Compositional Bitvector Analysis For Concurrent Programs With Nested Locks

Zachary Kincaid
joint work with Azadeh Farzan

University of Toronto

September 14, 2010

Contribution

Algorithm for solving bitvector problems for concurrent programs

- Handles dynamic synchronization precisely
- Thread compositional
- Scales in \# of threads
- Solves the problem for every fact and every location simultaneously

Bitvector Analyses

- Let D be a finite set of data flow facts
- For each statement s, define
- $\operatorname{gen}(s) \subseteq D$: set of facts generated by s
- $\operatorname{kill}(s) \subseteq D$: set of facts killed by s
- $\llbracket s \rrbracket(i n)=(i n \backslash \operatorname{kill}(s)) \cup \operatorname{gen}(s)$

Bitvector Analyses

- Let D be a finite set of data flow facts
- For each statement s, define
- $\operatorname{gen}(s) \subseteq D$: set of facts generated by s
- $\operatorname{kill}(s) \subseteq D$: set of facts killed by s
- $\llbracket s \rrbracket(i n)=(i n \backslash \operatorname{kill}(s)) \cup \operatorname{gen}(s)$
- Let $D=\mathbb{B}^{n}(\mathbb{B}=\{t t, f f\})$
- $\llbracket s \rrbracket\left(\left\langle i n_{1}, \ldots, i n_{n}\right\rangle\right)=\left\langle\llbracket s \rrbracket_{1}\left(i n_{1}\right), \ldots, \llbracket s \rrbracket_{n}\left(i n_{n}\right)\right\rangle$

Bitvector Analyses

- Let D be a finite set of data flow facts
- For each statement s, define
- $g e n(s) \subseteq D$: set of facts generated by s
- $\operatorname{kill}(s) \subseteq D$: set of facts killed by s
- $\llbracket s \rrbracket(i n)=(i n \backslash \operatorname{kill}(s)) \cup \operatorname{gen}(s)$
- Let $D=\mathbb{B}^{n}(\mathbb{B}=\{t t, f f\})$
- $\llbracket s \rrbracket\left(\left\langle i n_{1}, \ldots, i n_{n}\right\rangle\right)=\left\langle\llbracket s \rrbracket_{1}\left(i n_{1}\right), \ldots, \llbracket s \rrbracket_{n}\left(i n_{n}\right)\right\rangle$

- Examples: Reaching definitions, available expressions, live variables, ...
- We will concentrate on forwards flow, may analyses (e.g. reaching definitions)

Related work

- Parallelism for free! [Knoop et al, TOPLAS96]
- Precise bitvector analysis for cobegin/coend parallelism
- Some generalizations [Esparza \& Knoop, FOSSACS99; Esparza \& Podelski, POPL00; Seidl \& Steffen, ESOP00; Knoop, Euro-Par98]
- Nested locks [Kahlon \& Gupta, POPL07]

Determine whether two local paths (run suffixes) can be interleaved

- Compute local lock information for each path
- Consistency check on local lock information

Program model

- Finite set of threads
- Optional: infinitely many copies of each thread run simultaneously
- Finite set of locks
- All threads start executing at the beginning of the program
- No locks are held in the initial state
- Each thread releases locks in the reverse order they were acquired

```
Not allowed: acq(l); acq(m); rel(l); rel(m)
```


Concurrent Bitvector Analyses

- Optimal solution (sequential case): meet over paths
- Optimal solution (concurrent case): meet over feasible runs
- A run is feasible if
- When projected onto a single thread, it corresponds to a path in the CFG
- No two threads hold the same lock simultaneously

Concurrent Bitvector Analyses

- Optimal solution (sequential case): meet over paths
- Optimal solution (concurrent case): meet over feasible runs
- A run is feasible if
- When projected onto a single thread, it corresponds to a path in the CFG
- No two threads hold the same lock simultaneously

Thread $1 \quad$ Thread 2

```
acquire(l) acquire(m)
acquire(m) x = 0
x = x + 1 x = 1
release(m) y = 0
x = x * 2 release(m)
```

release (1)

Concurrent Bitvector Analyses

- Optimal solution (sequential case): meet over paths
- Optimal solution (concurrent case): meet over feasible runs
- A run is feasible if
- When projected onto a single thread, it corresponds to a path in the CFG
- No two threads hold the same lock simultaneously

