Non-Linear Reasoning for Invariant Synthesis

Zachary Kincaid $^{1} \quad$ John Cyphert ${ }^{2}$ Jason Breck ${ }^{2}$ Thomas Reps ${ }^{2,3}$
${ }^{1}$ Princeton University $\quad{ }^{2}$ University of Wisconsin-Madison $\quad{ }^{3}$ GrammaTech, Inc
January 12, 2018 @ 15:50

The problem: generating non-linear numerical loop invariants

- Resource-bound analysis
- Side channel analysis
- Secure information flow
-..
while (i < n) :
x = $\mathrm{x}+\mathrm{i}$
i $=\mathrm{i}+1$
$\mathrm{i}^{(k)}=\mathrm{i}^{(k-1)}+1$
$\mathrm{x}^{(k)}=\mathrm{x}^{(k-1)}+\mathrm{i}^{(k-1)}$

Loop analyzer

Recurrence solver

$\exists k . k \geq 0 \wedge\binom{\mathrm{i}^{\prime}=\mathrm{i}+k}{\mathrm{x}^{\prime}=\mathrm{x}+\frac{k(k-1)}{2}+k \mathrm{i}} \quad \mathrm{x}^{(k)}=\mathrm{x}^{(0)}+\frac{k(k-1)}{2}+k \mathrm{i}^{(0)}$
while (i < n):
$x=x+i$
i = i

$$
\begin{aligned}
& \mathbf{i}^{(k)}=\mathbf{i}^{(k-1)}+1 \\
& \mathbf{x}^{(k)}=\mathbf{x}^{(k-1)}+\mathbf{i}^{(k-1)}
\end{aligned}
$$

- branching
- nested loops
- non-determinism

Recurrence solver
$\exists k . k \geq 0 \wedge\binom{\mathrm{i}^{\prime}=\mathrm{i}+k}{\mathrm{x}^{\prime}=\mathrm{x}+\frac{k(k-1)}{2}+k \mathrm{i}} \quad \mathrm{x}^{(k)}=\mathrm{x}^{(0)}+\frac{k(k-1)}{2}+k \mathrm{i}^{(0)}$
while (i < n) :
$x=x+i$
i $=$ i

$$
\begin{aligned}
& \mathrm{i}^{(k)}=\mathrm{i}^{(k-1)}+1 \\
& \mathrm{x}^{(k)}=\mathrm{x}^{(k-1)}+\mathrm{i}^{(k-1)}
\end{aligned}
$$

- branching
- nested loops
- non-determinism

Recurrence solver

$$
\mathbf{i}^{(k)}=\mathbf{i}^{(0)}+k
$$

binary-search(A, target):
lo = 1, hi = size(A), ticks = 0 while (lo <= hi):
ticks++;
mid $=10+(h i-l o) / 2$
if $A[m i d]==$ target:
return mid
else if A[mid] < target:
lo = mid+1
else :

$$
\text { hi }=\text { mid-1 }
$$

$\log (A)$ times
binary-search(A, target):
lo = 1, hi = size(A), ticks = 0
while (lo <= hi):
ticks++;
mid $=$ lo + (hi-lo)/2
if $A[m i d]==$ target:
return mid
else if A[mid] < target:
lo = mid+1
else :

$$
\text { hi }=\text { mid-1 }
$$

binar

$$
\begin{array}{ll}
\text { binary } & \text { ticks }^{(k+1)}=\text { ticks }^{(k)}+1 \\
\text { lo }= & \left(h i^{\prime}-l 0^{\prime}\right)^{(k+1)} \leq(h i-l o)^{(k)} / 2-1 \\
\text { while }
\end{array}
$$

while (10
ticks++;
mid $=$ lo + (hi-lo)/2
if $A[m i d]==$ target:
return mid
else if A[mid] < target:
lo = mid+1
else :

