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1 INTRODUCTION

The theory of linear integer/real arithmetic possesses characteristics that make it useful across a
range of applications. Foremost, it is a decidable theory, with practical decision procedures based
on (integer) linear programming. Beyond decidability, the conjunctive fragments of linear real
and integer arithmetic (corresponding to convex polyhedra and the integer points within them,
respectively) can be manipulated effectively. This fact has been leveraged, for instance, for invariant
generation [Colón et al. 2003; Cousot and Halbwachs 1978], termination analysis [Podelski and
Rybalchenko 2004], optimization [Bjørner et al. 2015; Li et al. 2014; Sebastiani and Tomasi 2012],
and program transformation [Feautrier 1996; Lengauer 1993].

Includingmultiplication in the language of arithmetic has a dramatic effect on the resulting theory.
Non-linear (integer) arithmetic is not even recursively axiomatizable, let alone decidable. As a result,
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solvers for non-linear arithmetic rely on heuristic reasoning techniques [Borralleras et al. 2019, 2009;
Fuhs et al. 2007; Jovanović 2017; Kremer et al. 2016], and algorithms formanipulating the conjunctive
fragment (e.g., [Bagnara et al. 2005; Kincaid et al. 2017]) are imprecise. The use of such heuristics
precludes clients of non-linear solvers and abstract domains from satisfying desirable properties—
for instance, there are no non-trivial complete ranking function synthesizers or monotone invariant
generation schemes for non-linear integer arithmetic. And while heuristics are often effective in
practice, they can also be unpredictable. For instance, Hawblitzel et al. [2014] reports “we found
Z3’s theory of nonlinear arithmetic to be slow and unstable; small code changes often caused
unpredictable verification failures,” which prompted the authors to develop information-hiding
techniques to avoid triggering non-linear heuristics.

This paper develops the theory of linear integer/real rings (LIRR)—commutative rings extended
with an order relation and an “integer” predicate that obey certain axioms from the theory of linear
integer/real arithmetic. While all axiomatizable theories of non-linear arithmetic are incomplete,
LIRR is weak by design (relative to say Peano arithmetic), trading power for tractable automated
reasoning:

• LIRR is decidable. Furthermore, LIRR does not lose any of the reasoning power of linear
integer/real arithmetic (in a sense made precise in Theorems 1 and 8).
• The conjunctive fragment of LIRR can be manipulated effectively, analogously to convex
polyhedra. This enables some clients of linear arithmetic (for instance, recurrence-based loop
invariant generation—see Section 5) to be “lifted” to non-linear arithmetic.
• LIRR is axiomatized by Horn clauses. This implies existence of minimal models [Van Emden
and Kowalski 1976], which simplifies consequence-finding. It also ensures that the theory is
convex [Tinelli 2003] (and stably infinite), so LIRR can be combined with other theories via
the Nelson-Oppen protocol [Nelson and Oppen 1979].

The key technical contribution of this paper is a suite of algorithms for manipulating alge-

braic cones—a set of polynomials that can be represented as the sum of a polynomial ideal and
a polyhedral cone. Algebraic cones can be seen as a representation of a system of polynomial
equalities and inequalities (analogous to the constraint representation of a convex polyhedron).
Similarly, congruence constraints can be represented by an algebraic lattice—a sum of a polynomial
ideal and a point lattice. Algebraic cones and lattices are the basis of our decision procedure for
the problem of testing satisfiability of a ground formula modulo LIRR, wherein they serve as a
representation of a Herbrand model. We show that algebraic cones can be effectively manipulated
like convex polyhedra: membership and emptiness are decidable, and algebraic cones are closed
under intersection, sum, projection, inverse homomorphism, and cutting plane closure with respect
to an algebraic lattice (analogous to computing the convex hull of the integer points within a convex
polyhedron).
Algorithms for algebraic cones arise as a marriage of techniques between polynomial ideals

(based on Gröbner bases) and convex polyhedra. Such combinations have been investigated in prior
work (e.g., [Bagnara et al. 2005; Kincaid et al. 2017; Tiwari 2005]), in the context of incomplete
heuristics for reasoning about real or integer arithmetic. This paper investigates the strength of
this combination through the lens of a first-order theory of arithmetic. The critical finding is that
these methods enable complete consequence-finding (modulo LIRR). We present an algorithm
that, given a ground formula � , computes the set of all polynomials ? such that � entails that
? is non-negative, modulo LIRR (analogous to computing the convex hull of � , modulo linear
arithmetic). Such consequence-finding has a wide range of applications in program analysis [Reps
et al. 2004]. As a case study, we give one application to non-linear invariant generation, and show
that the technique has good practical performance on top of theoretical guarantees.
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The paper is organized as follows. Section 2 presents background on logic, commutative algebra,
and polyhedral theory. The theory of linear/integer rings is presented in two steps. Section 3
presents the theory of linear real rings, LRR, which is essentially the theory of linear integer/real
rings excluding the integer predicate and its associated axioms. The full theory LIRR is given in
Section 4. An invariant generation algorithm that demonstrates the use of consequence-finding is
given in Section 5. Section 6 evaluates the decision procedure for LIRR and the invariant generation
algorithm experimentally. The LIRR decision procedure is not empirically competitive with state-
of-the-art heuristic solvers. On the other hand, the experimental results for the invariant generation
procedure are positive, establishing the value of consequence-finding modulo LIRR. Related work is
discussed in Section 7. Proofs for all statements in this paper can be found in Kincaid et al. [2022b].

2 BACKGROUND

2.1 First-Order Logic

A signature f = (�, ', ar) consists of a set of function symbols � and a set of relation symbols '
that are mutually disjoint, and a function ar : (� ∪ ') → Z≥0 mapping each symbol to its arity.
For any set of symbols - (presumed disjoint from � and '), we use f(- ) to denote the extension
of f with the constant symbols - . A f-structure A consists of a set* A (the universe of A) along
with an interpretation 5 A : (* A)ar(5 ) → * A of each function symbol 5 ∈ � and an interpretation
AA ⊆ (* A)ar(A ) of each relation symbol A ∈ '. The set of f-terms and f-formulas are defined in
the usual way. A formula is said to be a sentence if it has no free variables, and ground if it has
neither free nor bound variables. A f-structure A is amodel of a set of sentences) if for all � ∈ ) ,
A satisfies � (written A |= � ). A f-theory ) is a set of sentences closed under entailment (for any
sentence � , if � is satisfied by every model of ) , then � belongs to ) ). For any f-structure A, Th(A)

denotes the f-theory consisting of all sentences � such that A |= � . If ) is a f-theory and � is a
f(- )-formula, we say that � is satisfiable modulo) if there exists a f(- )-structure A that satisfies
� along with each formula in ) . If � and � are f(- )-formulas, we say that � entails � modulo )

(written � |=) �) if every f(- )-structure that satisfies � and each sentence in ) also satisfies � .

2.2 Commutative Algebra

This section recalls some basic facts about commutative algebra (see [Cox et al. 2015]). Let f>A be
the signature of ordered rings, consisting of a binary addition (+) and multiplication (·) operators,
the constants 0 and 1, equality, and a binary relation ≤.
The commutative ring axioms, CR, are as follows:

∀G,~, I. G + (~ + I) = (G + ~) + I and ∀G,~, I. G · (~ · I) = (G · ~) · I (Associativity)
∀G,~. G + ~ = ~ + G and ∀G,~. G · ~ = ~ · G (Commutativity)
∀G . G + 0 = G and ∀G . G · 1 = G (Identity)
∀G,~, I. G · (~ + I) = (G · ~) + (G · I) (Distributivity)
∀G, ∃~. G + ~ = 0 (Additive inverse)

A model of these axioms is called a commutative ring. Examples of commutative rings include the
integers Z, the rationals Q, and the reals R. For any commutative ring ' and finite set of variables- ,
let '[- ] denote the set of polynomials over - with coefficients in '; this too forms a commutative
ring.
Modules are a generalization of linear spaces in which the scalars form a ring rather than a

field. If ' is a commutative ring, an '-module is a commutative group (", 0, +) equipped with
a scalar multiplication operation · : ' × " → " satisfying the usual axioms of linear spaces
(0 · (< +=) = 0 ·< +0 ·=, (0 +1) ·< = 0 ·< +1 ·<, (0 ·1) ·< = 0 · (1 ·<), and 1 ·< =<). For instance,
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' is itself an '-module where scalar multiplication is the usual ring multiplication; '[- ] is both an
'-module and an '[- ]-module.

Let ' be a commutative ring and # be an '-module. For !," ⊆ # and ( ⊆ ' we use ! +" to
denote the set of sums of elements in ! and " , and ( ⟨"⟩ to denote the set of weighted sums of
elements of" with coefficients in ( :

! +" ≜ {ℓ +< : ℓ ∈ !,< ∈ "}

( ⟨"⟩ ≜
{
B1<1 + · · · + B=<= : = ∈ Z≥0, B1, . . . , B= ∈ (,<1, . . . ,<= ∈ "

}

For instance, if+ is a linear space over Q and� ⊆ + then Q⟨�⟩ is the span of�—the smallest linear
subspace of + containing � . Note that ( ⟨"⟩ always contains zero (since we may take = = 0). We
omit braces for finite sets, and write ( ⟨<1, . . . ,<:⟩ for ( ⟨{<1, . . . ,<: }⟩.

Let ' be a commutative ring. An ideal � ⊆ ' is a sub-module of ' (considered as an '-module);
i.e., a set that (1) contains zero, (2) is closed under addition, and (3) is closed under multiplication
by arbitrary elements of '. An ideal � defines a congruence relation ≡� , where ? ≡� @ if and only
if ? − @ ∈ � . (The notation ? − @ abbreviates ? + (−@), where −@ is the unique additive inverse of
@.) One may think of an ideal as a set of elements that are congruent to zero with respect to some

congruence relation, with the closure conditions of ideals corresponding to the idea that the sum of
two zero-elements is zero, and the product of a zero-element with anything is again zero. We use
'/� to denote the quotient ring in which the elements are sets of the form A + � for some A ∈ '
(that is, equivalence classes of ≡� ), and sum and product are defined as (A + � ) + (B + � ) = (A + B) + �

and (A + � ) · (B + � ) = (A · B) + � . Note that any subset % ⊆ ' generates an ideal (the smallest with
respect to inclusion order containing % ), which is exactly '⟨%⟩. When ' is clear from context, we
will write ⟨%⟩ for the ideal '⟨%⟩ generated by the set % .

Fix a set of variables - . We use [- ] to denote the set of monomials over - . A monomial

ordering ⪯ is a total order on [- ] such that (1) 1 ⪯ < for all<, and (2) for any< ⪯ = and any
monomial E , we have<E ⪯ =E . Applications often require fixing a monomial order, but the choice
of which is irrelevant. A reasonable default is degree reverse lexicographic order : first compare
monomials by their total degree, then break using a reversed lexicographic order. (Assuming a fixed
monomial ordering) the leading monomial Lm(?) of a polynomial ? = 01<1 +· · · + 0=<: ∈ Q[- ],
01, . . . , 0= ̸= 0, is the greatest monomial among <1, . . . ,<: . The leading monomial of the zero
polynomial is undefined.
Fix a monomial ordering ⪯. Let ? be a non-zero polynomial in Q[- ]. Then ? can be written as

? = 0< + @ where< = Lm(?), 0 is the coefficient of< in ? , and @ = ? − 0<, and interpret ? as a
rewrite rule< → − 1

0
@. Intuitively, if ? is in some ideal � , then ? ≡� 0, and< ≡� −

1
0
@. For instance,

the polynomial 1
2
G2 − ~ can be interpreted as a rewrite rule G2 → 2~, and using this rule we may

rewrite G3 +G2 → 2G~ +G2 → 2G~ +2~. Observe that if � =
〈
1
2
G2 − ~

〉
, G3 +G2 ≡� 2G~ +2~. Applying

a rewrite rule to a polynomial replaces one of its monomials with a smaller polynomial (in the
sense that the polynomial is zero or its leading monomial is smaller than the one it replaced). A
set of polynomials � is a Gröbner basis (with respect to ⪯) if its associated rewrite system is
confluent. Assuming that� is a Gröbner basis, we use red� : Q[- ]→ Q[- ] to denote the function
that maps any polynomial to its normal form under the rewrite system � . Equivalently, red� (?) is
the unique polynomial @ such that (1) ? − @ ∈ ⟨�⟩, and (2) no monomial in @ is divisible by Lm(6)

for any 6 ∈ � . We note some important properties of red� :

• (Membership) For all ? ∈ Q[- ], red� (?) = 0 if and only if ? ∈ ⟨�⟩
• (Linearity) If 01, . . . , 0= ∈ Q and ?1, . . . , ?= ∈ Q[- ], then red� (

∑=
8=1 08?8 ) =

∑=
8=1 08red� (?8 )

• (Ordering) For all ? ∈ Q[- ], ? = @161 + · · · + @=6= + red� (?) for some @1, . . . , @= ∈ Q[- ],
61, . . . , 6= ∈ � , and Lm(@868 ) ⪯ Lm(?) for all 8 .
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• (Representation independence) If �1 and �2 are Gröbner bases with respect to the same
monomial ordering and ⟨�1⟩ = ⟨�2⟩, then red�1

(?) = red�2
(?) for all ? .

For any finite set of polynomials % and monomial ordering ⪯, we may compute a Gröbner
basis for the ideal generated by % (e.g., using Buchberger’s algorithm [Buchberger 1976]). We use
GröbnerBasis⪯(% ) to denote this basis.

2.3 Polyhedral Theory

This section recalls some basic facts about polyhedral theory (see for example [Schrijver 1999]).
In the following, we use linear space to refer to a linear space over the field Q. We use Q= to
denote the linear space of rational vectors of length =. Note that for any set of variables - , Q[- ]
is an (infinite-dimensional) linear space. We use Q[- ]1 to denote the (|- |+1-dimensional) linear
space of polynomials of degree at most one (i.e., polynomials of the form 01G1 + . . . 0=G= + 1, with
01, . . . , 0=, 1 ∈ Q and G1, . . . , G= ∈ - ).

Let + be a linear space. A set � ⊆ + is called convex if for every D, E ∈ � , the line segment
between D and E is contained in � (i.e., for every _ in the interval [0, 1], we have _D + (1 − _)E ∈ �).
For a set � ⊆ + , we use conv (�) to denote the convex hull of �—the smallest convex set that
contains � :

conv (�) ≜

{
_161 + · · · + _=6= : _1, . . . , _= ∈ Q

≥0, 61, . . . , 6= ∈ �,
=∑

8=1

_8 = 1

}

where Q≥0 denotes the set of non-negative rational numbers. A set� ⊆ + is called a (convex) cone
if it contains zero and is closed under addition and multiplication by non-negative scalars. For a set
� ⊆ + , the conical hull of � is the smallest convex cone containing � ; it is precisely Q≥0⟨�⟩.