Thread 1 acquire(1) acquire (m) $\mathbf{x}=\mathbf{x}+1$ release (m) $\mathbf{x}=\mathrm{x}$ * 2 release(1)	Thread 2 acquire (m) $\mathbf{x}=0$ $\mathbf{x}=1$ $y=0$ release (m)	Feasible run acquire(1) acquire (m) $\mathrm{x}=\mathrm{x}+1$ release (m) acquire (m) $f_{x}^{x}=0$ $f_{x}^{x}=x * 2$	Infeasible run acquire (m) acquire(l) $x=0$ acquire (m) $x=x+1$

Motivation

- Optimization
- Reaching definitions analysis can be used to construct dependence graphs, which may be useful for:
- Slicing
- Bootstrapping more sophisticated analyses (e.g. interval analysis)

Parallelism for free!

Observation: there are 3 monotone functions on \mathbb{B} :

- $i d=\lambda x$. x
- gen $=\lambda x$.tt
- kill $=\lambda x$.ff

A fact f reaches t iff there exists a witness run:

Parallelism for free!

Observation: there are 3 monotone functions on \mathbb{B} :
Witness
acquire (m)
$z=2$
acquire (l)
release (m)
acquire (m)
$x=0$
$\mathbf{x}=1$
$\mathbf{y}=0$
$r e l e a s e(m)$
$z=z-1$
$x=x+1$

- $i d=\lambda x . x$
$y=0$
- gen $=\lambda x$.tt
$\mathrm{x}=1$
- $k i l l=\lambda x . f f$
$\mathrm{x}=0$
A fact f reaches t iff there exists a witness run:

Projection

- For every feasible run ρ and every thread T, there exists a second feasible run with the same transitions in the same order, except no transitions of T are executed [Kahlon et al., CAV05]
Witness
acquire (m)
$z=2$
acquire (1)
release (m)
acquire (m)
$\mathbf{x}=0$

$x=1$
$y=0$
release (m)
$z=z-1$
$x=x+1$

Projection

- For every feasible run ρ and every thread T, there exists a second feasible run with the same transitions in the same order, except no transitions of T are executed [Kahlon et al., CAV05]
- For every witness ρ and every thread T, there exists a second witness with the same transitions in the same order, except no transitions of T are executed

Witness
acquire (m)
= 2
acquire(1)
release (m)
acquire (m)
$\mathrm{x}=0$
${ }^{\text {x }}$
$y=0$
release (m)
$\underbrace{z}=\mathbf{z}-18$

Projection

- For every feasible run ρ and every thread T, there exists a second feasible run with the same transitions in the same order, except no transitions of T are executed [Kahlon et al., CAV05]
- For every witness ρ and every thread T, there exists a second witness with the same transitions in the same order, except no transitions of T are executed

Projection

- For every feasible run ρ and every thread T, there exists a second feasible run with the same transitions in the same order, except no transitions of T are executed [Kahlon et al., CAV05]
- For every witness ρ and every thread T, there exists a second witness with the same transitions in the same order, except no transitions of T are executed
- If there is a witness for a t, there is a witness
involving 1 or 2 threads

Strategy

Compute 1-thread and 2-thread witnesses, then combine the results

- 1-thread witness computation = sequential bitvector analysis
- 2-thread witness computation
- For each thread, compute its set of generating and preserving runs
- For each pair of transitions from different threads, determine whether there is a generating run and preserving run that can be interleaved
- Questions:
(1) When can generating and preserving run can be interleaved?
(2) How can the (possibly infinite) sets of generating and preserving runs be represented?

Local structure of witnesses

Local structure of witnesses

Local structure of witnesses

Local structure of witnesses

Generating run

acquire (m)	acquire (l)
$\mathbf{x}=0$	acquire (m)
$\mathbf{x}=1$	$\mathbf{x}=0$
$\mathbf{y}=0$	$\left(\begin{array}{l}x=1 \\ \text { release (m) } \\ y=0 \\ \text { release }(m) \\ \text { acquire }(m) \\ x=x+1\end{array}\right.$

