase 1 phase 2

id

gen

t

id

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 13 / 25



Compositional approach to bitvector analysis

phase 1 phase 2

t

id

id

ge
n

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 13 / 25



Compositional approach to bitvector analysis

phase 1 phase 2

ge
n

t

id

id

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 13 / 25



Compositional approach to bitvector analysis

phase 1 phase 2

ge
n

t

id

id

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 13 / 25



Compositional approach to bitvector analysis

phase 1 phase 2

t

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 13 / 25



Compositional approach to bitvector analysis

phase 1 phase 2

t

gen
id

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 13 / 25



Compositional approach to bitvector analysis

Generating run

acquire(m)
x = 0
x = 1
y = 0
release(m)

Preserving run
acquire(l)

acquire(m)
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 14 / 25



Compositional approach to bitvector analysis

Generating run

acquire(m)
x = 0
x = 1
y = 0
release(m)

Witness
acquire(l)
acquire(m)
x = 0

x = 1
y = 0
release(m)
acquire(m)

x = x + 1

Witness
acquire(m)
x = 0
acquire(l)

acquire(m)
x = 1
y = 0
release(m)

x = x + 1

Preserving run
acquire(l)

acquire(m)
x = x + 1

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 14 / 25



Strategy

Compute 1-thread and 2-thread witnesses, then combine the results
• 1-thread witness computation = sequential bitvector analysis
• 2-thread witness computation

• For each thread, compute its set of generating and preserving runs
• For each pair of transitions from different threads, determine whether there

is a generating run and preserving run that can be interleaved
• Questions:

1 When can generating and preserving run can be interleaved?
2 How can the (possibly infinite) sets of generating and preserving runs be

represented?

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 15 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t

• Generating runs:
• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t
• Generating runs:

• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t
• Generating runs:

• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

gen

phase 1 (π) phase 2 (σ)

id
t

t with JtK = id

{〈π′
1, σ1〉, . . . , 〈π′

m, σm〉}

{〈π′
1, σ1t〉, . . . , 〈π′

m, σmt〉}

∪ ∪

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t
• Generating runs:

• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

gen

phase 1 (π)

id

phase 2 (σt)

t with JtK = id

{〈π′
1, σ1〉, . . . , 〈π′

m, σm〉}

{〈π′
1, σ1t〉, . . . , 〈π′

m, σmt〉}

∪ ∪

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t
• Generating runs:

• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

π ∈ Collect(t)

t

t with JtK = gen

{〈π′
1, σ1〉, . . . , 〈π′

m, σm〉}

{〈π, t〉 | π ∈ Collect(t)}

∪ ∪

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t
• Generating runs:

• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

phase 1 (π)

gen

phase 2 (t)

t with JtK = gen

{〈π′
1, σ1〉, . . . , 〈π′

m, σm〉}

{〈π, t〉 | π ∈ Collect(t)}

∪ ∪

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t
• Generating runs:

• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

t with JtK = kill

{〈π′
1, σ1〉, . . . , 〈π′

m, σm〉}

∅

∪ ∪

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t
• Generating runs:

• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 16 / 25



Strategy

Compute 1-thread and 2-thread witnesses, then combine the results
• 1-thread witness computation = sequential bitvector analysis
• 2-thread witness computation

• For each thread, compute its set of generating and preserving runs
• For each pair of transitions from different threads, determine whether there

is a generating run and preserving run that can be interleaved
• Questions:

1 When can generating and preserving run can be interleaved?
2 How can the (possibly infinite) sets of generating and preserving runs be

represented?

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 17 / 25



Related work

• Parallelism for free! [Knoop et al, TOPLAS96]
• Precise bitvector analysis for cobegin/coend parallelism
• Some generalizations [Esparza & Knoop, FOSSACS99; Esparza & Podelski,

POPL00; Seidl & Steffen, ESOP00; Knoop, Euro-Par98]

• Nested locks [Kahlon & Gupta, POPL07]
Determine whether two local paths (run suffixes) can be interleaved

• Compute local lock information for each path
• Locksets, acquisition histories

• Consistency check on local lock information

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 18 / 25



Related work

• Parallelism for free! [Knoop et al, TOPLAS96]
• Precise bitvector analysis for cobegin/coend parallelism
• Some generalizations [Esparza & Knoop, FOSSACS99; Esparza & Podelski,

POPL00; Seidl & Steffen, ESOP00; Knoop, Euro-Par98]

• Nested locks [Kahlon & Gupta, POPL07]
Determine whether two local paths (run suffixes) can be interleaved

• Compute local lock information for each path
• Locksets, acquisition histories

• Consistency check on local lock information

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 18 / 25



Computing generating & preserving runs

• L: local lock information from Kahlon & Gupta
• Abstraction function: compute local lock information component-wise:

α({π1, π2,· · ·}) = {info(π1), info(π2), ...}

• Domain for computing Collect(t): 〈℘(L);⊆〉
• Domain for computing Generating/Preserving(t): 〈℘(L × L );⊆〉

phase 1 phase 2

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 19 / 25



Computing generating & preserving runs

• L: local lock information from Kahlon & Gupta
• Abstraction function: compute local lock information component-wise:

α({π1, π2,· · ·}) = {info(π1), info(π2), ...}

• Domain for computing Collect(t): 〈℘(L);⊆〉

• Domain for computing Generating/Preserving(t): 〈℘(L × L );⊆〉

phase 1 phase 2

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 19 / 25



Computing generating & preserving runs

• L: local lock information from Kahlon & Gupta
• Abstraction function: compute local lock information component-wise:

α({π1, π2,· · ·}) = {info(π1), info(π2), ...}

• Domain for computing Collect(t): 〈℘(L);⊆〉
• Domain for computing Generating/Preserving(t): 〈℘(L × L );⊆〉

phase 1 phase 2

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 19 / 25



One fact to many

• Domain for generating runs for a single fact: 〈℘(L × L);⊆〉

• Domain for generating runs for all facts: 〈L × L → Bn;�〉
• Represent a function as a subset of (L × L)× Bn; if r ∈ L × L doesn’t

appear in the representation, it is associated with ff n.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 20 / 25



One fact to many

• Domain for generating runs for a single fact: 〈L × L → B;�〉

• Domain for generating runs for all facts: 〈L × L → Bn;�〉
• Represent a function as a subset of (L × L)× Bn; if r ∈ L × L doesn’t

appear in the representation, it is associated with ff n.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 20 / 25



One fact to many

• Domain for generating runs for a single fact: 〈L × L → B;�〉
• Domain for generating runs for all facts: 〈L × L → Bn;�〉

• Represent a function as a subset of (L × L)× Bn; if r ∈ L × L doesn’t
appear in the representation, it is associated with ff n.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 20 / 25



One fact to many

• Domain for generating runs for a single fact: 〈L × L → B;�〉
• Domain for generating runs for all facts: 〈L × L → Bn;�〉
• Represent a function as a subset of (L × L)× Bn; if r ∈ L × L doesn’t

appear in the representation, it is associated with ff n.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 20 / 25



The algorithm

1 Sequential data flow analysis

2 Compute generating runs for each thread
3 Build summaries

• Throw away “end” transitions for generating runs
• Join over all transitions⇒ Thread summary
• Join over all threads⇒ Program summary (parameterized systems)

4 For each thread T in the program:
For each transition t in T :

For each preserving run 〈r,D〉 reaching t:
For each generating run 〈r′, D′〉 in the summary:

If r and r′ can be interleaved, D ∩D′ reaches t.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 21 / 25



The algorithm

1 Sequential data flow analysis
2 Compute generating runs for each thread

3 Build summaries
• Throw away “end” transitions for generating runs
• Join over all transitions⇒ Thread summary
• Join over all threads⇒ Program summary (parameterized systems)

4 For each thread T in the program:
For each transition t in T :

For each preserving run 〈r,D〉 reaching t:
For each generating run 〈r′, D′〉 in the summary:

If r and r′ can be interleaved, D ∩D′ reaches t.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 21 / 25



The algorithm

1 Sequential data flow analysis
2 Compute generating runs for each thread
3 Build summaries

• Throw away “end” transitions for generating runs
• Join over all transitions⇒ Thread summary
• Join over all threads⇒ Program summary (parameterized systems)

4 For each thread T in the program:
For each transition t in T :

For each preserving run 〈r,D〉 reaching t:
For each generating run 〈r′, D′〉 in the summary:

If r and r′ can be interleaved, D ∩D′ reaches t.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 21 / 25



The algorithm

1 Sequential data flow analysis
2 Compute generating runs for each thread
3 Build summaries

• Throw away “end” transitions for generating runs
• Join over all transitions⇒ Thread summary
• Join over all threads⇒ Program summary (parameterized systems)

4 For each thread T in the program:
For each transition t in T :

For each preserving run 〈r,D〉 reaching t:
For each generating run 〈r′, D′〉 in the summary:

If r and r′ can be interleaved, D ∩D′ reaches t.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 21 / 25



Experiments

• Implementation applies to C with pthreads
• Ran reaching definitions on FUSE

• Inlined all functions
• (Unsound) alias analysis to finitize set of locks
• Split FUSE into chunks of 5, 10, 50, 100, 200, 425 functions
• Each function is considered a different thread

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 22 / 25



Experiments

1B 2B 3B 4B 5B
0

50

100

150

200

250

300

350

400

CFG Edges × Domain size

Ti
m

e
(s

ec
)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 23 / 25



Experiments

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

Threads

Ti
m

e
(s

ec
)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 23 / 25



Experiments

0k 50k 100k 150k 200k 250k 300k
0

50

100

150

200

250

300

350

400

CFG Edges

Ti
m

e
(s

ec
)

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 23 / 25



Overview

Algorithm for computing the optimal solution to bitvector problems for
concurrent programs communicating via nested locks
• Compositional: scales in # of threads
• Scales in # of data flow facts

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 24 / 25



Questions?

Thank you for your attention.

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 25 / 25