Let + be a linear space and � ⊆ + be a cone. We say that E ∈ � is an additive unit if both E and
−E belong to � , and denote the set of additive units asU(�) (U(�) is also known as the lineality
space of �—the largest linear space contained in �). We say that a � is salient ifU(�) = 0. We say
that � is finitely generated (or polyhedral) if � = Q≥0⟨�⟩ for some finite set � .

Let- be a finite set of variables. The set of functionsQ- mapping variables to rationals is a linear
space (of dimension |- |). Apolyhedron inQ- is of the form % =

{
G ∈ Q- : ?1(G ) ≥ 0, . . . , ?=(G ) ≥ 0

}

for some linear polynomials ?1, . . . , ?= ∈ Q[- ]1. We say that inequality ?(G) ≥ 0 is valid for a
polyhedron % if it is satisfied by every point in % . The set of valid inequalities of a polyhedron
% =

{
G ∈ Q- : ?1(G ) ≥ 0, . . . , ?=(G ) ≥ 0

}
forms a cone; by Farkas’ lemma [Schrijver 1999, Cor 7.ld]

this cone is precisely Q≥0⟨?1, . . . , ?=, 1⟩. The integer hull %� of a polyhedron % is defined to be
%� ≜ conv

(
% ∩ Z-

)
, the convex hull of the integer points of % . The integer hull of a polyhedron %

in Q- is itself a polyhedron. A dual view of the integer hull of a polyhedron is the cutting plane
closure of its valid inequalities [Chvátal 1973], and this can be computed from the constraints of %
by the iterated Gomory-Chvátal closure process [Schrijver 1999, Ch. 23]. For an example illustrating
the intuition behind cutting planes, suppose that we know that 2G − 1 ≥ 0, and that G takes integer
values—then we must have G − 1

2
≥ 0, and thus

⌊
G − 1

2

⌋
= G +

⌊
− 1

2

⌋
= G − 1 ≥ 0. That is, we

may “shift” the halfspace to eliminate some real solutions while keeping all integer points. A set
� ⊆ Q[- ]1 is closed under cutting planes iff for any =,< ∈ Z with = > 0 and any ? ∈ Z[- ] such
that =? +< ∈ � , we have ? + ⌊</=⌋ ∈ � . We use cp (�) to denote the cutting plane closure of a
cone�—the smallest cone that contains� and which is closed under cutting planes. Assuming that
� is finitely generated, cp (�) can be computed by any algorithm for computing the integer hull of
convex polyhedra.
Let + be a linear space. We say that a subset ! ⊆ + is a point lattice if there exists some

E1, . . . , E= ∈ + such that ! = Z⟨E1, . . . , E=⟩. We call a set of generators {E1, . . . , E=} for a point lattice
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! a basis for ! if it is linearly independent. A basis for a point lattice can be computed as the
Hermite normal form of its generators in polynomial time [Schrijver 1999, Ch. 4].

3 LINEAR REAL RINGS

In this section, we develop the theory of linear real rings, LRR. Linear real rings are a common
extension of the theory of commutative rings and the positive fragment of the theory of linear real
arithmetic. Section 3.1 presents the axioms of the theory and introduces regular and algebraic cones.
Regular cones correspond to models of the theory, and algebraic cones correspond to effective
structures; cones that are both regular and algebraic correspond to a class of effective models of
LRR. Section 3.2 presents a decision procedure for satisfiability of ground formulas modulo LRR.
Section 3.3 gives a procedure that discovers all implied inequalities of a ground formula modulo
LRR, represented as a (regular) algebraic cone.

3.1 Linear Real Rings

Define LRR to be the f>A -theory axiomatized by the axioms of commutative rings CR as well as
the following theorems of LRA:

∀G . G ≤ G (Reflexivity)
∀G,~, I. G ≤ ~ ∧ ~ ≤ I ⇒ G ≤ I (Transitivity)
∀G,~, I. G ≤ ~ ∧ ~ ≤ G ⇒ G = ~ (Antisymmetry)
∀G,~, I. (G ≤ ~ ⇒ G + I ≤ ~ + I) (Compatibility)
0 ≤ 1 ∧ 0 ̸= 1 (Non-triviality)
for all = ∈ Z≥1, ∃G . G +· · · + G︸      ︷︷      ︸

= times

= 1 (Divisibility)

for all = ∈ Z≥0,∀G . 0 ≤ G +· · · + G︸      ︷︷      ︸
= times

⇒ 0 ≤ G (Perforation-freeness)

Note that divisibility and perforation-freeness are axiom schemata, with one axiom for each
natural number (∃G . G = 1, ∃G . G + G = 1, ∃G . G + G + G = 1, and so on). Equivalently, LRR is the
theory consisting of all f>A -sentences that hold in all structures A where (* A, 0A, 1A, +A, ·A) forms
a commutative ring and where (* A, 0A, +A, ≤A) forms an unperforated partially ordered divisible
group. We regard the real numbers R as the “standard” model of LRR; other models include the
rationals, the complex numbers (where complex numbers with the same imaginary part are ordered
by their real part) and, as we shall see shortly, more exotic interpretations. The signature of ordered
rings should be regarded as a “minimal” signature for LRR, but models of LRR can be lifted to
richer languages. In the following, we will make use of an extended language that includes atomic
formulas ? ≤ @ and ? = @ where ? and @ are polynomials with rational coefficients; any such atom
can be translated into the language of ordered rings by scaling and re-arranging terms (for example,
the formula 0 ≤ 1

2
G − ~ can be translated to the f>A ({G,~}) formula (1 + 1) · ~ ≤ G ).

The axioms that LRR adds onto commutative rings are a subset of the axioms of LRA. Naturally
we might ask if the subset is “enough.” Notably, totality of the order (an axiom of linear real
arithmetic) is independent of LRR (e.g., ≤ is non-total for the complex numbers). Nevertheless,
LRR is at least as strong as LRA, in the sense that satisfiability modulo LRA can be reduced to
satisfiability modulo LRR (noting that every formula in the language of LRA is equisatisfiable to a
negation-free formula modulo LRA).

Theorem 1. Let � be a ground negation-free formula in the language of LRA. Then � is satisfiable
modulo LRA iff it is satisfiable modulo LRR.
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Proof. The ⇒ direction is trivial, since the reals are a model of LRR. For the ⇐ direction,
we show the contrapositive: suppose that � is unsatisfiable modulo LRA, and show that it is
unsatisfiable modulo LRR.
First observe that for any LRR-model A, and any terms 21, 31, 22, 32 such that A |= 21 ≤ 31 and

A |= 22 ≤ 32, we have A |= 21 + 22 ≤ 31 + 32. Since A |= 21 ≤ 31, we have A |= 21 + 22 ≤ 31 + 22 by
compatibility; since A |= 22 ≤ 32, we have � |= 31 + 22 ≤ 31 +32 by compatibility and commutativity.
Finally, by transitivity we have A |= 21 + 22 ≤ 31 + 32.

Without loss of generality, we may suppose that � is conjunction of inequalities. For convenience,

we first assume that all inequalities are non-strict. Thus � can be written in the form �®G ≤ ®1.
Since this system is unsatisfiable modulo LRA, then by Farkas’ lemma there is some ®~ ≥ 0 such

that ®~)� = 0 and ®~) ®1 < 0. Without loss of generality, we may suppose that ®~ is an integer
vector. It follows from the observation above that � |=LRR 0 ≤ 1. Since ≤ is unperforated, we have
� |=LRR 0 ≤ −1, and by non-triviality and antisymmetry we have � |=LRR false; i.e., � is unsatisfiable
modulo LRR.
Now consider the case of disequalities (and thus formulas with strict inequalities, treating

? < @ as an abbreviation for ? ≤ @ ∧ ? ̸= @). In this case, we may suppose without loss of
generality that � is conjunction of inequalities and disequalities, which can be written in the form

�®G ≤ ®1 ∧
∧=
8=1 ®2

)
8 ®G ̸= 38 (with at least one disequality, or else we fall into the case above). Since � is

unsatisfiable, we must have �®G ≤ ®1 |=LRA
∨=
8=1 ®2

)
8 ®G = 38 . Since LRA is a convex theory, we must

have�®G ≤ ®1 |=LRA ®2
)
8 ®G = 38 for some 8 . We may then argue as above that�®G ≤ ®1 |=LRR ®2

)
8 ®G ≤ 38 and

�®G ≤ ®1 |=LRR 38 ≤ ®2
)
8 ®G , and so by antisymmetry �®G ≤ ®1 |=LRR ®2

)
8 ®G = 38 , and thus � is unsatisfiable

modulo LRR. □

In the remainder of this section, we develop a model theory of LRR, based on regular cones. For
any set of variables - , we say that a set � ⊆ Q[- ] is a regular cone if it is a cone (closed under
addition and multiplication by non-negative rationals), 1 ∈ � , andU(�) forms an ideal in Q[- ].
We say that � is consistent if � ̸= Q[- ]; in the case that � is regular, � is consistent iff −1 /∈ � .
Consistent cones and regular cones are both closed under intersection, the latter is because ideals
are closed under intersection.
Let - be a set of symbols, and let A be a f>A (- )-structure satisfying the axioms of LRR. Define
C(A) ≜ {? ∈ Q[- ] : A |= 0 ≤ ?} to be its non-negative consequences. Naturally, C(A) forms a
consistent regular cone.We now show that, conversely, any consistent regular cone can be associated
with a model of LRR.

Let - be a set of variables, let� ⊆ Q[- ] be a regular cone. Define a f>A (- )-structureM(�) where

• The universe and function symbols 0, 1+, · are interpreted as in the quotient ring ' ≜ Q[- ]/� ,
where � is the ideal of additive unitsU(�). Thus, elements of the universe are sets of polyno-
mials with rational coefficients of the form ? + � , where ? ∈ Q[- ].
• Each constant symbol G ∈ - is interpreted as G + � .
• ≤ is interpreted as the relation {(? + � , @ + � ) : @ − ? ∈ �}.

Observe thatM(�) |= 0 ≤ @ iff @ ∈ � , and M(�) |= 0 = @ iff @ ∈ U(�).

Lemma 1. Let - be a set of variables, and let � ⊆ Q[- ] be a consistent regular cone. ThenM(�)

is a model of LRR.

Proof. Clearly ' = Q[- ]/U(�) is a commutative ring and satisfies the divisibility axioms. Since
� is a cone, it follows that ≤ is reflexive, transitive, compatible with addition, and perforation-free;
furthermore since � is regular we have that ≤ is antisymmetric. Non-triviality follows from the
fact that � is consistent. □
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While regular cones give us a “standard form” in which LRR models can be represented, they
cannot be manipulated effectively. For this purpose, we introduce algebraic cones, which are (not
necessarily regular) cones that admit a finite representation.
We say that a cone � ⊆ Q[- ] is algebraic if there is an ideal � and a finitely-generated cone

� such that � = � + � . An algebraic cone can be represented as a pair (/, %) (with /, % ⊆ Q[- ])
where / = {I1, . . . , I<} (“zeros”) is a basis for an ideal and % = {?1, . . . , ?=} (“positives”) is a basis
for a cone; the algebraic cone represented by (/, %) is denoted by

alg.cone- (/, % ) ≜ ⟨/ ⟩ + Q
≥0⟨%⟩ =

{
<∑

8=1

@8I8 +
=∑

9=1

_ 9? 9 : @1, . . . , @< ∈ Q[- ], _1, . . . , _= ∈ Q
≥0

}

We will omit the - subscript when it is clear from context. Say that the pair (/, %) is oriented
(with respect to a monomial ordering ⪯) if:

(1) / is a Gröbner basis for ⟨/ ⟩ (with respect to ⪯), and
(2) Each ?8 ∈ % is reduced with respect to / (i.e., red/ (?8 ) = ?8 for all 8).

The following shows that the problem of checking membership in an algebraic cone can be
reduced to checking membership in a finitely-generated cone (which can be checked in polytime
using linear programming). It comes in two parts: (1) checking membership assuming an oriented

representation (Lemma 2) and (2) computing an oriented representation (Lemma 3).

Lemma 2 (Membership). Let - be a set of variables, and /, % ⊆ Q[- ] be finite sets of polynomials
such that (/, % ) is oriented. For any polynomial @ ∈ Q[- ], we have @ ∈ alg.cone (/, % ) iff red/ (@) ∈
Q≥0⟨%⟩.

Proof. (⇐) If red/ (@) ∈ Q≥0⟨%⟩ then since (@ − red/ (@)) ∈ ⟨/ ⟩ we have @ = (@ − red/ (@)) +

red/ (@) ∈ ⟨/ ⟩ + Q
≥0⟨%⟩ = alg.cone (/, % ).

(⇒) Suppose @ ∈ alg.cone (/, % ). Then we have @ = I + ? for some I ∈ ⟨/ ⟩ and ? ∈ Q≥0⟨%⟩. Since
I ∈ ⟨/ ⟩, we have red/ (I) = 0, and since ? is a (non-negative) linear combination of polynomials
that are reduced w.r.t. / , we have red/ (?) = ? . It follows that red/ (@) = red/ (I) + red/ (?) = ? , and
so red/ (@) ∈ Q

≥0⟨%⟩. □

For any set of variables - , finite sets of polynomials /, % ⊆ Q[- ], and monomial ordering
⪯, define orient⪯(/, % ) ≜ (�, {red� (?) : ? ∈ %, red� (?) ̸= 0}) where � = GröbnerBasis⪯(/ ) is a
Gröbner basis for ⟨/ ⟩ with respect to the order ⪯.

Lemma 3 (Orientation). Let - be a set of variables, /, % ⊆ Q[- ] be finite sets of polynomials, and
⪯ be a monomial ordering. Then orient⪯(/, % ) is oriented with respect to ⪯ and alg.cone (/, % ) =

alg.cone (orient⪯(/, % )).

Proof. Let � = GröbnerBasis⪯(/ ) and % ′ = {red� (?) : ? ∈ %, red� (?) ̸= 0}. Since red� is idem-
potent, orient⪯(�, % ′) is oriented w.r.t. ⪯. Clearly, ⟨/ ⟩ = ⟨�⟩. Since algebraic cones are closed under
addition andmultiplication by non-negative rationals, it is sufficient to prove that % ⊆ ⟨�⟩+Q≥0⟨% ′⟩
and % ′ ⊆ ⟨/ ⟩ + Q≥0⟨%⟩.