$$
\text { hi }=\text { mid-1 }
$$

$=t i c k s+1$

$$
\wedge m \imath \sigma \quad l o+(h i-l o) / 2
$$

$$
\wedge((A[\text { mid }]<\text { target }
$$

$$
\wedge l o^{\prime}=m i d+1
$$

$$
\left.\wedge h i^{\prime}=h i\right)
$$

$$
\vee(A[\text { mid }]>\text { target }
$$

$$
\wedge l o^{\prime}=l o
$$

$$
\left.\left.\wedge h i^{\prime}=\operatorname{mid}-1\right)\right)
$$

binary $\quad \operatorname{ticks}^{(k)}=\operatorname{ticks}^{(0)}+k$

$$
\begin{aligned}
& \text { lo }=\left(h i^{\prime}-l o^{\prime}\right)^{(k)} \leq\left(\frac{1}{2}\right)^{k}(h i-l o+2)^{(0)}-2 \\
& \text { while (1o }
\end{aligned}
$$

ticks++;
mid $=10+(h i-l o) / 2$
if $A[m i d]==$ target:
return mid
else if $A[m i d]$ < target:
lo = mid+1
else :

$$
\text { hi }=\text { mid-1 }
$$

$$
\begin{gathered}
\wedge=\text { ticks }+1 \\
\wedge m i \omega+(h i-l o) / 2 \\
\wedge((A[\text { mid }]<\text { target } \\
\wedge l o^{\prime}=\text { mid }+1 \\
\left.\wedge h i^{\prime}=\text { hi }\right) \\
\vee(A[\text { mid }]>\text { target } \\
\wedge l o^{\prime}=\text { lo } \\
\left.\left.\wedge h i^{\prime}=\text { mid }-1\right)\right)
\end{gathered}
$$

binary-search(A, target):
lo = 1, hi = size(A), ticks = 0 while (lo <= hi):
ticks++;
mid $=10+(h i-l o) / 2$
if $A[m i d]==$ target:
return mid
else if A[mid] < target:
lo = mid+1
else :

$$
\text { hi }=\text { mid-1 }
$$

$\exists k . k \geq 0$

$$
\begin{aligned}
& \text { ticks }=\text { ticks }+k \\
& \left(h i^{\prime}-l o^{\prime}\right) \leq\left(\frac{1}{2}\right)^{k}(h i-l o+2)-2
\end{aligned}
$$

for (i = 0; i < n; i++):
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$):
ticks++
for (i $=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$): $\quad j<i$

$$
\text { for } \left.\begin{array}{rl}
(\mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++): \\
\text { ticks }++
\end{array}\right\} \begin{aligned}
& \wedge j^{\prime}=j+1 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \wedge i^{\prime}=n^{\prime}=n^{\prime}=n
\end{aligned}
$$

$$
\begin{aligned}
& \text { ticks }^{(k+1)}=\text { ticks }^{(k)}+1 \\
& j^{(k+1)}=j^{(k)}+1 \\
& i^{(k+1)}=i^{(k)} \\
& n^{(k+1)}=n^{(k)}
\end{aligned}
$$

for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ;{ }^{1++}$):

$$
\left.\begin{array}{c}
\text { for }(\mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++): \\
\text { ticks++ }
\end{array}\right\} \begin{aligned}
& \wedge j^{\prime}=j+1 \\
& \\
& \wedge \text { ticks }=\text { ticks }+1 \\
& \\
& \\
& \\
& \\
& \wedge i^{\prime}=i
\end{aligned}
$$

$$
\begin{aligned}
& \text { ticks }^{(k)}=t i c k s^{(0)}+k \\
& j^{(k)}=j^{(0)}+k \\
& i^{(k)}=i^{(0)} \\
& n^{(k)}=n^{(0)}
\end{aligned}
$$

for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ;{ }^{1++}$):

$$
\left.\begin{array}{cc}
\text { for }(\mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++): \\
\text { ticks++ }
\end{array}\right\} \begin{aligned}
& \wedge j^{\prime}=j+1 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \wedge i^{\prime}=k n^{\prime}=n
\end{aligned}
$$