Preserving run

```
acquire(1)
acquire (m)
\[
x=x+1
\]
```


Compositional approach to bitvector analysis

preserving run

generating run

Compositional approach to bitvector analysis

Compositional approach to bitvector analysis

Generating run

```
acquire (m)
x = 0
x = 1
y = 0
release(m)
```


Compositional approach to bitvector analysis

	Witness	
	acquire (l) acquire (m) $\mathbf{x}=0$	
Generating run	$\begin{aligned} & x=1 \\ & y=0 \\ & \text { release }(m) \end{aligned}$	Preserving run
acquire (m)	acquire (m)	acquire (1)
$\mathbf{x}=0$	$\mathrm{m}_{\mathrm{x}}=\mathrm{x}+1$	acquire (m)
$x=1$		$\mathbf{x}=\mathbf{x}+1$
$\begin{aligned} & y=0 \\ & \text { release (m) } \end{aligned}$	Witness	
	$\begin{aligned} & \text { acquire (m) } \\ & \mathbf{x}=0 \\ & \text { acquire (l) } \end{aligned}$	
	acquire (m)	
	$\left(\begin{array}{l} x=1 \\ y=0 \\ \text { release (m) } \end{array}\right.$	
	${ }_{x}=x+1$	

Strategy

Compute 1-thread and 2-thread witnesses, then combine the results

- 1-thread witness computation = sequential bitvector analysis
- 2-thread witness computation
- For each thread, compute its set of generating and preserving runs
- For each pair of transitions from different threads, determine whether there is a generating run and preserving run that can be interleaved
- Questions:
(1) When can generating and preserving run can be interleaved?
(2) How can the (possibly infinite) sets of generating and preserving runs be represented?

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t
- Generating runs:
- Domain: Set of pairs of paths
- Input: Set of generating runs to t
- Output: Set of generating runs through t

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t
- Generating runs:
- Domain: Set of pairs of paths

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t
- Generating runs:
- Domain: Set of pairs of paths

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t
- Generating runs:
- Domain: Set of pairs of paths

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t
- Generating runs:
- Domain: Set of pairs of paths

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t
- Generating runs:
- Domain: Set of pairs of paths
- Input: Set of generating runs to t
- Output: Set of generating runs through t

Collecting generating and preserving runs

- Collecting trace semantics for t :
- Domain: Set of traces
- Input: Set of traces to $t-\left\{\pi_{1}, \cdots, \pi_{n}\right\}$
- Output: Set of traces through $t-\left\{\pi_{1} t, \cdots, \pi_{n} t\right\}$
- LFP solution $=\operatorname{Collect}(t)$: set of all traces to t
- Generating runs:
- Domain: Set of pairs of paths
- Input: Set of generating runs to t
- Output: Set of generating runs through t
- LFP solution = Generating (t) : set of all generating runs to t
- Preserving runs can be computed similarly

Strategy

Compute 1-thread and 2-thread witnesses, then combine the results

- 1-thread witness computation = sequential bitvector analysis
- 2-thread witness computation
- For each thread, compute its set of generating and preserving runs
- For each pair of transitions from different threads, determine whether there is a generating run and preserving run that can be interleaved
- Questions:
(1) When can generating and preserving run can be interleaved?
(2) How can the (possibly infinite) sets of generating and preserving runs be represented?

Related work

- Parallelism for free! [Knoop et al, TOPLAS96]
- Precise bitvector analysis for cobegin/coend parallelism
- Some generalizations [Esparza \& Knoop, FOSSACS99; Esparza \& Podelski, POPL00; Seidl \& Steffen, ESOP00; Knoop, Euro-Par98]
- Nested locks [Kahlon \& Gupta, POPL07]

Determine whether two local paths (run suffixes) can be interleaved

- Compute local lock information for each path
- Locksets, acquisition histories
- Consistency check on local lock information

Related work

- Parallelism for free! [Knoop et al, TOPLAS96]
- Precise bitvector analysis for cobegin/coend parallelism
- Some generalizations [Esparza \& Knoop, FOSSACS99; Esparza \& Podelski, POPL00; Seidl \& Steffen, ESOP00; Knoop, Euro-Par98]
- Nested locks [Kahlon \& Gupta, POPL07]

Determine whether two local paths (run suffixes) can be interleaved

- Compute local lock information for each path
- Locksets, acquisition histories
- Consistency check on local lock information