• % ⊆ ⟨�⟩ +Q≥0⟨% ′⟩: Suppose ? ∈ % . Since ? − red� (?) ∈ ⟨�⟩ and red� (?) ∈ Q≥0⟨% ′⟩ (since it
either belongs to % ′ or it is zero), we have ? = (? − red� (?)) + red� (?) ∈ ⟨�⟩ + Q

≥0⟨% ′⟩.
• % ′ ⊆ ⟨/ ⟩ + Q≥0⟨%⟩: Suppose ? ′ ∈ % . Then ? ′ = red� (?) for some ? ∈ % . It follows that
? ′ − ? ∈ ⟨�⟩ = ⟨/ ⟩, and so ? ′ = (? ′ − ?) + ? ∈ ⟨/ ⟩ + Q≥0⟨%⟩. □

As a consequence of decidability of membership in algebraic cones, we have a model checking
procedure for models associated to algebraic cones. Given a ground formula � and generators /, %
for an algebraic cone, checking M(alg.cone (/, % )) |= � is decidable.
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1 Function regularize (/, % )
Input :Finite sets of polynomials / and %
Output :Oriented pair (/ ′, % ′) such that Q≥0⟨% ′⟩ is salient and alg.cone (/ ′, % ′) is the

least regular cone that contains alg.cone (/, % )
2 % ← % ∪ {1};
3 while there is some non-zero C ∈ U(Q≥0⟨%⟩) do

/* Sampling fromU(Q≥0⟨%⟩) can be implemented by (e.g.) linear programming */

4 (/, %) ← orient⪯(/ ∪ {C} , % );
5 return (/, %)

Algorithm 1: Saturation

3.2 Satisfiability Modulo LRR

This section presents a decision procedure for testing satisfiability of ground f>A (- )-formulas
modulo the theory LRR. As usual, it is sufficient to develop a theory solver, which can test satisfiability
of the conjunctive fragment; formulas with disjunctions can be accommodated using DPLL(T )
[Ganzinger et al. 2004].
Without loss of generality, a ground conjunctive f>A (- )-formula � can be written in the form

� =

(
∧

?∈%

0 ≤ ?

)
∧

(
∧

@∈&

¬(0 ≤ @)

)
∧

(
∧

A ∈'

¬(0 = A )

)

where % , & , and ' are finite sets of polynomials (noting the equivalences G ≤ ~ ≡ 0 ≤ ~ − G and
G = ~ ≡ 0 ≤ G − ~ ∧ 0 ≤ ~ − G ). In the following, we will first show that it is possible to compute a
finite representation of the least regular cone � that contains all of the non-negative polynomials
% (Theorem 3), and then show that � is satisfiable if and only if � is consistent and M(�) |= �

(Theorem 4). Since � is algebraic and computable from � , and checking that � is consistent and
thatM(�) |= � is decidable, this yields a sound and complete procedure for checking satisfiability
of ground f>A (- )-formulas modulo LRR.

We first show that we can compute the sum of two algebraic cones by combining their bases for
the zeros and the positives, before proving the correctness of Algorithm 1.

Theorem 2 (Sum). Let /1, %1, /2, %2 ⊆ Q[- ] be finite sets of polynomials. Then

alg.cone (/1, %1) + alg.cone (/2, %2) = alg.cone (/1 ∪ /2, %1 ∪ %2) .

Theorem 3. Let - be a finite set of variables. For any finite sets of polynomials /, % ⊆ Q[- ],
regularize (/, % ) (Algorithm 1) returns a pair (/ ′, % ′) such thatQ≥0⟨% ′⟩ is salient and alg.cone (/ ′, % ′)
is the least regular cone that contains alg.cone (/, % ).

Proof. Let/8 , %8 , and C8 denote the values of/ , % , and C after 8 iterations of the loop in Algorithm 1.
We first observe an invariant of the algorithm: for all 8 , we have

alg.cone (/8+1, %8+1) = alg.cone (orient⪯(/8 ∪ {C} , %8 )) Definition

= alg.cone (/8 ∪ {C} , %8 ) Lemma 3

= alg.cone (/8 , %8 ) + ⟨C⟩ Theorem 2

We first prove that the algorithm terminates. For iteration 8 + 1, we have ⟨/8+1⟩ = ⟨/8⟩ + ⟨C8⟩.
Since C8 is a conic combination of polynomials in %8 which are reduced with respect to /8 , we have
red/8 (C8 ) = C8 ̸= 0 and so C8 /∈ ⟨/8⟩. Hence we have ⟨/8+1⟩ ⫌ ⟨/8⟩. For a contradiction, suppose
that the algorithm does not terminate. Then we have an infinite strictly ascending chain of ideals
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Table 1. Execution of Algorithm 1 on input & =
{
G2 − G~, G~ − G2, G2~ − I,F − G~2, I −F,F3

}
.

Iteration / % Additive unit

0 ∅ {1} ∪& G2 − G~

1
{
G~ − G2

} {
1, G3 − I,F − G3, I −F,F3

}
G3 − I

2
{
G~ − G2, G3 − I,~I − GI

} {
1,F − I, I −F,F3

}
F − I

3
{
G~ − G2, G3 − I,~I − GI,F − I

} {
1, I3

}
–

⟨/0⟩ ⫋ ⟨/1⟩ ⫋ . . . in Q[- ], which contradicts the fact that Q[- ] is a Noetherian ring [Cox et al.
2015, Ch. 2 §5].

Suppose that the loop terminates after= iterations—wemust show that alg.cone (regularize (/=, %=))
is the least regular cone that contains alg.cone (/, % ). Since /0 = / and %0 = % ∪ {1}, and we have
alg.cone (/8 , %8 ) ⊆ alg.cone (/8+1, %8+1) for all 8 , we have that alg.cone (regularize (/=, %=)) must con-
tain alg.cone (/, % ) and 1. By the termination condition, we have that Q≥0⟨%=⟩ is salient, and
therefore alg.cone (/=, %=) is regular. It remains to show that it is the least such regular cone. Sup-
pose that there is another regular cone � with alg.cone (/, % ) ⊆ � . We show that for all iterations
8 , alg.cone (/8 , %8 ) ⊆ � by induction on 8 . Initially this is true since /0 = / and %0 = & ∪ {1}, and
� contains alg.cone (/, % ) (by assumption) and 1 (since � is regular). For the inductive step, we
suppose that alg.cone (/8 , %8 ) ⊆ � and prove that alg.cone (/8+1, %8+1) = alg.cone (/8 , %8 ) + ⟨C8⟩ ⊆ � .
Since� is closed under addition and alg.cone (/8 , %8 ) ⊆ � by the inductive hypothesis, it is sufficient
to show that ⟨C8⟩ ⊆ � . Since C8 ∈ U(Q≥0⟨%8⟩) and Q≥0⟨%8⟩ ⊆ � , we must have C8 ∈ U(�). Since � is
regular,U(�) is an ideal, and so ⟨C8⟩ ⊆ U(�) ⊆ � . □

Example 3.1. Table 1 illustrates Algorithm 1 on the set of polynomials

& =
{
G2 − G~, G~ − G2, G2~ − I,F − G~2, I −F,F3

}
.

Each row 8 gives the set of zero polynomials / and set of positive polynomials % at the beginning
of iteration 8 , along with the selected additive unit C . Intuitively, each round selects an additive unit
from the positives, removes it from the positives and adds it to the zeros. The algorithm terminates
at iteration 3: the positive cone is salient, and so there is no additive unit to select. ⌟

The following theorem is the basis of our decision procedure for LRR: it shows that to test
satisfiability of � , we only need to check whether the least cone � that agrees with all positive
atoms of � is consistent and other atoms do not contradict the consequences of � .

Theorem 4. Let � be the ground conjunctive formula

� =

(
∧

?∈%

0 ≤ ?

)
∧

(
∧

@∈&

¬(0 ≤ @)

)
∧

(
∧

A ∈'

¬(0 = A )

)
.

Let � be the least regular cone that contains % . Then � is satisfiable modulo LRR iff � is consistent
and M(�) |= � .

Proof. If � is consistent and M(�) |= � , then � is satisfiable modulo LRR (M(�) is a model of �
(by Lemma 1) of LRR). We thus only need to prove the other direction.

Suppose that � is satisfiable modulo LRR. Then there is some model A of LRR with A |= � . We
have that � ⊆ C(A), since C(A) is a regular cone that contains % (since A |= � ), and � is the least
such cone. It follows that � is consistent, since if −1 ∈ � then −1 ∈ C(A), which is not possible
because C(A) is consistent. It remains to show that M(�) |= � . Clearly M(�) |= 0 ≤ ? for all ? ∈ % ,
since % ⊆ � . For any @ ∈ & we have A |= ¬(0 ≤ @), since A |= � . Thus @ /∈ C(A) and so @ /∈ �
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since � ⊆ C(A). Hence M(�) |= ¬(0 ≤ @). Similarly, we have that M(�) |= ¬(0 = A ) for all A ∈ '.
Combining the above, we have M(�) |= � . □

Decision Procedure for LRR. Summarizing, we have the following decision procedure for satis-
fiability of ground conjunctive f>A (- )-formulas modulo LRR. Let � be of the form in Theorem 4.
First compute a representation (/ ′, % ′) of the least regular cone containing % using Algorithm 1.
If red/ ′(1) = 0, then � is unsatisfiable (alg.cone (/ ′, % ′) is inconsistent). Otherwise, check whether
M(alg.cone (/ ′, % ′)) |= � by testing whether there is some @ ∈ & with red/ ′(@) ∈ Q≥0⟨% ′⟩ (Lemma 2),
or some A ∈ ' with red/ ′(A ) = 0; if such a @ or A exists, then � is unsatisfiable (Theorem 4), otherwise,
M(alg.cone (/ ′, % ′)) satisfies � .

3.3 Consequence-finding modulo LRR

This section describes an algorithm that computes all polynomial inequalities that are entailed by a
ground formula modulo LRR. Let - be a set of symbols and let � be a f>A (- )-formula. Define the
non-negative cone C- (� ) of � as follows:

C- (� ) ≜ {? ∈ Q[- ] : � |=LRR 0 ≤ ?} .

It is easy to verify that for any formula � , C- (� ) is a regular cone. We will omit the - subscript
when it can be understood from the context.

A simple “eager” strategy for computing non-negative cones operates as follows. Suppose that �
is a ground f>A (. )-formula and that - ⊆ . . First, we place � in disjunctive normal form; i.e., we
compute a formula that is equivalent to � and takes the form

∨=
8=1�8 where each�8 is a conjunctive

formula. Observe that

C- (� ) = C-

(
=∨

8=1

�8

)
=

=⋂

8=1

C- (�8 ) =
=⋂

8=1

(C. (�8 ) ∩ Q[- ])

since a disjunctive formula entails that a polynomial is non-negative exactly when each disjunct
does. Thus, the problem of computing C- (� ) can be reduced to three sub-problems: (1) computing
the (regular and algebraic) non-negative cone of a conjunctive formula, (2) projection of an algebraic
cone onto a subset of symbols (i.e., the intersection of an algebraic cone with Q[- ]), and the
intersection of algebraic cones. In the following, we show how to solve each sub-problem, and
then present a “lazy” variant of the consequence-finding procedure that avoids (explicit) DNF
computation.

3.3.1 Non-Negative Cones of Conjunctive Formulas. This section addresses the following problem:
given a ground f>A (. )-formula � , compute a representation of the cone C. (� ). In fact, the solution
to this problem is immediate: C. (� ) coincides with the least regular cone that contains the non-
negative atoms of � , which can be computed by the regularize procedure (Algorithm 1):

Lemma 4. Let . be a set of symbols and let

� =

(
∧

?∈%

0 ≤ ?

)
∧

(
∧

@∈&

¬(0 ≤ @)

)
∧

(
∧

A ∈'

¬(0 = A )

)

be a ground f>A (. )-formula. Then alg.cone. (regularize (∅, % )) = C. (� ).

Proof. Let� = alg.cone. (regularize (∅, % )). By Theorem 3,� is the least regular cone that contains
% . Since C. (� ) is a regular cone that contains % , we have � ⊆ C. (� ). It remains only to show
that C. (� ) ⊆ � . If � is inconsistent (i.e., � = Q[. ]), then C. (� ) ⊆ � is immediate. Otherwise,
M(�) |= � by Theorem 4. For any @ ∈ C. (� ), we have � |=LRR 0 ≤ @ and so M(�) |= 0 ≤ @ and
therefore @ ∈ � . □
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3.3.2 Projection of Algebraic Cones. This section addresses the following problem: given finite
sets /, % ⊆ Q[. ] and a subset - ⊆ . , compute / ′, % ′ ⊆ Q[- ] such that alg.cone (/ ′, % ′) =

alg.cone (/, % ) ∩ Q[- ]. First, we review standard methods for solving this problem for polyno-
mial ideals and finitely-generated cones (that is, the case when % is empty, and the case where / is
empty). The algorithm for algebraic cones is a combination of the two.

Anymonomial< over variables. can be regarded as the product of twomonomials<-<- where
<- is a monomial over - and<- is a monomial over . \- . For any monomial ordering ⪯, we may
define an elimination ordering ⪯- where<-<- ⪯- =-=- iff<- ≺ =- or<- = =- and<- ⪯ =- .
The classical algorithm for ideal projection computes a basis for Q[. ]⟨/ ⟩ ∩ Q[- ] by computing a
Gröbner basis� for / with respect to the order ⪯- , and then taking� ∩Q[- ] [Cox et al. 2015, Ch.
3]. By the ordering and membership properties of Gröbner bases, if ? ∈ Q[. ]⟨/ ⟩ = Q[. ]⟨�⟩, then
? = @161 + · · · + @=6= for some @1, . . . , @= ∈ Q[. ] and 61, . . . , 6= ∈ � with Lm(@868 ) ⪯- Lm(?) for all
8 . Supposing that ? is also in Q[- ], each @8 and 68 must also be in Q[- ].

We now turn to the case of finitely-generated cones. Since % is a finite collection of polynomials,
there is a finite set of monomials that appear in any polynomial in % , which we call" . Then we
can see Q≥0⟨%⟩ ∩Q[- ] = Q≥0⟨%⟩ ∩Q⟨" ∩ [- ]⟩; and so our problem is to compute the intersection
of a cone and a linear space—this is the dual view of the problem solved by polyhedral projection,
for which there are several known algorithms. For the sake of completeness, we will describe
how to apply Fourier-Motzkin elimination, which is one such algorithm. Suppose that we wish
to compute Q≥0⟨%⟩ ∩ Q⟨# ⟩ for some set of monomials # . Fourier-Motzkin elimination proceeds
by eliminating one dimension, a monomial< ∈ " \ # , at a time. First, we may normalize % so
that every polynomial in % takes the form ? + 0<, where< does not appear in ? , and 0 is either
0, 1, or -1 (by multiplying each polynomial with an appropriate non-negative scalar). Then, take
& = {? : ? + 0< ∈ %} ∪ {? + @ : ? +< ∈ %, @ −< ∈ %}. Q≥0⟨&⟩ is precisely Q≥0⟨%⟩ ∩ Q⟨" \<⟩,
since any non-negative combination of elements of % that results in a coefficient of 0 for< is also a
non-negative combination of elements of& . Repeating this process for each monomial in" \# , we
get a finite set of polynomials that we denote project# (% ), with Q

≥0
〈
project# (% )

〉
= Q≥0⟨%⟩ ∩Q⟨# ⟩.