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$):

$$
\begin{aligned}
& i<n \\
& \text { for (} \mathrm{i}=0 ; \mathrm{i}<\mathrm{n} \text {; } \mathrm{i}++ \text {): } \\
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j}<\mathrm{i} ; \mathrm{j}++ \text {): } \\
& \text { ticks++ } \\
& \wedge i^{\prime}=i+1 \\
& \wedge n^{\prime}=n \\
& \wedge j^{\prime}=i \\
& \wedge\left(\begin{array}{ll}
\exists k . & k \geq 0 \\
& \wedge \text { ticks }=\text { ticks }+k \\
& \wedge j^{\prime}=k
\end{array}\right)
\end{aligned}
$$

for (i = 0; i $<\mathrm{n}$; $\mathrm{i}++$): for (j = 0; $j<i ; j++$): ticks++

$$
\begin{aligned}
& \text { ticks }^{(k+1)}=\text { ticks }^{(k)}+i^{(k)} \\
& i^{(k+1)}=i^{(k)}+1 \\
& n^{(k+1)}=n^{(k)}
\end{aligned}
$$

$$
\begin{aligned}
& \quad l<n \\
& \wedge=i+1 \\
& \wedge \quad \wedge \quad n \\
& \wedge \quad j^{\prime}=\imath \\
& \wedge\left(\begin{array}{ll}
\exists k . & k \geq 0 \\
\wedge & \wedge \text { ticks }=\text { ticks }+k \\
& \wedge j^{\prime}=k
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ticks}^{(k)}=\operatorname{ticks}^{(0)}+k(k+1) / 2+k i^{(0)} \\
& i^{(k)}=i^{(0)}+k \\
& n^{(k)}=n^{(0)}
\end{aligned}
$$

for (i $=0 ; \mathrm{i}<\mathrm{n}$; $\mathrm{i}++$): for (j = 0; $j<i ; j++$): ticks++

$$
\begin{aligned}
& \wedge=i+1 \\
& \wedge \\
& \wedge \\
& \wedge \\
& j^{\prime}=\imath \\
& \wedge\left(\begin{array}{ll}
\exists k . & k \geq 0 \\
& \wedge t i c k s^{\prime}=t i c k s+k \\
& \wedge j^{\prime}=k
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\wedge & n \\
\wedge & j^{\prime}=\imath
\end{array}
$$

$$
\begin{aligned}
& \text { for (i }=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++): \\
& \text { for }(\mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++): \\
& \text { ticks++ }
\end{aligned}\left\{\begin{array}{l}
i^{\prime}=n \\
\wedge n^{\prime}=n \\
\wedge j^{\prime}=i \\
\wedge\left(\begin{array}{l}
\exists k \geq 0 \\
\wedge t i c k s^{\prime}=t i c k s+\frac{k(k+1)}{2}+k i \\
\wedge i^{\prime}=i+k
\end{array}\right)
\end{array}\right.
$$

Warm up: the linear case

Suppose loop body formula $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is linear.
Goal: find a linear system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}+$ linear transformation T s.t

$$
F\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \models\left(T \mathbf{x}^{\prime}\right)=A(T \mathbf{x})+\mathbf{b}
$$

Suppose loop body formula $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is linear.
Goal: find a linear system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}+$ linear transformation T s.t

$$
F\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \models\left(T \mathbf{x}^{\prime}\right)=A(T \mathbf{x})+\mathbf{b}
$$

Warm up: the linear case

Suppose loop body formula $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is linear.
Goal: find a linear system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}+$ linear transformation T s.t

$$
F\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \models\left(T \mathbf{x}^{\prime}\right)=A(T \mathbf{x})+\mathbf{b}
$$

Algorithm:
(1) Compute the affine hull of F by sampling linearly independent models of F using an SMT solver.
Result is system of (all) equations $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$ entailed by $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$

Warm up: the linear case

Suppose loop body formula $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is linear.
Goal: find a linear system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}+$ linear transformation T s.t

$$
F\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \models\left(T \mathbf{x}^{\prime}\right)=A(T \mathbf{x})+\mathbf{b}
$$

Algorithm:
(1) Compute the affine hull of F by sampling linearly independent models of F using an SMT solver.
Result is system of (all) equations $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$ entailed by $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
(2) Fixpoint computation:

We have: $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$

Linear transformation T

We need: $\mathbf{y}^{\prime}=B \mathbf{y}+\mathbf{c}$

Warm up: the linear case

Suppose loop body formula $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is linear.
Goal: find a linear system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}+$ linear transformation T s.t

$$
F\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \models\left(T \mathbf{x}^{\prime}\right)=A(T \mathbf{x})+\mathbf{b}
$$