Computing generating \& preserving runs

- \mathcal{L} : local lock information from Kahlon \& Gupta
- Abstraction function: compute local lock information component-wise:

$$
\alpha\left(\left\{\pi_{1}, \pi_{2}, \cdots\right\}\right)=\left\{\operatorname{info}\left(\pi_{1}\right), \operatorname{info}\left(\pi_{2}\right), \ldots\right\}
$$

Computing generating \& preserving runs

- \mathcal{L} : local lock information from Kahlon \& Gupta
- Abstraction function: compute local lock information component-wise:

$$
\alpha\left(\left\{\pi_{1}, \pi_{2}, \cdots\right\}\right)=\left\{\operatorname{info}\left(\pi_{1}\right), \operatorname{info}\left(\pi_{2}\right), \ldots\right\}
$$

- Domain for computing $\operatorname{Collect}(t):\langle\wp(\mathcal{L}) ; \subseteq\rangle$

Computing generating \& preserving runs

- L: local lock information from Kahlon \& Gupta
- Abstraction function: compute local lock information component-wise:

$$
\alpha\left(\left\{\pi_{1}, \pi_{2}, \cdots\right\}\right)=\left\{\operatorname{info}\left(\pi_{1}\right), \operatorname{info}\left(\pi_{2}\right), \ldots\right\}
$$

- Domain for computing $\operatorname{Collect}(t):\langle\wp(\mathcal{L}) ; \subseteq\rangle$
- Domain for computing Generating $/ \operatorname{Preserving}(t):\langle\wp(\mathcal{L} \times \mathcal{L}) ; \subseteq\rangle$
phase 1 phase 2

One fact to many

- Domain for generating runs for a single fact: $\langle\wp(\mathcal{L} \times \mathcal{L}) ; \subseteq\rangle$

One fact to many

- Domain for generating runs for a single fact: $\langle\mathcal{L} \times \mathcal{L} \rightarrow \mathbb{B} ; \preceq\rangle$

One fact to many

- Domain for generating runs for a single fact: $\langle\mathcal{L} \times \mathcal{L} \rightarrow \mathbb{B} ; \preceq\rangle$
- Domain for generating runs for all facts: $\left\langle\mathcal{L} \times \mathcal{L} \rightarrow \mathbb{B}^{n} ; \preceq\right\rangle$

One fact to many

- Domain for generating runs for a single fact: $\langle\mathcal{L} \times \mathcal{L} \rightarrow \mathbb{B} ; \preceq\rangle$
- Domain for generating runs for all facts: $\left\langle\mathcal{L} \times \mathcal{L} \rightarrow \mathbb{B}^{n} ; \preceq\right\rangle$
- Represent a function as a subset of $(\mathcal{L} \times \mathcal{L}) \times \mathbb{B}^{n}$; if $r \in \mathcal{L} \times \mathcal{L}$ doesn't appear in the representation, it is associated with $f f^{n}$.

The algorithm

(1) Sequential data flow analysis

The algorithm

(1) Sequential data flow analysis
(2) Compute generating runs for each thread

The algorithm

(1) Sequential data flow analysis
(2) Compute generating runs for each thread
(3) Build summaries

- Throw away "end" transitions for generating runs
- Join over all transitions \Rightarrow Thread summary
- Join over all threads \Rightarrow Program summary (parameterized systems)

The algorithm

(1) Sequential data flow analysis
(2) Compute generating runs for each thread
(3) Build summaries

- Throw away "end" transitions for generating runs
- Join over all transitions \Rightarrow Thread summary
- Join over all threads \Rightarrow Program summary (parameterized systems)
(4) For each thread T in the program:

For each transition t in T :
For each preserving run $\langle r, D\rangle$ reaching t :
For each generating run $\left\langle r^{\prime}, D^{\prime}\right\rangle$ in the summary: If r and r^{\prime} can be interleaved, $D \cap D^{\prime}$ reaches t.

Experiments

- Implementation applies to C with pthreads
- Ran reaching definitions on FUSE
- Inlined all functions
- (Unsound) alias analysis to finitize set of locks
- Split FUSE into chunks of $5,10,50,100,200,425$ functions
- Each function is considered a different thread

Experiments

Experiments

Experiments

Overview

Algorithm for computing the optimal solution to bitvector problems for concurrent programs communicating via nested locks

- Compositional: scales in \# of threads
- Scales in \# of data flow facts

Questions?

Thank you for your attention.