Finally, we put the two pieces together, by observing that we can project an algebraic cone
alg.cone (/, % ) by separately projecting the ideal ⟨/ ⟩ and cone Q≥0⟨%⟩, provided that (/, %) is
oriented with respect to the elimination ordering. That is, we define

project- (/, % ) ≜
(
� ∩ Q[- ], project[- ]({red� (?) : ? ∈ %})

)

where � is a Gröbner basis for ⟨/ ⟩ w.r.t. the elimination order ⪯- .

Theorem 5 (Projection). Let /, % ⊆ Q[. ] be finite sets of polynomials, and let - ⊆ . . Then

alg.cone- (project- (/, % )) = alg.cone. (/, % ) ∩ Q[- ] .

Proof. Let� be a Gröbner basis for Q[. ]⟨/ ⟩ w.r.t. the elimination order ⪯- , let / ′ = � ∩Q[- ],
and let % ′ = project[- ](red� (% )), where red� (% ) denotes the set {red� (?) : ? ∈ %}. By Lemma 3,
we have alg.cone. (/, % ) = alg.cone. (�, red� (% )). We only need to show that alg.cone- (/

′, % ′) =

alg.cone. (�, red� (% )) ∩ Q[- ]. We know that alg.cone- (/
′, % ′) ⊆ alg.cone. (�, red� (% )) ∩ Q[- ]

since / ′ = � ∩ Q[- ] is a basis for Q[. ]⟨�⟩ ∩ Q[- ] and Q≥0⟨% ′⟩ = Q≥0
〈
project[- ](red� (% ))

〉
=

Q≥0⟨red� (% )⟩ ∩ Q[- ]. Thus we only need to show the other direction.
Suppose that @ ∈ alg.cone. (�, red� (% )) ∩ Q[- ]. Since @ ∈ Q[- ] and Lm(red� (@)) ⪯- Lm(@),

we have red� (@) ∈ Q[- ]. Since @ ∈ alg.cone. (�, red� (% )), we have red� (@) ∈ Q
≥0⟨red� (% )⟩ by

the membership lemma (Lemma 2). It follows that red� (@) ∈ red� (% ) ∩ Q[- ] = Q
≥0⟨% ′⟩. Since

@, red� (@) ∈ Q[- ]we have @−red� (@) ∈ Q[- ] and thus @−red� (@) ∈ Q[. ]⟨�⟩∩Q[- ] = Q[- ]⟨/ ′⟩.
Thus we have @ = (@ − red� (@)) + red� (@) ∈ Q[- ]⟨/

′⟩ + Q≥0⟨% ′⟩ = alg.cone- (/
′, % ′). □
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3.3.3 Intersection of Algebraic Cones. This section addresses the following problem: given finite
sets /1, %1, /2, %2 ⊆ Q[- ], compute /, % ⊆ Q[- ] such that alg.cone (/, % ) = alg.cone (/1, %1) ∩
alg.cone (/2, %2). The essential idea is to reduce the problem to a projection problem—essentially
the same idea as the standard algorithm for ideal intersection [Cox et al. 2015, Ch. 4 §3] and the
constraint-based algorithm for polyhedral join [Benoy et al. 2005].1

The essential idea is to introduce a parameter C that does not belong to- , and to “tag” each element
of a cone �1 = alg.cone (/1, %1) by multiplying by C , and to tag elements of �2 = alg.cone (/2, %2) by
multiplying by 1 − C . If ? is a polynomial that belongs to �1 and �2, then C? + (1 − C )? = ? belongs
to their “tagged sum.” This yields the following definition:

intersect(/1, %1, /2, %2) ≜ project- (C/1 ∪ (1 − C )/2, C%1 ∪ (1 − C )%2)

where the notation ?& ≜ {?@ : @ ∈ &} (for a polynomial ? and set of polynomials &) denotes the
“tagging” operation.

Example 3.2. Consider the regular cones

�1 = C (G = 1 ∧ ~ ≤ 1) = alg.cone ({G − 1} , {1, 1 − ~})

�2 = C
(
~ = 2 ∧ 2 ≤ G2

)
= alg.cone ({~ − 2} ,

{
1, G2 − 2

}
)

To intersect �1 and �2, form the “tagged sum” (/, %) where

/ = {C (G − 1), (1 − C )(~ − 2)} = {CG − C,−C~ + 2C + ~ − 2}

% =
{
C, C (1 − ~), (1 − C ), (1 − C )(G2 − 2)

}
=

{
C, C − ~,−C + 1,−CG2 + 2C + G2 − 2

}

Then project (/, %) onto the variables {G,~}, in two steps. First orient (/, %) w.r.t ⪯{G,~ }

� = GröbnerBasis⪯{G,~} (/ ) = {CG − C,−C~ + 2C + ~ − 2, G~ − 2G − ~ + 2}

red� (% ) =
{
C,−C − ~ + 2,−C + 1, C + G2 − 2

}

and then intersect� with Q[G,~] and project the monomial C out of red� (% ) using Fourier-Motzkin
elimination. The resulting cone is

�1 ∩�2 = alg.cone ({G~ − 2G − ~ + 2} ,
{
1,−~ + 2, G2 − ~, G2 − 1

}
) ,

which is the non-negative cone of the formula (G − 1) · (~ − 2) = 0 ∧ ~ ≤ 2 ∧ ~ ≤ G2 ∧ 1 ≤ G2. ⌟

To prove correctness of this construction, we need the following technical lemma relating cones
to their “tagged” counterparts:

Lemma 5. Let - be a set of variables and C /∈ - . Let /, % ⊆ Q[- ] be finite sets of polynomials,
and let 5 ∈ Q[C] be a polynomial in C . Then for all 0 ∈ Q such that 5 (0) ≥ 0, and for all @ ∈
alg.cone-,C (5 /, 5 % ), we have @[C ↦→ 0] ∈ alg.cone- (/, % ) (where @[C ↦→ 0] denotes substitution of
all occurrences of C in @ with 0).

Proof. Let / = {I1, . . . , I<} and % = {?1, . . . , ?=}. For any @ ∈ alg.cone-,C (5 /, 5 % ) we can write

@ =
<∑

8=1

68 5 I8 +
=∑

9=1

_ 9 5 ? 9 (∀8 . @8 ∈ Q[-, C], _8 ∈ Q
≥0)

@[C ↦→ 0] =
<∑

8=1

(68 5 (0)) I8 +
=∑

9=1

(
_ 9 5 (0)

)
? 9 ∈ alg.cone (/, % )

since each 68 5 (0) is a polynomial in - and each _ 9 5 (0) is a non-negative rational. □

1Recalling that cones are dual to polyhedra, cone intersection corresponds to polyhedral join, and cone sum to polyhedral
meet.
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Theorem 6 (Intersection). Let /1, %1, /2, %2 ⊆ Q[- ] be finite sets of polynomials over some set of
variables - . Then

alg.cone (intersect(/1, %1, /2, %2)) = alg.cone (/1, %1) ∩ alg.cone (/2, %2) .

Proof. We prove each side of the equation is included in the other:

⊆ : Let @ ∈ alg.cone (intersect(/1, %1, /2, %2)). Since intersect(/1, %1, /2, %2) = project- (C/1 ∪ (1 −
C )/2, C%1 ∪ (1 − C )%2), we have @ ∈ alg.cone (C/1 ∪ (1 − C )/2, C%1 ∪ (1 − C )%2) ∩ Q[- ] by
Theorem 5. Then @ can be written as @1 + @2 for some @1 ∈ alg.cone (C/1, C%1) and @2 ∈
alg.cone ((1 − C )/2, (1 − C )%2). Then we have

@ = @[C ↦→ 0] @ ∈ Q[- ]

= @1[C ↦→ 0] + @2[C ↦→ 0] @ = @1 + @2, linearity of substitution

= @2[C ↦→ 0] C divides @1

∈ alg.cone (/2, %2) Lemma 5

Symmetrically, we have @ = @[C ↦→ 1] = @1[C ↦→ 1] ∈ alg.cone (/1, %1), and so @ belongs to the
intersection alg.cone (/1, %1) ∩ alg.cone (/2, %2).

⊇ : Let @ ∈ alg.cone (/1, %1) ∩ alg.cone (/2, %2). We have C@ ∈ alg.cone (C/1, C%1) and (1 − C )@ ∈
alg.cone ((1 − C )/2, (1 − C )%2), and therefore

@ = C@ + (1 − C )@ ∈ alg.cone-,C (C/1, C%1) + alg.cone-,C ((1 − C )/2, (1 − C )%2)

= alg.cone-,C (C/1 ∪ (1 − C )/2, C%1 ∪ (1 − C )%2) Theorem 2

Since @ also belongs to Q[- ], we have @ ∈ alg.cone-,C (C/1 ∪ (1− C )/2, C%1 ∪ (1− C )%2)∩Q[- ] =
alg.cone (intersect(/1, %1, /2, %2)). □

3.3.4 Lazy Consequence-Finding. We conclude with a consequence-finding algorithm that avoids
the (explicit) computation of disjunctive normal incurred by the eager strategy presented at the
beginning of this section. Algorithm 2 operates by iteratively selecting a cube from the DNF of � ,
computing its non-negative cone (Lemma 4), and adding blocking clauses so that the same cube
would not be selected again in future iterations.

1 Function consequence (�, - )
Input :Ground f>A (. )-formula � and set of symbols - ⊆ .
Output :Oriented pair (/, %) with alg.cone- (/, % ) = C- (� ).

2 � ← � ;
3 (/, %) ← ({1} , ∅) ; /* Invariant: C- (� ) ⊆ alg.cone (/, % ) */

4 while � is satisfiable do

/* alg.cone (/ ′, % ′) = C. (�8 ) for some cube �8 of the DNF of � (Lemma 4) */

5 (/ ′, % ′) ← get-model (�);
6 (/ ′, % ′) ← project(/ ′, % ′, - ) ;
7 (/, %) ← intersect(/, %, / ′, % ′);

/* Block any model A with C- (A) ⊆ alg.cone (/, % ) */

8 � ← � ∧ ¬
(
(
∧
I∈/ I = 0) ∧

(∧
?∈% 0 ≤ ?

) )

9 return (/, %)
Algorithm 2: Lazy consequence finding

Theorem 7. Given a ground f>A (. )-formula � and - ⊆ . , consequence (�, - ) returns an oriented
pair (/, %) such that alg.cone- (/, % ) = C- (� ).
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Proof. Say that a regular cone � is a cube cone of formula � if � = C- (� ) for some cube in the
DNF of � , and � is consistent. Let cube.cone(� ) denote the (finite) set of cube cones of � .
We first prove termination. Let �8 denote the formula � on the 8th iteration of the loop, and

let �8 denote the 8th blocking clause, so for each 8 we have �8+1 = �8 ∧ ¬�8 . By Theorem 4 and
Lemma 4, we have that

cube.cones(�8+1) = cube.cones(�8 ∧ ¬�8 ) = {& ∈ cube.cones(�8 ) : M(&) |= ¬�8 } .

Since the model returned by get-model is always in cube.cone(�8 ) (Theorem 4 and Lemma 4) and that
model always satisfies�8 , we have a strictly descending sequence cube.cones(�0) ⫌ cube.cones(�1) ⫌

cube.cones(�2) ⫌ . . . . Since cube.cones(�0) is a finite set, this sequence must have finite length and
therefore the algorithm terminates.

Next we show that alg.cone- (/, % ) = C- (� ), where (/, %) is the pair returned by the algorithm.
Suppose that the while loop exits after # iterations. We show that alg.cone- (/, % ) = C- (� ) that by
proving each side of the equation is included in the other:

⊆ : Since the while loop exists after # iterations, we have that �# = � ∧ ¬�1 ∧ . . . ∧ ¬�# is
unsatisfiable modulo LRR. Since �1 |=LRR �2 |=LRR . . . |=LRR �# (by Theorem 6), we have
� |=LRR �# , and therefore alg.cone- (/, % ) = C- (�# ) ⊆ C- (� ).

⊇ : By Theorems 5 and 6, alg.cone- (/, % ) = Q[- ] ∩
⋂#
8=1�8 where each �8 ∈ cube.cone(� ), thus

alg.cone- (/, % ) ⊇ Q[- ] ∪
⋂
�∈cube.cone(� )� = C- (� ). □

4 INTEGER ARITHMETIC

Let f/>A be the signature of ordered rings extended with an additional unary relation symbol Int .
Define the theory of linear integer real rings LIRR to be the f/>A -theory axiomatized by the axioms
of LRR along with the following:

Int (1)

∀G,~. Int (G ) ∧ Int (~)⇒ Int (G + ~) (Int closure +)
∀G,~. Int (G ) ∧ G + ~ = 0⇒ Int (~) (Int closure -)
for all = ∈ Z≥1 and< ∈ Z,∀G . Int (G ) ∧ 0 ≤ =G +< ⇒ 0 ≤ G +

⌊
<
=

⌋
(Cutting plane)

The cutting plane axiom is an axiom schema, with one axiom for each choice of positive integer =
and integer<. Intuitively, Int identifies a set of elements as “integers”, and an inequality 0 ≤ =G +<
can be strengthened to 0 ≤ G +

⌊
<
=

⌋
whenever G is an “integer”, as is the case for integers in

R. LIRR is thus the theory consisting of all f/>A sentences that hold in all structures A where
(* A, 0A, 1A, +A, ·A, ≤A) is a model of LRR, Int A is an additive subgroup of (* A, 0A, +A) that contains
1A (identifying the “integers”), and “integers” behave like integers with regards to ≤. We regard
R as the standard model of LIRR, with Int identifying the subset of integers; Th/ (R) refers to the
theory consisting of all f/or-sentences satisfied by R. We can extend f/>A -structures to interpret Int (?)
for ? ∈ Q[- ] by translating Int (?) to the formula ∃G . Int (G ) ∧ ? = G , where G is a fresh symbol and
? = G is translated into a f>A -formula as described in Section 3. For example, the formula Int ( 1

2
G −~)

is translated to ∃I. Int (I) ∧ (1 + 1) · I + (1 + 1) · ~ = G .
An induction axiom is conspicuously absent from LIRR. Nevertheless, the axiomatization is

sufficient for positive linear formulas.