Algorithm:
(1) Compute the affine hull of F by sampling linearly independent models of F using an SMT solver.
Result is system of (all) equations $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$ entailed by $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
(2) Fixpoint computation:

We have: $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$

$$
T_{0} \mathbf{x}^{\prime}=T_{0} B \mathbf{x}+T_{0} \mathbf{c}
$$

We need: $\mathbf{y}^{\prime}=B \mathbf{y}+\mathbf{c}$

Warm up: the linear case

Suppose loop body formula $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is linear.
Goal: find a linear system $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}+$ linear transformation T s.t

$$
F\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \models\left(T \mathbf{x}^{\prime}\right)=A(T \mathbf{x})+\mathbf{b}
$$

Algorithm:
(1) Compute the affine hull of F by sampling linearly independent models of F using an SMT solver.
Result is system of (all) equations $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$ entailed by $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
(2) Fixpoint computation:

We have: $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$

$$
\left.\begin{array}{c}
T_{0} \mathbf{x}^{\prime}=T_{0} B \mathbf{x}+T_{0} \mathbf{c} \\
\underset{1}{\downarrow} \\
T_{1} \mathbf{x}^{\prime}=T_{1} B \mathbf{x}+T_{1} \mathbf{c}
\end{array}\right\} \text { computes best abstraction }
$$

We need: $\mathbf{y}^{\prime}=B \mathbf{y}+\mathbf{c}$

Reasoning about non-linear arithmetic

$$
\begin{aligned}
& \text { for (i = 0; i }<\mathrm{n} \text {; i++): } \\
& \text { if (} * \text {): continue } \\
& \text { for (} \mathrm{j}=0 ; \mathrm{j}<\mathrm{n} \text {; } \mathrm{j}++ \text {): } \\
& \text { for (k = 0; k < n; k++) : } \\
& \text { ticks++ } \\
& \mathrm{i}^{\prime}=\mathrm{i}+1 \\
& \wedge i<n \\
& \wedge n^{\prime}=n \\
& \left.\wedge\binom{\left(\begin{array}{l}
\text { ticks }=\text { ticks } \\
\wedge \mathrm{j}^{\prime}=\mathrm{j} \\
\wedge \mathrm{k}^{\prime}=\mathrm{k}
\end{array}\right.}{\exists\binom{\exists y \geq 0 .}{\left(\begin{array}{l}
\text { ticks }=\text { ticks }+y \times n \\
\wedge \mathrm{j}^{\prime}=y=\mathrm{n} \\
\wedge \mathrm{k}^{\prime}=\mathrm{n}
\end{array}\right.}}\right)
\end{aligned}
$$

The wedge abstract domain

- The wedge domain is an abstract domain for reasoning about non-linear integer/rational arithmetic
- The properties expressible by wedges correspond to the conjunctive fragment of non-linear arithmetic $\left(x \times y, x / y, x^{y}, \log _{x}(y), x \bmod y, \ldots\right)$

The wedge abstract domain

- The wedge domain is an abstract domain for reasoning about non-linear integer/rational arithmetic
- The properties expressible by wedges correspond to the conjunctive fragment of non-linear arithmetic $\left(x \times y, x / y, x^{y}, \log _{x}(y), x \bmod y, \ldots\right)$
treat non-linear terms as independent dimensions

Polyhedron

The wedge abstract domain

- The wedge domain is an abstract domain for reasoning about non-linear integer/rational arithmetic
- The properties expressible by wedges correspond to the conjunctive fragment of non-linear arithmetic $\left(x \times y, x / y, x^{y}, \log _{x}(y), x \bmod y, \ldots\right)$

The wedge abstract domain

- The wedge domain is an abstract domain for reasoning about non-linear integer/rational arithmetic
- The properties expressible by wedges correspond to the conjunctive fragment of non-linear arithmetic $\left(x \times y, x / y, x^{y}, \log _{x}(y), x \bmod y, \ldots\right)$

