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Contribution

Algorithm for solving bitvector problems for concurrent programs
• Handles dynamic synchronization precisely
• Thread compositional

• Scales in # of threads

• Solves the problem for every fact and every location simultaneously
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Bitvector Analyses

• Let D be a finite set of data flow facts
• For each statement s, define

• gen(s) ⊆ D: set of facts generated by s
• kill(s) ⊆ D: set of facts killed by s
• JsK(in) = (in \ kill(s)) ∪ gen(s)

• Let D = Bn (B = {tt ,ff })
• JsK(〈in1, . . . , inn〉) = 〈JsK1(in1), . . . , JsKn(inn)〉

s

in

in \ kill(s) ∪ gen(s)

∪ ∪

• Examples: Reaching definitions, available expressions, live variables, ...
• We will concentrate on forwards flow, may analyses (e.g. reaching

definitions)
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Related work

• Parallelism for free! [Knoop et al, TOPLAS96]
• Precise bitvector analysis for cobegin/coend parallelism
• Some generalizations [Esparza & Knoop, FOSSACS99; Esparza & Podelski,

POPL00; Seidl & Steffen, ESOP00; Knoop, Euro-Par98]

• Nested locks [Kahlon & Gupta, POPL07]
Determine whether two local paths (run suffixes) can be interleaved

• Compute local lock information for each path
• Locksets, acquisition histories

• Consistency check on local lock information
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Program model

• Finite set of threads
• Optional: infinitely many copies of each thread run simultaneously

• Finite set of locks
• All threads start executing at the beginning of the program
• No locks are held in the initial state
• Each thread releases locks in the reverse order they were acquired

Not allowed: acq(l); acq(m); rel(l); rel(m)
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Concurrent Bitvector Analyses

• Optimal solution (sequential case): meet over paths
• Optimal solution (concurrent case): meet over feasible runs

• A run is feasible if
• When projected onto a single thread, it corresponds to a path in the CFG
• No two threads hold the same lock simultaneously

Thread 1
acquire(l)
acquire(m)
x = x + 1
release(m)
x = x * 2
release(l)

Thread 2
acquire(m)
x = 0
x = 1
y = 0
release(m)

Feasible run

acquire(l)
acquire(m)
x = x + 1
release(m)
acquire(m)
x = 0
x = x * 2

Infeasible run

acquire(m)
acquire(l)
x = 0
acquire(m)
x = x + 1

Threads 1 & 2 hold m
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Motivation

• Optimization
• Reaching definitions analysis can be used to construct dependence

graphs, which may be useful for:
• Slicing
• Bootstrapping more sophisticated analyses (e.g. interval analysis)
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Parallelism for free!

Observation: there are 3 monotone functions on B:
• id = λx.x

• gen = λx.tt

• kill = λx.ff

A fact f reaches t iff there exists a witness run:

id
tgen

Witness
acquire(m)
z = 2
acquire(l)
release(m)
acquire(m)
x = 0
x = 1
y = 0
release(m)
z = z - 1
x = x + 1
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Projection

• For every feasible run ρ and every thread T , there
exists a second feasible run with the same transitions
in the same order, except no transitions of T are
executed [Kahlon et al., CAV05]

Witness
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• If there is a witness for a t, there is a witness
involving 1 or 2 threads
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Strategy

Compute 1-thread and 2-thread witnesses, then combine the results
• 1-thread witness computation = sequential bitvector analysis
• 2-thread witness computation

• For each thread, compute its set of generating and preserving runs
• For each pair of transitions from different threads, determine whether there

is a generating run and preserving run that can be interleaved
• Questions:

1 When can generating and preserving run can be interleaved?
2 How can the (possibly infinite) sets of generating and preserving runs be

represented?
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Local structure of witnesses

gen t
id

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 11 / 25



Local structure of witnesses

gen t
id

Project onto 2

gen
id

phase 1 phase 2

generating run

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 11 / 25



Local structure of witnesses

gen t
id

Project onto 2 Project onto 1

gen
id

phase 1 phase 2

generating run

t
id

phase 1 phase 2

preserving run

Z. Kincaid and A. Farzan (U. Toronto) Compositional Bitvector Analysis September 14, 2010 11 / 25



Local structure of witnesses

Generating run

acquire(m)
x = 0
x = 1
y = 0
release(m)