Theorem 8. Let � be a ground f/>A (- )-formula that is free of negation and multiplication. Then �
is satisfiable modulo LIRR iff � is satisfiable modulo Th/ (R).

Proof. The⇐ direction is trivial, since any model of Th/ (R) is a model of LIRR.
For the⇒ direction, we prove that if � is unsatisfiable modulo Th/ (R), then it is unsatisfiable

modulo LIRR. We may assume without loss of generality that � takes the form
∧
?∈% 0 ≤ ? ∧∧

B∈( Int (B). We may also assume that ( ⊆ - : if � = � ∧ Int (C ) for some non-constant term C , then
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� is equisatisfiable with � ∧ Int (~) ∧ ~ ≤ C ∧ C ≤ ~ for a fresh constant ~ (modulo Th/ (R) and also
modulo LIRR). Furthermore, we may assume that ( = - (i.e., all symbols are integers), since if some
symbol is not constrained to be an integer, it can be projected by Fourier-Motzkin elimination,
resulting in an equisatisfiable formula (again modulo both theories).
Suppose that � is unsatisfiable modulo Th/ (R)—i.e., the polyhedron defined by

∧
?∈% 0 ≤ ?

has no integer points. Then there is a cutting-plane proof of 0 ≤ −1 from
∧
?∈% 0 ≤ ? [Chvátal

1973; Schrijver 1980]. Since each inference step of a cutting-plane proof is valid modulo LIRR, � is
unsatisfiable modulo LIRR. □

We now extend models of LRR to LIRR. Let - be a set of variables. For sets�, ! ⊆ Q[- ], say that
� is closed under cutting planes with respect to ! if for any =,< ∈ Z, = > 0, ? ∈ !, if =? +< ∈ � ,
then ? +

⌊
<
=

⌋
∈ � . Define the cutting plane closure of � with respect to !, denoted cp!(�),

to be the least cone that contains � and is closed under cutting planes with respect to !. If � is a
regular cone, defineM(�, !) to be the extension ofM(�) that interprets Int as {? +U(�) : ? ∈ !}.
Observe that whenU(�) ⊆ !,M(�, !) |= Int (?) iff ? ∈ !, for all ? ∈ Q[- ].
Say that the pair (�, !) is regular if � is a regular cone, ! is an additive subgroup of Q[- ]

that contains 1 andU(�), and � is closed under cutting planes with respect to !. (! is an additive
subgroup if 0 ∈ ! and G −~ ∈ ! whenever G,~ ∈ !.) If (�1, !1) and (�2, !2) are regular, we consider
(�1, !1) to be smaller than (�2, !2) if �1 ⊆ �2 and !1 ⊆ !2.
Let- be a set of symbols, and letA be af/>A structure satisfying the axioms of LIRR. DefineL(A) ≜

{? ∈ Q[- ] : A |= Int (?)} to be the set that A identifies as “integers”. Naturally, (C(A),L(A)) is
regular. For the converse, we have the following.

Lemma 6. Let - be a set of variables and �, ! ⊆ Q[- ]. If (�, !) is regular and � is consistent,
M(�, !) is a model of LIRR.

Analogously with regular and algebraic cones for LRR, regular (�, !) give us a “standard form”
in which LIRR models can be represented, but they lack a finite representation and cannot be
manipulated effectively—we will define algebraic (�, !) for this purpose.

We beginwith algebraic lattices, which serve as a finite representation (certain) additive subgroups
of Q[- ]. Call a set ! ⊆ Q[- ] an algebraic lattice if ! = � + !0 for an ideal � and a point lattice !0.
For sets /, � ⊆ Q[- ], define alg.lattice- (/, �) = Q[- ]⟨/ ⟩ + Z⟨�⟩. If (/, �) is oriented (with respect
to ⪯) and � is linearly independent, say that (/, �) is independently oriented (with respect with
⪯). Assuming / is a Gröbner basis, an independently oriented representation of alg.lattice (/, �)
can be computed by

indep.orient/ (�) ≜ int.basis ({red/ (1) : 1 ∈ �})

where int.basis denotes a function that computes a basis for a point lattice (this can be done in
polytime using a Hermite Normal Form computation [Schrijver 1999, Ch. 4]).

Lemma 7 (Orientation). Let - be a set of variables, /, � ⊆ Q[- ] be finite sets of polynomi-
als such that / is a Gröbner basis. Then

(
/, indep.orient/ (�)

)
is independently oriented, and

alg.lattice (/, �) = alg.lattice (/, indep.orient/ (�)).

Note that membership in a point lattice can be checked in polytime (to check C ∈ Z⟨11, . . . , 1=⟩,
first solve 0111 + · · · +0=1= = C and then check whether each 01, . . . , 0= in the solution is an integer).
Thus, by the following lemma we have that checking membership in an algebraic lattice is decidable.

Lemma 8 (Membership). Let - be a set of variables, and /, � ⊆ Q[- ] be finite sets of poly-
nomials such that (/, �) is independently oriented. For any polynomial ? ∈ Q[- ], we have
? ∈ alg.lattice (/, �) iff red/ (?) ∈ Z⟨�⟩.
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Lastly, we develop a notion of algebraic cone/lattice pairs, which will serve as effective f/>A struc-
tures. For�, ! ⊆ Q[- ], say that (�, !) is algebraic if there exists finite sets /, %, � ⊆ Q[- ] such that
� = alg.cone- (/, % ) and ! = alg.lattice- (/, �). We denote this by (�, !) = alg.cone.lattice- (/, %, �),
and drop the subscript - when the context is clear. Say that (/, %, �) is oriented (with respect with
⪯) if (/, %) is oriented and (/, �) is independently oriented (bothwith respect with ⪯). If an algebraic
(�, !) is also regular, it can be represented by an oriented triple (/, %, �) such thatQ≥0⟨%⟩ is salient:
first compute an oriented (/, %) with Q≥0⟨%⟩ salient such that � = alg.cone (/, % ) (Theorem 3),
and then � such that (/, �) is oriented and ! = alg.lattice (/, �) (Lemma 7). Under this condition,
we haveU(alg.cone (/, % )) = ⟨/ ⟩ ⊆ alg.lattice (/, �), and thus M(alg.cone.lattice (/, %, �)) |= Int (?)

iff ? ∈ alg.lattice (/, �). Since membership in an algebraic cone and lattice are both decidable, it
follows that checking whether M(alg.cone.lattice (/, %, �)) |= � for a ground formula � is decidable,
provided that (/, %, �) is oriented and % is salient.

4.1 Satisfiability Modulo LIRR

This section presents a decision procedure for testing satisfiability of ground conjunctive f/>A (- )-
formulas modulo LIRR. Without loss of generality, a ground conjunctive formula � can be written
in the form

� =

(
∧

?∈%

0 ≤ ?

)
∧

(
∧

@∈&

¬(0 ≤ @)

)
∧

(
∧

A ∈'

¬(0 = A )

)
∧

(
∧

B∈(

Int (B)

)
∧

(
∧

C ∈)

¬Int (C )

)
,

where %,&, ', (,) are all finite sets of polynomials. In the following, we show that it is possible to
compute a finite representation of the least regular (�, !) such that � contains % and ! contains (
(Theorem 10). Then we show that � is satisfiable modulo LIRR if and only if � is consistent and
M(�, !) |= � , and moreover that � = C (� ) (Theorem 11). Since checking consistency of � and
M(�, !) |= � is decidable, this yields a decision procedure for ground LIRR-formulas, as well as an
algorithm for computing the non-negative cone of a ground formula.

4.1.1 Cu�ing Plane Closure. This section addresses the following problem: given finite sets
/, %, � ⊆ Q[- ], compute / ′, % ′ such that alg.cone (/ ′, % ′) contains alg.cone (/, % ) and is closed
under cutting planes with respect to the algebraic lattice alg.lattice (/, �). This is the key operation
needed to compute the least regular pair (�, !) containing a given pair, which will be addressed in
Section 4.1.2. Our strategy for computing cutting plane closure is to reduce it to the problem of
computing the integer hull of a polyhedron.

First, we show that the cutting plane closure of a cone alg.cone (/, % )with respect to the algebraic
lattice alg.lattice (/, �) coincides with the cutting plane closure of alg.cone (/, % ) with respect to the
point lattice Z⟨�⟩:

Lemma 9. Let �, ! ⊆ Q[- ] be such that � is a cone. Then cpU(�)+!(�) = cp!(�).

Proof. Let !′ = U(�) + !. Since ! ⊆ !′, cp!′(�) ⊇ cp!(�). For cp!′(�) ⊆ cp!(�), first observe
that cp!(�) is a cone that contains � , so it suffices to show that it is closed under cutting planes
with respect to !′.

Let =? +< ∈ cp!(�), where =,< ∈ Z, = > 0, and ? ∈ !′. Then ? = I + E for some I ∈ U(�) and
E ∈ !. Since =? +< ∈ cp!(�) and =I ∈ U(�) ⊆ U(cp!(�)), we have (=? +<) − =I ∈ cp!(�) and so

=E +< = =E +< + =I − =I = =(I + E) +< − =I = (=? +<) − =I ∈ cp!(�) .

Since cp!(�) is closed under cutting planes with respect to ! and E ∈ !, E +
⌊
<
=

⌋
∈ cp!(�). Then

? +
⌊
<
=

⌋
= I + E +

⌊
<
=

⌋
∈ cp!(�). Thus, cp!′(�) ⊆ cp!(�). □
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Next, we show that computing the cutting plane closure of an algebraic cone with respect to
a point lattice can be reduced to computing the cutting plane closure of the cone of inequalities
defining a (finite-dimensional) polyhedron.

Lemma 10. Let � = {11, . . . , 1: } ⊆ Q[- ], and let� ⊆ Q[- ] be a cone. Let . = {~1, . . . , ~: } be a set
of symbols disjoint from - and define a linear map 5 : Q[. ]1 → Q[- ] by

5 (00 + 01~1 + · · · + 0:~: ) = 00 + 0111 +· · · + 0:1: .

Then cpZ⟨�⟩(�) = � + 5 (cpZ⟨. ⟩(5
−1(�))).

Proof. (⊆) Let � = 5 (cpZ⟨. ⟩(5
−1(�))). Since cpZ⟨�⟩(�) is the least cone that contains � and is

closed under cutting planes with respect to Z⟨�⟩, it is sufficient to prove the following:

(1) � + � is a cone: it is the sum of two cones and is thus a cone.
(2) � + � contains �: since � is non-empty we have 0 ∈ � , so � ⊆ � + � .
(3) � + � is closed under cutting planes with respect to Z⟨�⟩. Suppose =? +< ∈ � + � , with

=,< ∈ Z, = > 0, and ? ∈ Z⟨�⟩; we must show that ? +
⌊
<
=

⌋
∈ � + � .

Without loss of generality, we may suppose =? +< ∈ �—the argument is as follows. Since
=? +< ∈ � +� , we have =? +< = 6 +ℎ for some 6 ∈ � and ℎ ∈ � . Since =? +< ∈ Z⟨�⟩ +Z =

5 (Q[. ]1), we have 6 = (=? +<) − ℎ ∈ 5 (Q[. ]1) since the image of 5 is a subspace of Q[- ]
containing both (=? +<) and ℎ. So 6 ∈ � ∩ 5 (Q[. ]1), and thus 6 ∈ 5 (5 −1(�)). Since cpZ⟨. ⟩(·)
is extensive (i.e., ( ⊆ cpZ⟨. ⟩(() for all () and 5 is linear, we have =? +< = 6 + ℎ ∈ � .

We now prove that ? +
⌊
<
=

⌋
∈ � + � . Since ? ∈ Z⟨�⟩, there exists ? ′ ∈ Z⟨. ⟩ such that

5 (? ′) = ? . Then 5 (=? ′ +<) = =? +< ∈ � . Since 5 is a linear map, =? ′ +< +6 ∈ cpZ⟨. ⟩(5
−1(�))

for some 6 ∈ ker(5 ) ≜ 5 −1(0). This is a subspace, so −6 ∈ ker(5 ). Since 0 ∈ � , ker(5 ) =
5 −1(0) ⊆ 5 −1(�) ⊆ cpZ⟨. ⟩(5

−1(�)). So −6 ∈ cpZ⟨. ⟩(5
−1(�)), and since cpZ⟨. ⟩(5

−1(�)) is a cone,

=? ′ +< = (=? ′ +< + 6) − 6 ∈ cpZ⟨. ⟩(5
−1(�)). Since ? ′ ∈ Z⟨. ⟩, ? ′ +

⌊
<
=

⌋
∈ cpZ⟨. ⟩(5

−1(�)). So

? +
⌊
<
=

⌋
= 5 (? ′ + ⌊<

=
⌋) ∈ � + � .

(⊇) First note that� ⊆ cpZ⟨�⟩(�), and since cpZ⟨�⟩(�) is closed under addition, it suffices to show

that 5 (cpZ⟨. ⟩(5
−1(�))) ⊆ cpZ⟨�⟩(�). In turn, it suffices to show cpZ⟨. ⟩(5

−1(�)) ⊆ 5 −1(cpZ⟨�⟩(�)). Let

� = 5 −1(cpZ⟨�⟩(�)). As before, it suffices to show that � is a cone, 5 −1(�) ⊆ � and � is closed under
cutting planes with respect to Z⟨. ⟩.
It is easy to verify that � is a cone, and since cpZ⟨�⟩(·) is extensive, 5

−1(�) ⊆ � . Suppose that

=? +< ∈ 5 −1(cpZ⟨�⟩(�)), with ? ∈ Z⟨. ⟩, =,< ∈ Z, and = > 0; we must show that ? +
⌊
<
=

⌋
∈ � . By

linearity of 5 , =5 (?) +< = 5 (=? +<) ∈ cpZ⟨�⟩(�). Since 5 (?) ∈ Z⟨�⟩, and cpZ⟨�⟩(�) is closed under

cutting planes with respect to Z⟨�⟩, 5 (?) + ⌊<
=
⌋ ∈ cpZ⟨�⟩(�). Thus, 5 (? +

⌊
<
=

⌋
) ∈ cpZ⟨�⟩(�), and

? +
⌊
<
=

⌋
∈ � . □

It remains to show that the reduction in Lemma 10 is effective. The only non-trivial operation
involved in the reduction that we have not already seen is computing the inverse image of an
algebraic cone � ⊆ Q[- ] under a linear map with finite-dimensional domain 5 : Q[. ]1 → Q[- ].
This can be accomplished by extending the linear map to a ring homomorphism 5̂ : Q[. ]→ Q[- ],
taking the inverse image of � under 5̂ , and intersecting it with Q[. ]1.