Symbolic abstraction

$$
\begin{aligned}
& \mathrm{i}^{\prime}=\mathrm{i}+1 \\
& \wedge \mathrm{i}<\mathrm{n} \\
& \wedge \mathrm{n}^{\prime}=\mathrm{n} \\
& \left(\begin{array}{l}
\text { ticks }=\mathrm{ticks} \\
\wedge \mathrm{j}^{\prime}=\mathrm{j} \\
\wedge \mathrm{k}^{\prime}=\mathrm{k}
\end{array}\right) \\
& \wedge\binom{\exists y \geq 0 .}{\left.\vee \begin{array}{c}
\text { ticks }=\text { ticks }+y \times n \\
\wedge \mathrm{j}^{\prime}=y=\mathrm{n} \\
\wedge \mathrm{k}^{\prime}=\mathrm{n}
\end{array}\right)}
\end{aligned}
$$

Symbolic abstraction

$$
\left(\begin{array}{l}
\mathrm{i}^{\prime}=\mathrm{i}+1 \\
\wedge \mathrm{i}<n \\
\wedge n^{\prime}=n \\
\wedge \text { ticks }^{\prime}=\text { ticks } \\
\wedge \mathrm{j}^{\prime}=\mathrm{j}
\end{array}\right) \vee\left(\begin{array}{l}
\mathrm{i}^{\prime}=\mathrm{i}+1 \\
\wedge \mathrm{i}<n \\
\wedge \mathrm{n}^{\prime}=n \\
\wedge \text { ticks }=\text { ticks }+\mathrm{tk}_{y} \times n \\
\wedge \mathrm{j}^{\prime}=\mathrm{sk}_{y}=n \\
\wedge \mathrm{k}^{\prime}=n
\end{array}\right)
$$

Symbolic abstraction

Symbolic abstraction

$$
\left(\begin{array}{l}
\mathrm{i}^{\prime}=\mathrm{i}+1 \\
\wedge \mathrm{i}<\mathrm{n} \\
\wedge \mathrm{n}^{\prime}=\mathrm{n} \\
\wedge \text { ticks } \leq \text { ticks }^{\prime} \leq \text { ticks }+\mathrm{n} \times \mathrm{n} \\
\wedge \mathrm{j}^{\prime}=\mathrm{j} \\
\wedge 0 \leq \mathrm{n} \times \mathrm{n}
\end{array}\right)
$$

Extracting recurrences

Given: non-linear transition formula $F\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
(1) Compute wedge w that over-approximates F
(2) Extract recurrences from w

Extracting recurrences

Given: non-linear transition formula $F\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$
(1) Compute wedge w that over-approximates F
(2) Extract recurrences from w

Class of extractable recurrences:

$$
\left(T \mathbf{x}^{\prime}\right)=A(T \mathbf{x})+\mathbf{t}
$$

Additive term t involves polynomials \& exponentials.

How can we solve recurrence equations?

Operational Calculus Recurrence Solver [Berg 1967]

Operational calculus is an algebra of infinite sequences. Idea:
(1) Translate recurrence into equation in operational calculus

$$
\cdot x^{(k+1)}=x^{(k)}+1 \rightsquigarrow q x-(q-\underline{1}) \underline{x_{0}}=x+\underline{1}
$$

(2) Solve the equation

$$
\underline{x}=\underline{x_{0}}+\frac{\underline{1}}{q-\underline{1}}
$$

(3) Translate solution back

$$
\cdot x^{(k)}=x^{(0)}+k
$$

Operational Calculus

Field of operators:

- Operator is a sequence with finitely many negative positions

$$
\begin{gathered}
a=\left(a_{-2}, a_{-1} \| a_{0}, a_{1}, a_{2}, \ldots\right) \\
b=\left(\| b_{0}, b_{1}, b_{2}, \ldots\right)
\end{gathered}
$$

- Addition is pointwise: $(a+b)_{i} \triangleq a_{i}+b_{i}$
- Multiplication is convolution difference:

$$
(a b)_{n}=\sum_{i=-\infty}^{n} a_{i} b_{n-i}+\sum_{i=-\infty}^{n-1} a_{i} b_{n-i-1}
$$

Operational Calculus

Field of operators:

- Operator is a sequence with finitely many negative positions

$$
\begin{gathered}
a=\left(a_{-2}, a_{-1} \| a_{0}, a_{1}, a_{2}, \ldots\right) \\
b=\left(\| b_{0}, b_{1}, b_{2}, \ldots\right)
\end{gathered}
$$