Witness
acquire(l)
acquire(m)
x = 0
x = 1
y = 0
release(m)
acquire(m)

x = x + 1

Preserving run
acquire(l)

acquire(m)

x = x + 1
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Compositional approach to bitvector analysis

generating run

preserving run

phase 1 phase 2

id

gen

t

id
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Compositional approach to bitvector analysis

Generating run

acquire(m)
x = 0
x = 1
y = 0
release(m)

Preserving run
acquire(l)

acquire(m)
x = x + 1
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Strategy

Compute 1-thread and 2-thread witnesses, then combine the results
• 1-thread witness computation = sequential bitvector analysis
• 2-thread witness computation

• For each thread, compute its set of generating and preserving runs
• For each pair of transitions from different threads, determine whether there

is a generating run and preserving run that can be interleaved
• Questions:

1 When can generating and preserving run can be interleaved?
2 How can the (possibly infinite) sets of generating and preserving runs be

represented?
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Collecting generating and preserving runs

• Collecting trace semantics for t:
• Domain: Set of traces
• Input: Set of traces to t - {π1,· · · , πn}
• Output: Set of traces through t - {π1t,· · · , πnt}

• LFP solution = Collect(t): set of all traces to t

• Generating runs:
• Domain: Set of pairs of paths
• Input: Set of generating runs to t
• Output: Set of generating runs through t

• LFP solution = Generating(t): set of all generating runs to t
• Preserving runs can be computed similarly
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gen

phase 1 (π) phase 2 (σ)

id
t

t with JtK = id

{〈π′
1, σ1〉, . . . , 〈π′

m, σm〉}

{〈π′
1, σ1t〉, . . . , 〈π′

m, σmt〉}

∪ ∪
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Collecting generating and preserving runs

• Collecting trace semantics for t:
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• Input: Set of generating runs to t
• Output: Set of generating runs through t
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t with JtK = kill
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∪ ∪
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Strategy

Compute 1-thread and 2-thread witnesses, then combine the results
• 1-thread witness computation = sequential bitvector analysis
• 2-thread witness computation

• For each thread, compute its set of generating and preserving runs
• For each pair of transitions from different threads, determine whether there

is a generating run and preserving run that can be interleaved
• Questions:

1 When can generating and preserving run can be interleaved?
2 How can the (possibly infinite) sets of generating and preserving runs be

represented?
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Related work

• Parallelism for free! [Knoop et al, TOPLAS96]
• Precise bitvector analysis for cobegin/coend parallelism
• Some generalizations [Esparza & Knoop, FOSSACS99; Esparza & Podelski,

POPL00; Seidl & Steffen, ESOP00; Knoop, Euro-Par98]

• Nested locks [Kahlon & Gupta, POPL07]
Determine whether two local paths (run suffixes) can be interleaved

• Compute local lock information for each path
• Locksets, acquisition histories

• Consistency check on local lock information
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Computing generating & preserving runs

• L: local lock information from Kahlon & Gupta
• Abstraction function: compute local lock information component-wise:

α({π1, π2,· · ·}) = {info(π1), info(π2), ...}

• Domain for computing Collect(t): 〈℘(L);⊆〉
• Domain for computing Generating/Preserving(t): 〈℘(L × L );⊆〉

phase 1 phase 2
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One fact to many

• Domain for generating runs for a single fact: 〈℘(L × L);⊆〉

• Domain for generating runs for all facts: 〈L × L → Bn;�〉
• Represent a function as a subset of (L × L)× Bn; if r ∈ L × L doesn’t

appear in the representation, it is associated with ff n.
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The algorithm

1 Sequential data flow analysis

2 Compute generating runs for each thread
3 Build summaries

• Throw away “end” transitions for generating runs
• Join over all transitions⇒ Thread summary
• Join over all threads⇒ Program summary (parameterized systems)

4 For each thread T in the program:
For each transition t in T :

For each preserving run 〈r,D〉 reaching t:
For each generating run 〈r′, D′〉 in the summary:

If r and r′ can be interleaved, D ∩D′ reaches t.
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Experiments

• Implementation applies to C with pthreads
• Ran reaching definitions on FUSE

• Inlined all functions
• (Unsound) alias analysis to finitize set of locks
• Split FUSE into chunks of 5, 10, 50, 100, 200, 425 functions
• Each function is considered a different thread
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Overview

Algorithm for computing the optimal solution to bitvector problems for
concurrent programs communicating via nested locks
• Compositional: scales in # of threads
• Scales in # of data flow facts
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Questions?

Thank you for your attention.
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