For disjoint finite sets of variables - and . , a ring homomorphism 5 : Q[. ]→ Q[- ], and finite
/, % ⊆ Q[- ], define

inverse-hom (/, %, 5 , . ) ≜ project. ({~ − 5 (~) : ~ ∈ . } ∪ /, % ).
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Theorem 9 (Inverse image). Let /, % ⊆ Q[- ] be finite sets, . be a finite set of variables distinct
from - , and 5 : Q[. ]→ Q[- ] be a ring homomorphism. Then

alg.cone. (inverse-hom (/, %, 5 , . )) = 5 −1(alg.cone- (/, % )).

Note thatQ[. ]1 is an algebraic (in fact, polyhedral) cone inQ[. ], so we can intersect an algebraic
cone with Q[. ]1 using the procedure of Section 3.3.3. Precisely, let . ⊆ - be sets of variables.
Define

intersect-subspace (/, %,. ) = second (intersect (/, %, ∅, %Q[. ]1 )),

where %Q[. ]1 = . ∪ −. ∪ {1,−1}, and second returns the second component of the pair. Note
that the first component is always ∅ (or equivalently, {0}) since it is a Gröbner basis for the ideal
⟨/ ⟩ ∩ ⟨∅⟩ = {0}.
Let cut (%,. ) be a procedure that computes the cutting plane closure of the cone generated by

% ⊆ Q[. ]1, with respect to Z⟨. ⟩. That is, Q≥0
〈
cut (%,. )

〉
= cpZ⟨. ⟩(Q

≥0⟨%⟩). This may be done by

e.g., the iterated Gomory-Chvátal closure. 2

We now arrive at an effective implementation of the reduction in Lemma 10. Define an operation
cut (/, %, �) by:

cut (/, %, �) ≜ substitute ( 5̂ , cut (intersect-subspace (inverse-hom (/, %, 5̂ , . ), . ))),

where . = {~1, . . . , ~=} is a set of fresh variables corresponding to � = {E1, . . . , E=} generating a
point lattice, 5̂ : Q[. ]→ Q[- ] is the ring homomorphism defined by 5̂ (~8 ) = E8 , and substitute ( 5̂ , % ′)
applies 5̂ to each polynomial in % ′. By linearity of 5̂ , substitute ( 5̂ , % ′) computes the image of the
polyhedral cone generated by % ′.

Lemma 11. Let /, %, � ⊆ Q[- ] be finite subsets. Then we have

cpZ⟨�⟩(alg.cone (/, % )) = alg.cone (/, % ∪ cut (/, %, �)).

Example 4.1. We illustrate cut (/, %, �) with / = ∅, % =
{
G1 − 2G2 + 1, G1 + 2G2,−G1, G

2
2

}
and

� = {2G1, 2G2}.
Let 5 : Q[~1, ~2]

1 → Q[G1, G2] be the function mapping 5 (~1) = 2G1 and 5 (~2) = 2G2, and
let 5̂ denote its extension to a ring homomorphism Q[~1, ~2] → Q[G1, G2]. First, we compute
inverse-hom (/, %, 5̂ , {~1, ~2}), yielding the pair (∅, % ′) with % ′ =

{
1
2
~1 − ~2 + 1, 1

2
~1 + ~2,−

1
2
~1,

1
4
~22

}

(representing the algebraic cone 5̂ −1(alg.cone (/, % )) which, in this case, happens to be polyhedral).
Next, we compute generators for the polyhedral cone 5 −1(alg.cone (/, % )) = 5̂ −1(alg.cone (/, % )) ∩
Q[~1, ~2]

1 via intersect-subspace (∅, % ′, {~1, ~2}), yielding % ′′ =
{
1
2
~1 − ~2 + 1, 1

2
~1 + ~2,−

1
2
~1

}
.

Next, we compute generators for cp (Q≥0⟨% ′′⟩). Consider
the polyhedron & that is defined by % ′′:

& =

{
(~1, ~2) ∈ Q

2 : 0 ≤
1

2
~1 − ~2 + 1, 0 ≤

1

2
~1 + ~2, 0 ≤ −

1

2
~1

}

~1

~2

•

• •

•

This polyhedron has vertices (0, 0), (0, 1) and (−1, 1
2
), so its integer hull is defined by~1 = 0, 0 ≤ ~2,

and ~2 ≤ 1. Hence, the cutting plane closure is cut (% ′′) = {~1,−~1, ~2,−~2 + 1}.

2When 1 ∈ % , this can also be done by any algorithm that computes integer hulls. Precisely, cpZ⟨. ⟩ (Q
≥0 ⟨% ⟩) = cp (Q≥0 ⟨% ⟩),

where the latter is the cutting plane closure of the (cone of) valid inequalities for& =
{
G ∈ Q. : ?(G ) ≥ 0 for all ? ∈ %

}
,

which is also the cone of inequalities defining&� . The discrepancy arises because 1 ≥ 0 is always a valid inequality, and is
contained in the latter; cpZ⟨. ⟩ (·) generalizes cutting plane closure to cones that may not contain 1.
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1 Function rcp (/, %, �)
Input :Finite sets of polynomials /, %, �
Output : (/ ′, % ′, �′) such that (/ ′, % ′, �′) is oriented, Q≥0⟨% ′⟩ is salient, and

alg.cone.lattice (/ ′, % ′, �′) is the least regular (�, !) satisfying
alg.cone (/, % ) ⊆ � and alg.lattice (/, �) ⊆ !.

2 (/ ′, % ′) ← regularize (/, % );
3 �′← indep.orient/ ′(� ∪ {1});
4 repeat

5 (/, %) ← (/ ′, % ′);
6 & ← cut (/ ′, % ′, �′);
7 (/ ′, % ′) ← regularize (/ ′, % ′ ∪&);
8 �′← indep.orient/ ′(�

′);
9 until alg.cone (/ ′, % ′) = alg.cone (/, % );

10 return (/ ′, % ′, �′);
Algorithm 3: Regular cutting plane closure of a cone

Finally, applying substitute gives cut (/, %, �) = {2G1,−2G1, 2G2,−2G2 + 1}. By Lemma 11,

cpZ⟨�⟩(alg.cone (/, % )) = alg.cone (/, % ) + Q≥0⟨{2G1,−2G1, 2G2,−2G2 + 1}⟩

= Q⟨{G1}⟩ + Q
≥0

〈
G22, G2,−2G2 + 1

〉
. ⌟

4.1.2 Regular Cu�ing Plane Closure. This section addresses the following problem: given finite
sets /, %, � ⊆ Q[- ], compute / ′, % ′, �′ such that alg.cone.lattice (/ ′, % ′, �′) is the least regular
pair containing alg.cone.lattice (/, %, �) (component-wise). Regularity of (/, %, �) requires that (1)
alg.cone (/, % ) is a regular cone and (2) alg.cone (/, % ) is closed under cutting planes with respect to
alg.lattice (/, % ). The regularize and rcp procedures achieve (1) and (2) respectively, so the essential
problem is to achieve both conditions simultaneously. Algorithm 3 accomplishes this by iterating
regularize and rcp until a fixed point is reached.

Theorem 10 (Regular cutting plane closure). Let - be a finite set of variables, and /, %, � ⊆ Q[- ]
be finite sets. Then rcp (/, %, �) terminates, and alg.cone.lattice (rcp (/, %, �)) is the least regular
(�, !) satisfying alg.cone (/, % ) ⊆ � and alg.lattice (/, �) ⊆ !.

Proof. Assume that (/, %, �) is oriented. Let /8 , %8 , �8 , &8 be / ′, % ′, �′, & at the end of the 8th
iteration respectively. Define �8 ≜ alg.cone (/8 , %8 ) and !8 ≜ alg.lattice (/8 , �8 ). When 8 = 0, these
values are the values just before entry to the loop. For any cone� ⊆ Q[- ], let '(�) denote the least
regular cone containing � .
Define �8+1 ≜ cpZ⟨�8 ⟩(�8 ). By Lemma 11, �8+1 = alg.cone (/8 , %8 ∪ &8 ). By Theorem 3, �8+1 =

'(�8+1) = '(cpZ⟨�8 ⟩(�8 )). First note the following properties.

(P1) U(�8 ) = U(alg.cone (/8 , %8 )) = ⟨/8⟩, because the output (/8 , %8 ) of regularize is oriented and
Q≥0⟨%8⟩ is salient (Theorem 3).

(P2) (�8 )8 is an increasing sequence of regular cones by subset ordering, because�8+1 = '(cpZ⟨�8 ⟩(�8 )).
(P3) For all 8 , 1 ∈ �8 , alg.cone (/, % ) ⊆ �8 , 1 ∈ !8 , and alg.lattice (/, �) ⊆ !8 : By Theorem 3 and

(P2), 1 ∈ �8 and alg.cone (/, % ) ⊆ �8 for all 8 . By Lemma 7, 1 ∈ !0 and ! ⊆ !0. By (P1)
and (P2), ⟨/8⟩ = U(�8 ) ⊆ U(�8+1) = ⟨/8+1⟩. Then alg.lattice (/8 , �8 ) ⊆ alg.lattice (/8+1, �8 ) =

alg.lattice (/8+1, �8+1). Hence, 1 ∈ !8 and alg.lattice (/, �) ⊆ !8 for all 8 .

We nowprove termination. By (P2), (U(�8 ))8 is an ascending chain of ideals. SinceQ[- ] is Noetherian,
U(�=) = U(�=+1) for some = ≥ 0. Since �8 ⊆ �8+1 ⊆ �8+1 for all 8 ,U(�=) ⊆ U(�=+1) ⊆ U(�=+1) =
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U(�=), soU(�=+1) = U(�=) is an ideal. Since�8 ⊆ �8+1 and 1 ∈ �8 for all 8 (P3), 1 ∈ �=+1. So �=+1 is
a regular cone. Since �=+1 is the least regular cone containing �=+1, we have �=+1 = �=+1.

We show that �=+1 is closed under cutting planes with respect to Z⟨�=+1⟩, so that �=+2 = �=+1 =
�=+1 and the algorithm terminates. By (P1), ⟨/=⟩ = U(�=) = U(�=+1) = ⟨/=+1⟩. Note that /= and
/=+1 are Gröbner bases with respect to the same monomial ordering, so by the representation
independence property of Gröbner bases, red/= (1) = red/=+1 (1) for all 1 ∈ Q[- ]. Also, note that
(/8 , �8 ) is independently oriented, by Lemma 7 and noting that the output of regularize is oriented.
So red/8 (1) = 1 for all 1 ∈ �8 .

Z⟨�=+1⟩ = Z
〈
int.basis (

{
red/=+1 (1) : 1 ∈ �=

}
)
〉

= Z
〈{
red/=+1 (1) : 1 ∈ �=

}〉
= Z

〈{
red/= (1) : 1 ∈ �=

}〉
= Z⟨�=⟩

Hence,

cpZ⟨�=+1 ⟩(�=+1) = cpZ⟨�= ⟩(�=+1) = cpZ⟨�= ⟩(�=+1) = cpZ⟨�= ⟩(cpZ⟨�= ⟩(�=)) = cpZ⟨�= ⟩(�=) = �=+1,

where the last equality follows from the definition of � and noting �=+1 = �=+1. Then �=+2 =

'(cpZ⟨�=+1 ⟩(�=+1)) = '(�=+1) = �=+1, and the algorithm terminates.
Now let # be the last iteration of the algorithm. We show that alg.cone.lattice (/# , %# , �# ) =

(�# , !# ) is the least regular (�, !) satisfying alg.cone (/, % ) ⊆ � and alg.lattice (/, �) ⊆ !.
We first show that alg.cone.lattice (/# , %# , �# ) is regular. Since # ≥ 1, alg.cone (/# , %# ) = �# =

'(cpZ⟨�#−1 ⟩(�#−1)) is regular. By (P1),U(alg.cone (/# , %# )) = ⟨/# ⟩ ⊆ alg.lattice (/# , �# ) = !# . By
(P3), 1 ∈ !# . By the proof of termination, cpZ⟨�# ⟩(�# ) = �# . By (P1) and Lemma 9, �# is closed
under cutting planes with respect to !# . Thus, alg.cone.lattice (/# , %# , �# ) is regular.
Finally, note that (1) alg.cone (/, % ) ⊆ �# and (2) alg.lattice (/, �) ⊆ !# by (P3). We may show

that (�# , !# ) is the least regular pair satisfying (1) and (2) by supposing that (� ′, !′) is regular and
satisfies (1) and (2), and proving �8 ⊆ � ′ and !8 ⊆ !′ by induction on 8 . □

4.1.3 Satisfiability and Consequence-Finding modulo LIRR. Since we have a procedure for com-
puting the regular cutting plane closure of an algebraic cone with respect to a point lattice, the
following theorem yields both a decision procedure for LIRR and an algorithm for consequence-
finding modulo LIRR:

Theorem 11. Let � be the ground conjunctive formula

� =

(
∧

?∈%

0 ≤ ?

)
∧

(
∧

@∈&

¬(0 ≤ @)

)
∧

(
∧

A ∈'

¬(0 = A )

)
∧

(
∧

B∈(

Int (B)

)
∧

(
∧

C ∈)

¬Int (C )

)
.

Let (�, !) be the least regular pair such that % ⊆ � and ( ⊆ !. Then we have the following:

(1) � is satisfiable iff � is consistent and M(�, !) |= � .
(2) � = C (� ).

Summarizing, we have the following decision procedure for satisfiability of conjunctive f/>A (- )-
formulas modulo LIRR. Let � be a ground conjunctive formula of the form in Theorem 11. First
compute (/ ′, % ′, �′) = rcp (∅, %, �). If red/ ′(1) = 0, then � is unsatisfiable (alg.cone (/ ′, % ′) is in-
consistent). Otherwise, we check whether A = M(alg.cone.lattice (/ ′, % ′, �′)) satisfies � by testing
whether there is some @ ∈ & with red/ ′(@) ∈ Q

≥0⟨% ′⟩ (Lemma 2), or some A ∈ ' with red/ ′(A ) = 0,
or some C ∈ ) with red/ ′(A ) ∈ Z⟨�

′⟩ (Lemma 8); if such a @, A , or C exists, then � is unsatisfiable
(Theorem 4), otherwise, A satisfies � .

Consequence-finding modulo LIRR operates in the same way as Algorithm 2. The only difference
is that get-model returns a triple (/ ′, % ′, �′) instead of pair (/ ′, % ′)—but the point lattice basis �′ is
simply ignored by the rest of the algorithm.
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5 INVARIANT GENERATION MODULO LIRR

This section describes an application of consequence-finding modulo LIRR to the problem of
computing loop invariants. The method is based on extracting recurrence relations (of a particular
form) from the body of a loop, and using their closed forms to summarize loop dynamics. The key
property of our loop-invariant generation procedure is that it is monotone: if more information
about the program’s behavior is given to the procedure, then it may only compute invariants that
are more precise (modulo LIRR). Monotonicity is achieved due to the fact that it is possible to find
and manipulate the set of all implied inequalities of a formula modulo LIRR. Section 5.1 provides
background on summarization and the loop summarization procedure presented in Section 5.2.