- Addition is pointwise: $(a+b)_{i} \triangleq a_{i}+b_{i}$
- Multiplication is convolution difference:

$$
(a b)_{n}=\sum_{i=-\infty}^{n} a_{i} b_{n-i}+\sum_{i=-\infty}^{n-1} a_{i} b_{n-i-1}
$$

- Left shift operator $q=(1 \| 1,1,1, \ldots)$

$$
q a=\left(a_{-2} a_{-1} a_{0} \| a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Recurrence \rightarrow operational calculus

Recurrences are equations in operational calculus

$$
x^{(k+1)}=x^{k}+t \rightsquigarrow q x-(q-\underline{1}) x_{0}=x+\mathcal{T}_{k}(t)
$$

- Think of x as an sequence $\left(\| x_{0}, x_{1}, x_{2}, \ldots\right)$

Recurrence \rightarrow operational calculus

Recurrences are equations in operational calculus

$$
x^{(k+1)}=x^{k}+t \rightsquigarrow q x-(q-\underline{1}) x_{0}=x+\mathcal{T}_{k}(t)
$$

- Think of x as an sequence $\left(\| x_{0}, x_{1}, x_{2}, \ldots\right)$
- Use left-shift operator to write recurrence as an equation

$$
\begin{aligned}
q x & =\left(x_{0} \| x_{1}, x_{2}, x_{3}, \ldots\right) \\
(q-1) \underline{x_{0}} & =\left(x_{0} \| 0,0,0, \ldots\right) \\
q x-(q-1) \underline{x_{0}} & =\left(\| x_{1}, x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

Recurrence \rightarrow operational calculus

Recurrences are equations in operational calculus

$$
x^{(k+1)}=x^{k}+t \rightsquigarrow q x-(q-\underline{1}) x_{0}=x+\mathcal{T}_{k}(t)
$$

- Think of x as an sequence $\left(\| x_{0}, x_{1}, x_{2}, \ldots\right)$
- Use left-shift operator to write recurrence as an equation

$$
\begin{aligned}
q x & =\left(x_{0} \| x_{1}, x_{2}, x_{3}, \ldots\right) \\
(q-1) \underline{x_{0}} & =\left(x_{0} \| 0,0,0, \ldots\right) \\
q x-(q-1) \underline{x_{0}} & =\left(\| x_{1}, x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

Can translate any expression in the grammar

$$
\begin{array}{rlrl}
s, t & \in \operatorname{Expr}(k)::=c \in \mathbb{Q}|k| c^{k}|s+t| s t \\
\mathcal{T}_{k}(c) & =\underline{c} & \mathcal{T}_{k}(s+t) & =\mathcal{T}_{k}(s)+\mathcal{T}_{k}(t) \\
\mathcal{T}_{k}(c t) & =\underline{c} \mathcal{T}_{k}(t) & \mathcal{T}_{k}(k) & =\frac{\underline{1}}{q-\underline{1}}
\end{array}
$$

Operational Calculus \rightarrow classical algebra

$$
\begin{aligned}
& \mathcal{T}_{k}(c)=\underline{c} \\
& \mathcal{T}_{k}(c t)=\underline{c} \mathcal{T}_{k}(t) \\
& \mathcal{T}_{k}(s+t)=\mathcal{T}_{k}(s)+\mathcal{T}_{k}(t) \\
& \mathcal{T}_{k}(k)=\underline{1} \\
& q-\underline{1}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{T}_{k}^{-1}(\underline{c}) & =c \\
\mathcal{T}_{k}^{-1}(\underline{c} t) & =c \mathcal{T}_{k}^{-1}(t) \\
\mathcal{T}_{k}^{-1}(s+t) & =\mathcal{T}_{k}^{-1}(s)+\mathcal{T}_{k}^{-1}(t)
\end{aligned}
$$