5.1 Program Summarization

Loop summarization is the problem of over-approximating the reflexive transitive closure of a
transition formula (a notion that will be made precise in the following). One might think of a
transition formula as a logical summary of the action of a program through one iteration of the
body of some loop, and an approximation of its reflexive transitive closure as a summary for (an
unbounded number of iterations of) the loop. Using the algebraic program analysis framework, a
loop summarization procedure can be “lifted” to a whole-program analysis [Farzan and Kincaid
2015; Kincaid et al. 2021; Zhu and Kincaid 2021], allowing us to focus our attention on this relatively
simple logical sub-problem.
Fix a finite set of symbols - (corresponding to the variables in a program of interest) and a

set of “primed copies” - ′ = {G ′ : G ∈ - }. Define a transition formula � to be an existential
f/>A (- ∪ -

′)-formula. A transition formula represents a relation over program states, where the
unprimed variables correspond to the pre-state and the primed variables correspond to the post-
state. For any pair of transition formulas � [-,- ′] and�[-,- ′], define their sequential composition
as � ◦� ≜ ∃- ′′.� [- ′ ↦→ - ′′] ∧�[- ↦→ - ′′] where - ′′ ≜ {G ′′ : G ∈ - } is a set of variable symbols
disjoint from - and - ′ (representing the intermediate state between a computation of � and a
computation of �). Define the C-fold composition of a transition formula � as � C ≜ � ◦ . . . ◦ � (C
times). The problem of over-approximating reflexive transitive closure is, given a transition formula

� , find a transition formula �★ such that � C |=LIRR �
★ for all C ∈ Z≥0.

Our approach to this problem is based on the one in [Ancourt et al. 2010; Farzan and Kincaid
2015]. Given a transition formula � , this approach computes an over-approximation of its reflexive
transitive closure �★ in two steps. In the first step, it extracts a system of recurrences � |=LRA∧=
8=1 A

′
8 ≤ A8 + 08 where each A8 denotes a linear term over - , each A ′8 denotes a corresponding linear

term over - ′ and each 08 is a rational number (for instance (G ′ + ~ ′) ≤ (G + ~) + 2, indicating that
the sum of G and ~ increases by at most two). In the second step, it computes their closed forms
�★ ≜ ∃C .C ≥ 0 ∧

∧=
8=1 A

′
8 ≤ A8 + C08 . In the following, we generalize this strategy to the non-linear

setting by considering recurrences where 08 is not a rational number but rather an invariant of the
loop—a polynomial in - that does not change under the action of � .

5.2 A Loop Summarization Operator

This section describes the class of recurrences that we wish to compute (Section 5.2.1), a method to
compute them (Section 5.2.2), and then defines a loop summarization operator and shows that it is
monotone and (in a sense) complete modulo LIRR (Section 5.2.3).

5.2.1 Invariant-Bounded Differences. Lift the mapping from symbols in - to their primed counter-
part in - ′ into a ring homomorphism of polynomial terms (−)′ : Q[- ]→ Q[- ′] (so, e.g., (G~ + 3I)′

denotes the polynomial (G ′~ ′ + 3I ′)). Define the space of linear invariant functionals LinInv(� )
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of a formula � to be those linear terms over - that are invariant under the action of � :

LinInv(� ) ≜ {: ∈ Q⟨- ⟩ : � |=LIRR :
′ = :} .

Define the space of invariant polynomials Inv(� ) to be the subring ofQ[- ] generated by LinInv(� ).
Clearly, for any ? ∈ Inv(� ) we have � |=LIRR ?

′ = ? (but the reverse does not hold). Finally, we
define the class of recurrences of interest, the invariant-bounded differences of � , to be

diff(� ) ≜ {(A, 0) ∈ Q⟨- ⟩ × Inv(� ) : � |=LIRR A
′ ≤ A + 0} .

Note that for any (A, 0) ∈ diff(� ) and any C ∈ Z≥0, we have � C |=LIRR A
′ ≤ A + C0.

Example 5.1. Consider the program

while(*) { if (*) { w = w + 1; } else { w = w + 2; }

x = x + z ; y = y + z ; z = (x - y)(x - y); }

where * denotes non-deterministic choice. The transition formula for the loop body is

� = (F ′ = F + 1 ∨F ′ = F + 2) ∧ G ′ = G + I ∧ ~ ′ = ~ + I ∧ I ′ = I + (G ′ − ~ ′)2.

Notice that the linear polynomial G − ~ is an invariant of the loop; LinInv(� ) is the linear space
spanned by (G − ~). The polynomial (G − ~)2 is thus an invariant polynomial in the subring Inv(� ).
The invariant-bounded differences diff(� ) includes (but is not limited to) (−F,−1) (F increases by
at least 1), (F, 2) (F increases by at most 2), as well as

(
I, (G − ~)2

)
and

(
−I,−(G − ~)2

)
(I is always

set to I + (G − ~)2 at each iteration). ⌟

Example 5.2. Consider the programwhile (*) { w = -w; }. The transition formula � of the
loop body isF ′ = −F . The polynomialF2 is an invariant polynomial of the loop: � |=LIRR (F ′)2 = F2.
However, � has no linear invariants, so LinInv(� ) = {0} and Inv(� ) = {0}. ⌟

5.2.2 Computing Invariant-Bounded Differences. We proceed in three steps, showing how to repre-
sent and compute LinInv(� ), Inv(� ), and finally diff(� ).

Since LinInv(� ) is a linear space it can be represented by a basis, which we compute as follows. Let
� ≜ {3G : G ∈ - } denote a set of variables distinct from those in-,- ′. Define a ring homomorphism
X : Q[�]→ Q[- ∪- ′] by X(3G ) ≜ G − G ′ and a second ring homomorphism pre : Q[�]→ Q[- ] by
pre(3G ) = G . Then LinInv(� ) = pre(X−1(U(C (� ))) ∩ Q⟨�⟩): � |=LIRR :

′ = : iff � |=LIRR :
′ − : = 0 iff

: ′ − : is a unit in the nonnegative cone of � ; since : is linear, : ′ − : = X(3) for some linear term
3 ∈ Q⟨�⟩. A basis for LinInv(� ) can be computed using the primitives we have developed in the
preceding (consequence-finding, cone intersection, and inverse image).
Let {01, . . . , 0=} be a basis for LinInv(� ). The subring Inv(� ) of Q[- ] can be represented as the

elements of the polynomial ringQ[ ], where = {:1, . . . , :=} is a set of fresh variables, one for each
basis element of LinInv(� ). Let inv denote the (injective, since {01, . . . , 0=} is linearly independent)
ring homomorphism Q[ ]→ Q[- ] that sends :8 to 08 for each 8 . Then the image of inv is precisely
Inv(� ) (i.e., Q[ ] and Inv(� ) are isomorphic).
Finally, we show how to represent and compute diff(� ). Each element of diff(� ) is a pair (A, 0)

consisting of a linear term A ∈ Q⟨- ⟩ and a polynomial 0 ∈ Inv(� ). As a technical convenience, we
can represent such a pair as a polynomial in Q⟨�⟩ + Q[ ]. Since � and  are disjoint, there exist
(unique) linear maps c� : Q⟨�⟩ + Q[ ]→ Q⟨�⟩ and c : Q⟨�⟩ + Q[ ]→ Q[ ] such that for all
? ∈ Q⟨�⟩ +Q[ ] we have ? = c� (?) + c (?). Then we may define a bijection rep : Q⟨�⟩ +Q[ ]→

Q⟨- ⟩ × Inv(� ) by rep(?) = (pre(c� (?)), inv(c (?))). Define d̃iff(� ) to be the inverse image of diff(� )
under rep (i.e., an exact representation of diff(� ) in the space Q⟨�⟩ + Q[ ]).

Thus, it suffices to show how to compute d̃iff(� ). Define a ring homomorphism Xinv : Q[�, ]→
Q[- ∪ - ′] by Xinv(3G ) = G − G ′ and Xinv(:8 ) = 08 (i.e., the common extension of X and inv). Then
we see that d̃iff(� ) ≜ X−1inv(C (� )) ∩ (Q⟨�⟩ + Q[ ]); that is, the invariant-bounded differences of �
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1 Function lin (/, %, �,  )
Input :Finite sets of polynomials /, % ⊆ Q[�, ] over disjoint variables � and  
Output :A pair (+ , ') with Q[ ]⟨+ ⟩ + Q≥0⟨'⟩ = alg.cone (/, % ) ∩ (Q[ ] + Q⟨�⟩)

2 (/, %) ← orient⪯ (/, % );
3 if red/ (1) = 0 then

4 return ({1} , � ∪ −�) ; /* alg.cone (/, % ) = Q[�, ], so return Q[ ] + Q⟨�⟩) */

5 ' ← project�∪[ ](% ) ; /* Project onto the set of variables � and monomials over  */

6 + ← ∅;
/* Add polynomials in / ∩ Q[ ] to + ; if a polynomial is linear in 3 , add it (and its

negation) to ' */

7 foreach I ∈ / do

8 if Lm(I) ∈ Q[ ] then + ← + ∪ {I} ;
9 else if Lm(I) ∈ Q⟨�⟩ then ' ← ' ∪ {I,−I} ;

10 return (+ , ')
Algorithm 4: Linear restriction

correspond exactly to the members of X−1inv(C (� )) that are linear in the � variables. We illustrate
this with an example.

Example 5.3. We continue Example 5.1. The nonnegative cone of � is C (� ) = alg.cone (/, % ),
where / and % are:

/ =
{
(F −F ′ + 1)(F −F ′ + 2), G − G ′ + I,~ − ~ ′ + I, I − I ′ + (G − ~)2

}

% = {−F +F ′ − 1,F −F ′ + 2}

Applying X−1 to the units of this cone gives Q[�]
〈
(3F + 1)(3F + 2), 3G − 3~

〉
(to see why the inverse

image contains 3G −3~ , observe that X(3G −3~) = (G −G ′)− (~ −~ ′) = (G −G ′ +I)− (~ −~ ′ +I) ∈ ⟨/ ⟩).
Intersecting this with Q⟨�⟩ yields Q

〈
3G − 3~

〉
. Hence, LinInv(� ) = Q⟨G − ~⟩.

The subring Inv(� ) generated by these linear invariants is represented by Q[:1] (with inv(:1) =

G − ~). We have the following corresponding elements in diff(� ) and d̃iff(� ):

(−F,−1) ∼ −3F − 1, (F, 2) ∼ 3F + 2,
(
I, (G − ~)2

)
∼ 3I + :

2
1, and

(
−I,−(G − ~)2

)
∼ −3I − :

2
1

Notice how −3F − 1 and 3F + 2 correspond to % , and how 3I + :
2
1 and −3I − :

2
1 correspond to the

last polynomial (I − I ′) + (G − ~)2 ∈ / . ⌟

We now continue with showing how to compute d̃iff(� ). Since we already saw how to compute
inverse images of algebraic cones, it remains only to show that we can compute the intersection
of an algebraic cone over Q[�, ] with Q⟨�⟩ + Q[ ]; i.e., the set of polynomials in cone that are
linear in the set of variables � , but may contain arbitrary monomials in  . This is nearly solved by
the intersection algorithm in Section 3.3.3, since Q⟨�⟩ + Q[ ] is the sum of a finitely-generated
cone Q⟨�⟩ = Q≥0⟨� ∪ −�⟩ and an ideal Q[ ]; however, Q⟨�⟩ + Q[ ] is not an algebraic cone
because Q[ ] is not an ideal in Q[�, ]. However, the essential process behind cone intersection
carries over, which yields Algorithm 4.

Lemma 12. Let �, be disjoint finite sets of variables and /, % ⊆ Q[�, ] be finite sets of
polynomials over � and  . Let (+ , ') = lin (/, %, �,  ). Then

Q[ ]⟨+ ⟩ + Q≥0⟨'⟩ = alg.cone (/, % ) ∩ (Q[ ] + Q⟨�⟩)

5.2.3 Loop Summarization. The core logic of our loop summarization operator appears in Algo-
rithm 5, which computes an over-approximation exp (�, C ) of the C-fold composition of � (symbolic
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1 Function exp (�, C )
Input :Transition formula � , symbol C
Output :Over-approximation of the C-fold composition of �

2 � ← Skolemize � ;
3 {01, . . . , 0=} ← basis for LinInv(� );
4 (/, %) ← consequence (�, - ∪ - ′);
5 � = {3G : G ∈ - } ← set of |- | fresh variables;
6  = {:1, . . . , :=} ← set of = fresh variables;
7 Let Xinv : Q[ ∪ �]→ Q[- ∪ - ′] be the homomorphism mapping 3G ↦→ G and :8 ↦→ 08 ;
8 (/ ′, % ′) ← inverse-hom(/, %, Xinv, � ∪  );
9 (+ , ') ← lin (/ ′, % ′, �,  );

10 Define cf to be the map that sends ? ↦→ X(c� (?)) + C · inv(c (?));
11 return (

∧
E∈+ 0 = cf(E)) ∧ (

∧
A ∈' 0 ≤ cf(A ))

Algorithm 5: Over-approximation of C-fold composition of �

in C ) using the methodology described in the last two sections. The loop summarization operator is
defined as:

�★ ≜ ∃C .Int (C ) ∧ C ≥ 0 ∧ exp (�, C ) .

Example 5.4. Returning to Example 5.3, the invariant-bounded differences computed by lin are
+ = ∅ and ' =

{
−3F − 1, 3F + 2,±(3I + :

2
1 ),±(3G − 3~)

}
. Hence, Algorithm 5 computes

exp (�, C ) = −(F −F ′) − C ≥ 0 ∧F −F ′ + 2C ≥ 0 ∧ I − I ′ + C (G − ~)2 = 0 ∧ (G − G ′) − (~ − ~ ′) = 0.

That is, the loop may be summarized as having the effect

F + C ≤ F ′ ≤ F + 2C ∧ I ′ = I + C (G − ~)2 ∧ G − ~ = G ′ − ~ ′ .

Thus, our algorithm computes exact dynamics for F and I, but loses information about the
behavior of G and ~. ⌟

Theorem 12 (Soundness). Let � be a transition formula. Then � C |=LIRR �
★ for all C ∈ Z≥0.

We conclude with a statement of the completeness and monotonicity properties of Algorithm 5.

Lemma 13 (Completeness). Given any transition formula � , we have exp(�, C ) |=LIRR A
′ ≤ A + C0

for all (A, 0) ∈ diff(� ).

Theorem 13 (Monotonicity). If � |=LIRR � , then �
★ |=LIRR �

★.

6 EXPERIMENTAL EVALUATION

We consider two experimental questions raised by the relatively weak strength of LRR/LIRR.

(1) (Section 6.2): Are the theories LRR/LIRR strong enough to prove unsatisfiability of formu-
las that are unsatisfiable modulo Th(R)/Th(Z)? How does the performance of the decision
procedures for LRR/LIRR compare with state-of-the-art SMT solvers?

(2) (Section 6.3): Is the theory LIRR strong enough to enable client applications that rely on
consequence-finding, such as the invariant generation algorithm presented in Section 5?
How does LIRR-supported invariant generation compare with state-of-the-art automated
program verification tools?
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6.1 Experimental Setup

Implementation. We implemented an SMT solver for LRR and LIRR, which we call Chilon3. Our
implementation relies on Z3 (as a SAT solver) [deMoura and Bjørner 2008] Apron/NewPolka [Jeannet
and Miné 2009] for polyhedral operations, FLINT [Hart et al. 2021] for lattice operations, and
Normaliz [Bruns et al. 2021] for Hilbert basis computation (a sub-procedure of iterated Gomory-
Chvátal closure). Based on Chilon, we implemented the consequence-finding procedure as well
as the approximate transitive closure operator for invariant generation. We have also integrated
the invariant generation procedure into a static analysis framework that facilitates evaluation on
software verification benchmarks, which is used as a proxy to evaluate the quality of the generated
invariants.

Environment. We ran all experiments on an Oracle VirtualBox virtual machine with Lubuntu
22.04 LTS (Linux kernel version 5.15 LTS), with a two-core Intel Core i5-5575R CPU @ 2.80 GHz
and 4 GB of RAM. All tools were run with the benchexec [Wendler and Beyer 2022] tool under a
time limit of 2 minutes on all benchmarks. Reported times are total aggregate, measured in seconds
and averaged across 5 runs.

SMT Benchmarks and Solvers. SMT tasks are taken from the quantifier-free nonlinear real arith-
metic and nonlinear integer arithmetic (QF_NRA and QF_NIA) divisions of SMT-COMP 2021 [Barbosa
et al. 2022] For each division, we randomly draw the same number of tasks from each directory,
resulting in about 100 tasks. We compare the performance of Chilon on these tasks against other
solvers for standard theories of arithmetic, including Z3 4.8.13, MathSAT 5.6.5, CVC4 1.8, and Yices
2.6.4.

Program Verification Benchmarks and Tools. The program verification tasks are the safe, integer-
only 4 benchmarks from the c/ReachSafety-Loops subcategory of SV-COMP 2022 [Beyer 2022].
Tasks from the nla-digbench and nla-digbench-scaling directories constitute the nonlinear
benchmark suite, while all other tasks form the linear suite. We compare against CRA (or Compo-
sitional Recurrence Analysis [Farzan and Kincaid 2015]), another invariant generation tool based
on analyzing recurrence relations; VeriAbs 1.4.2, the winner for the ReachSafety category of
SV-COMP; and Ultimate Automizer 0.2.2, which performed best on the nla-digbench suite.

6.2 How Does Chilon Perform on SMT Tasks?

Table 2 records the results of running the five solvers on nonlinear SMT benchmarks. Since the
reals are a model of LRR, if a formula is unsatisfiable modulo LRR then it is unsatisfiable modulo
NRA, but the converse does not hold i.e., using a LRR-solver on NRA tasks can give false SAT
results, but not false UNSAT results). The same holds for LIRR and NIA.
Chilon does not appear to be competitive for either QF_NRA or QF_NIA. It proves UNSAT for 6

out of 40 and 14 out of 41 tasks in the QF_NRA and QF_NIA suites, respectively, lower than other
SMT solvers we compared against. Chilon reports false positives on 23 out of 40 UNSAT tasks in
QF_NRA and 15 out of 41 UNSAT tasks in QF_NIA. It performs poorly on crafted tasks, in which the
unsatisfiability proof often requires reasoning about the interaction between multiplication and the
order relation, which is not axiomatized by our theories. It performs particularly well on verification
tasks (e.g., the hycomp suite in QF_NRA, and the LassoRanker and UltimateLassoRanker suites in
QF_NIA), but all other solvers we tested also performed well on these tasks. Chilon is competitive
with other solvers in terms of running time. We note that there is substantial room for improving

3The famous ancient Greek proverb “less is more”, is attributed to Chilon of Sparta, one of the Seven Sages of Greece.
4That is, the error location is unreachable, and all variables are integer-typed.
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the performance of Chilon; in particular, it does not tightly integrate the theory solver with the
underlying SAT solver as do most modern SMT solvers.

The experimental results suggest that the theories of linear integer / real rings is not generically
suitable as an alternative to the theory of integers / reals for applications that only require a SAT
or UNSAT answer.

Table 2. Comparison of Chilon with other SMT solvers on SMT-COMP benchmarks. The “#P” column denotes
the number of proved tasks, and the “#E” column denotes the number of tasks on which a solver times out /
runs out of memory. The max standard deviation in runtime across all benchmarks is Chilon: 25.58, Z3: 18.71,
MathSat: 2.03, CVC4: 6.10, Yices: 4.29.

Chilon Z3 MathSAT CVC4 Yices
suite label #task #P #E time #P #E time #P #E time #P #E time #P #E time

QF_NRA

SAT 38 - 10/0 1215.9 36 2/0 380.6 15 21/0 2603.4 9 28/0 3405.7 29 9/0 1105.3
UNSAT 40 6 11/0 1368.9 30 9/1 1193.4 29 10/0 1296.6 31 9/0 1194.1 32 8/0 1070.4

? 27 - 14/2 1789.1 - 12/0 1495.3 - 18/0 2224.6 - 12/0 1827.8 - 13/0 1643.7

QF_NIA

SAT 29 - 13/0 1595.9 26 3/0 535.9 21 8/0 1065.9 17 7/0 905.2 19 10/0 1211.5
UNSAT 41 14 11/0 1347.2 36 5/0 662.2 37 4/0 593.0 36 1/0 248.9 36 5/0 617.1

? 28 - 16/1 2241.1 - 11/0 1361.1 - 12/0 1548.6 - 12/0 1467.1 - 12/0 1632.8

6.3 How Does Chilon-inv Perform on Program Verification Tasks?

In this subsection, we evaluate the strength of consequence-finding modulo LIRR via the invariant
generation scheme described in Section 5, implemented in the tool Chilon-inv. We compare with
two similar recurrence-based invariant generation techniques, both of which rely on consequence-
finding: CRA-lin [Farzan and Kincaid 2015] uses a complete consequence-finding procedure modulo
linear arithmetic; and CRA [Kincaid et al. 2017] uses a heuristic consequence-finding procedure
modulo non-linear arithmetic. We also evaluate a second configuration of Chilon-inv, which uses a
refinement algorithm from [Cyphert et al. 2019] to improve analysis precision; this is guaranteed
because the analysis that Chilon-inv implements is monotone.
Table 3 compares the performance of invariant generation using Chilon with other methods

that utilize consequence-finding. Results show that Chilon-inv indeed performs strictly better than
CRA-lin on both suites (particularly on the nonlinear suite). This is expected, since Chilon-inv’s
consequence-finding algorithm is more powerful than that of CRA-lin, and Chilon-inv considers
a larger class of recurrences. Chilon-inv outperforms CRA on the nonlinear suite, but CRA
dominates the linear suite. This can be attributed to CRA’s control-flow refinement techniques
that are not implemented in the base analysis in Chilon-inv (with refinement, Chilon-inv matches
the performance of CRA on the linear suite—see Table 4).

Table 3. Comparison of recurrence-based invariant generation schemes. Timeouts are reported in parentheses.
The max standard deviation in runtime across all benchmarks is Chilon: 1.89, CRA-lin: 0.08, CRA: 0.63.

Chilon-inv CRA-lin CRA
#tasks #correct time #correct time #correct time

linear 178 117 955.9 (6) 111 739.0 (2) 140 1195.3 (5)
nonlinear 290 232 2259.5 (15) 27 2617.8 (19) 90 12539.4 (91)
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Table 4. Comparison of Chilon (with and without refinement) against leading SV-COMP competitors.
Timeouts are reported in parentheses. The max standard deviation in runtime across all benchmarks is Chilon:
1.89, Chilon-inv + Refine: 0.11, UAutomizer: 9.08, VeriAbs: 0.00.

Chilon-inv Chilon-inv + Refine UAutomizer VeriAbs
#tasks #correct time #correct time #correct time #correct time

linear 178 117 955.9 (6) 140 1289.0 (8) 122 8865.4 (56) 143 6520.3 (34)
nonlinear 290 232 2259.5 (15) 233 2355.0 (16) 183 16569.2 (107) 172 17342.5 (118)

Table 4 provides context by comparing with state-of-the-art program verification tools. VeriAbs
is a portfolio verifier that employs a variety of techniques, such as bounded model checking, :-
induction, and loop summarization [Darke et al. 2021]. Notably, VeriAbs can summarize a numeric
loops by accelerating linear recurrences involving only constants or variables that are unmodified
within the loop [Darke et al. 2015]; the technique presented in Section 5.1 generalizes this scheme.
Ultimate Automizer implements a counterexample-guided abstraction refinement algorithm follow-
ing the trace abstraction paradigm [Heizmann et al. 2009]. Chilon-inv is competitive on the linear
suite (particularly with refinement enabled) and outperforms the other tools on the nonlinear
suite.

7 RELATED WORK

Real Arithmetic. The decidability of the theory of real closed fields is a classical result due to
Tarski [1949] and Seidenberg [1954]. Practical (complete) algorithms for this theory are based on
cylindrical algebraic decomposition (CAD) [Collins 1975; Jovanović and de Moura 2013; Kremer
and Ábrahám 2020]. Due to the high computational complexity of decision procedures for the reals,
a number of (incomplete) heuristic techniques have been devised [Tiwari 2005; Tiwari and Lincoln
2014; Zankl and Middeldorp 2010]. Similar to our approach, Tiwari [2005]’s method combines
techniques from Gröbner bases and linear programming; however, the result of the combination is
a semi-decision procedure for the existential theory of the reals, whereas we achieve a decision
procedure for a weaker theory.

The X-complete decision procedure for the existential theory of the reals presented in [Gao et al.
2012] is similar in spirit to our work, in that the method gives up completeness in the classical
sense while retaining a weaker version of it. Rather than using a standard model of the reals and
relaxing the definition of satisfaction (each constraint is “within X” of being satisfied), we take the
approach of using classical first-order logic, but admit non-standard models.
Positivestellensätze are a class of theorems that characterize sets of positive polynomial conse-

quences of a system of inequalities over the reals (or a real closed field) [Krivine 1964]. Lemma 4
might be thought of as an analogue of a Positivestellensatz for LRR. Putinar’s Positivestellen-
satz [Putinar 1993] bears particular resemblance to our results: it asserts that the entailment∧
I∈/ I = 0 ∧

∧
?∈% ? ≥ 0 |=NRA @ ≥ 0 holds exactly when @ is in the quadratic module generated

by / and % (provided that certain technical restrictions implying compactness are satisfied). The
quadratic module generated by / and % is ⟨/ ⟩ + Σ2[- ]⟨% ∪ {1}⟩ (where Σ2[- ] is the set of sum-of-
squares polynomials over - ), mirroring the structure of algebraic cones, but with sum-of-squares
polynomials in place of non-negative rationals. Every quadratic module over R[- ] is also regular
algebraic cone (following from the fact that its additive units form an ideal [Marshall 2008, Prop
2.1.2]) (but not vice versa).

Integer Arithmetic. Unlike the case of the reals, the theory consisting of f>A -sentences that hold
over the integers is undecidable (in fact, not even recursively axiomatizable). However, a number of
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effective heuristics have been proposed, including combining real relaxationwith branch-and-bound
[Jovanović 2017; Kremer et al. 2016], bit-blasting [Fuhs et al. 2007], and linearization [Borralleras
et al. 2019, 2009]. Linearization shares the idea of using linear arithmetic to reason about non-linear
formulas. However, our approaches are quite different: Borralleras et al. [2019, 2009] essentially
restrict the domain of constant symbols to finite ranges (making the approach sound but incomplete
for satisfiability), whereas our approach is sound but incomplete for validity.

Non-Linear Invariant Generation. There are several abstract domains that are capable of represent-
ing conjunction of polynomial inequalities [Bagnara et al. 2005; Colón 2004; Gulavani and Gulwani
2008; Kincaid et al. 2017]. Such domains incorporate “best effort” techniques for reasoning about
non-linear arithmetic. Notably, Kincaid et al. [2017] and Bagnara et al. [2005] combine techniques
from commutative algebra and polyhedral theory. Our approach differs in that we designed complete

inference, albeit modulo a weak theory of arithmetic.
There is a line of work on complete algorithms for finding invariant polynomial equations

of (restricted) loops [Hrushovski et al. 2018; Humenberger et al. 2018; Kovács 2008; Rodríguez-
Carbonell and Kapur 2004]. Another approach is to reduce polynomial invariant generation to
linear invariant generation by introducing new dimensions, which provides completeness up to a
degree-bound [de Oliveira et al. 2016; Müller-Olm and Seidl 2004]. Chatterjee et al. [2020] obtains
a completeness (up to technical parameters) result for template-based generation of invariant
polynomial inequalities, based on a “bounded” version of Putinar’s Positivestellensatz. Lemma 13 is
a kind of completeness result, which is relative to a class of recurrences, rather than an invariant
“shape.”

Consequence-Finding. A key feature of the arithmetic theories introduced in this paper is that
they enable complete methods for finding and manipulating the set of consequences of a formula
(of a particular form). In the setting of abstract interpretation, this problem is known as symbolic

abstraction [Reps et al. 2004; Thakur 2014], and is phrased as the problem of computing the (ideally,
best) approximation of a formula within some abstract domain. Symbolic abstraction algorithms are
known for predicate abstraction [Graf and Saidi 1997], equations [Berdine and Bjørner 2014], affine
equations [Reps et al. 2004; Thakur et al. 2015], template constraint domains (intervals, octagons,
etc) [Li et al. 2014], and convex polyhedra [Farzan and Kincaid 2015]. Kincaid et al. [2017] gives a
symbolic abstraction procedure for the wedge domain (which can express polynomial inequalities);
this procedure is “best effort,” whereas our consequence-finding algorithm offers completeness
guarantees.

It is interesting to note that our lazy consequence-finding algorithm (Algorithm 2) can be seen as
an instantiation of Reps et al. [2004]’s symbolic abstraction algorithm. The termination argument
of this algorithm relies on the abstract domain satisfying the ascending chain condition, which
algebraic cones do not; instead, we exploit the fact that we can compute minimal models of LRR /
LIRR, and each formula has only finitely many.
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