$$
\mathcal{T}_{k}^{-1}\left(\frac{\underline{1}}{q-\underline{1}}\right)=k
$$

Operational Calculus \rightarrow classical algebra

$$
\begin{aligned}
\mathcal{T}_{k}(c) & =\underline{c} \\
\mathcal{T}_{k}(c t) & =\underline{c} \mathcal{T}_{k}(t) \\
\mathcal{T}_{k}(s+t) & =\mathcal{T}_{k}(s)+\mathcal{T}_{k}(t) \\
\mathcal{T}_{k}(k) & =\frac{1}{q-\underline{1}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{T}_{k}^{-1}(\underline{c}) & =c \\
\mathcal{T}_{k}^{-1}(\underline{c} t) & =c \mathcal{T}_{k}^{-1}(t) \\
\mathcal{T}_{k}^{-1}(s+t) & =\mathcal{T}_{k}^{-1}(s)+\mathcal{T}_{k}^{-1}(t)
\end{aligned}
$$

$$
\mathcal{T}_{k}^{-1}\left(\frac{\underline{1}}{q-\underline{1}}\right)=k
$$

$$
\mathcal{T}_{k}^{-1}(t)=?
$$

Operational Calculus \rightarrow classical algebra translation is not complete!

Operational Calculus \rightarrow classical algebra

$$
\begin{aligned}
\mathcal{T}_{k}(c) & =\underline{c} \\
\mathcal{T}_{k}(c t) & =\underline{c} \mathcal{T}_{k}(t) \\
\mathcal{T}_{k}(s+t) & =\mathcal{T}_{k}(s)+\mathcal{T}_{k}(t) \\
\mathcal{T}_{k}(k) & =\frac{1}{q-\underline{1}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{T}_{k}^{-1}(\underline{c}) & =c \\
\mathcal{T}_{k}^{-1}(\underline{c} t) & =c \mathcal{T}_{k}^{-1}(t) \\
\mathcal{T}_{k}^{-1}(s+t) & =\mathcal{T}_{k}^{-1}(s)+\mathcal{T}_{k}^{-1}(t)
\end{aligned}
$$

$$
\mathcal{T}_{k}^{-1}\left(\frac{\underline{1}}{q-\underline{1}}\right)=k
$$

$$
\mathcal{T}_{k}^{-1}(t)=f_{t}(k)
$$

Operational Calculus \rightarrow classical algebra

$$
\begin{aligned}
\mathcal{T}_{k}(c) & =\underline{c} \\
\mathcal{T}_{k}(c t) & =\underline{c} \mathcal{T}_{k}(t) \\
\mathcal{T}_{k}(s+t) & =\mathcal{T}_{k}(s)+\mathcal{T}_{k}(t) \\
\mathcal{T}_{k}(k) & =\frac{1}{q-\underline{1}}
\end{aligned}
$$

$$
\mathcal{T}_{k}\left(f_{t}(k)\right)=t
$$

$$
\begin{aligned}
\mathcal{T}_{k}^{-1}(\underline{c}) & =c \\
\mathcal{T}_{k}^{-1}(\underline{c} t) & =c \mathcal{T}_{k}^{-1}(t) \\
\mathcal{T}_{k}^{-1}(s+t) & =\mathcal{T}_{k}^{-1}(s)+\mathcal{T}_{k}^{-1}(t)
\end{aligned}
$$

$$
\mathcal{T}_{k}^{-1}\left(\frac{\underline{1}}{q-\underline{1}}\right)=k
$$

$$
\mathcal{T}_{k}^{-1}(t)=f_{t}(k)
$$

Experiments

ICRA: built on top of Z3, Apron.
Analyzes recursive procedures via [Kincaid, Breck, Boroujeni, Reps PLDI 2017]

Benchmark Suite	$\begin{aligned} & \hline \text { Total } \\ & \hline \text { \#A } \end{aligned}$	ICRA		UAut.		CPA		SEA	
		Time	\#A	Time	\#A	Time		Time	\#A
HOLA	46	123.5	33	1571.9	20	2004.1	11	259.5	38
functional	21	77.9	11	732.8	0	1155.7	0	722.3	2
relational	10	8.1	10	473	0	603.0	0	121.8	4
Total	77	209.5	54	2777.7	20	3762.8	11	1103.6	44

Contributions:

- Wedge abstract domain
- Algorithm for extracting recurrences from loop bodies with control flow \& non-determinism
- Recurrence solver that avoids algebraic numbers

Result: non-linear invariant generation for arbitrary loops

