
Proof Spaces for Unbounded
Parallelism

Zachary Kincaid
University of Toronto

January 16, 2015

Joint work with:
Azadeh Farzan, University of Toronto

Andreas Podelski, University of Freiburg



Multi-threaded program verification

• Unbounded/unknown number of threads
• E.g., webservers, computations parallelized over N processors, ...

• Single template T executed by every thread

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

• Goal: prove that a given program is free of (certain types of) errors.

Program
Verifier

No

Yes

Property

T

Diverge



Multi-threaded program verification

• Unbounded/unknown number of threads
• E.g., webservers, computations parallelized over N processors, ...
• Single template T executed by every thread

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

• Goal: prove that a given program is free of (certain types of) errors.

Program
Verifier

No

Yes

Property

T

Diverge



Multi-threaded program verification

• Unbounded/unknown number of threads
• E.g., webservers, computations parallelized over N processors, ...
• Single template T executed by every thread

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

• Goal: prove that a given program is free of (certain types of) errors.

Program
Verifier

No

Yes

Property

T

Diverge



Multi-threaded program verification

• Unbounded/unknown number of threads
• E.g., webservers, computations parallelized over N processors, ...
• Single template T executed by every thread

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

• Goal: prove that a given program is free of (certain types of) errors.

Program
Verifier

No

Yes

Property

T

Diverge



global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s≤ t

m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter



Proving correctness of a multi-threaded program is hard.

∀i, j ∈ Thread.pc(i) ̸= init ∧ pc(j) ̸= init ∧ m(i) = m(j) ⇒ i = j

Proving correctness of a trace of a multi-threaded program is easy.
• Re-use sequential verification!

Program is correct ⇐⇒ each of its traces are correct.



Proving correctness of a multi-threaded program is hard.

∀i, j ∈ Thread.pc(i) ̸= init ∧ pc(j) ̸= init ∧ m(i) = m(j) ⇒ i = j

Proving correctness of a trace of a multi-threaded program is easy.
• Re-use sequential verification!

Program is correct ⇐⇒ each of its traces are correct.



Proving correctness of a multi-threaded program is hard.

∀i, j ∈ Thread.pc(i) ̸= init ∧ pc(j) ̸= init ∧ m(i) = m(j) ⇒ i = j

Proving correctness of a trace of a multi-threaded program is easy.
• Re-use sequential verification!

Program is correct ⇐⇒ each of its traces are correct.



Proof Spaces



init

wait

crit

exit

m := t++

[m <= s]

[m > s]

s++

global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s≤ t

m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

1 T A. Henzinger, R. Jhala, R. Majumdar, K. L. McMillan. Abstractions from proofs. POPL’04
2 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. POPL’77.
3 P. Cousot. Abstracting Induction by Extrapolation and Interpolation. VMCAI’15.



init

wait

crit

exit

m := t++

[m <= s]

[m > s]

s++

global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s≤ t

m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

1 T A. Henzinger, R. Jhala, R. Majumdar, K. L. McMillan. Abstractions from proofs. POPL’04
2 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. POPL’77.
3 P. Cousot. Abstracting Induction by Extrapolation and Interpolation. VMCAI’15.



init

wait

crit

exit

m := t++

[m <= s]

[m > s]

s++

m := t++ : 1

m := t++ : 2

[m <= s] : 1

[m <= s] : 2

Error trace∈ (Σ×N)∗

Commands

Thread IDs

1 T A. Henzinger, R. Jhala, R. Majumdar, K. L. McMillan. Abstractions from proofs. POPL’04
2 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. POPL’77.
3 P. Cousot. Abstracting Induction by Extrapolation and Interpolation. VMCAI’15.



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces
Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces
Error is reachable!

Proof Space



init

wait

crit

exit

m := t++

[m <= s]

[m > s]

s++

{s ≤ t}
m := t++ : 1

{s ≤ m(1) ∧ m(1) < t}

m := t++ : 2

{s ≤ m(1)∧m(1) < m(2)}

[m <= s] : 1

{s ≤ m(1)∧m(1) < m(2)}

[m <= s] : 2
{false}

Intermediate assertions
Craig interpolation,1

Abstract post,2

Dual narrowing,3

...

1 T A. Henzinger, R. Jhala, R. Majumdar, K. L. McMillan. Abstractions from proofs. POPL’04
2 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. POPL’77.
3 P. Cousot. Abstracting Induction by Extrapolation and Interpolation. VMCAI’15.



init

wait

crit

exit

m := t++

[m <= s]

[m > s]

s++

{s ≤ t}
m := t++ : 1

{s ≤ m(1) ∧ m(1) < t}
m := t++ : 2

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 1

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

Intermediate assertions
Craig interpolation,1

Abstract post,2

Dual narrowing,3

...

1 T A. Henzinger, R. Jhala, R. Majumdar, K. L. McMillan. Abstractions from proofs. POPL’04
2 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. POPL’77.
3 P. Cousot. Abstracting Induction by Extrapolation and Interpolation. VMCAI’15.



“Small theorems” from sequential verifiers

{s ≤ t}
m := t++ : 1
{s ≤ m(1)}

{true}
m := t++ : 1
{m(1) < t}

{m(1) < t}
m := t++ : 2
{m(1) < m(2)}

{s ≤ m(1) ∧ m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(1) ∧ m(1) < m(2)}
s++ : 1

{s ≤ m(2)}



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Sequencing

{s ≤ t}
m := t++ : 1
{m(1) < t}

{m(1) < t}
m := t++ : 2
{m(1) < m(2)}

{s ≤ t}
m := t++ : 1;
m := t++ : 2
{m(1) < m(2)}



Sequencing

{s ≤ t}
m := t++ : 1
{m(1) < t}

{m(1) < t}
m := t++ : 2
{m(1) < m(2)}

{s ≤ t}
m := t++ : 1;
m := t++ : 2
{m(1) < m(2)}



Symmetry

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]



Symmetry

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(2)∧m(2) < m(1)}
[m <= s] : 1

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]



Symmetry

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(2)∧m(2) < m(3)}
[m <= s] : 3

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]



Conjunction

{m(1) < t}
m := t++ : 3
{m(1) < m(3)}

{m(2) < t}
m := t++ : 3
{m(2) < m(3)}

{m(1) < t ∧ m(2) < t}
m := t++ : 3

{m(1) < m(3) ∧ m(2) < m(3)}



Conjunction

{m(1) < t}
m := t++ : 3
{m(1) < m(3)}

{m(2) < t}
m := t++ : 3
{m(2) < m(3)}

{m(1) < t ∧ m(2) < t}
m := t++ : 3

{m(1) < m(3) ∧ m(2) < m(3)}



A Proof space is a set of valid Hoare triples which is closed under
sequencing, symmetry, and conjunction.

• Finitely generated: there is a finite “basis” which generates the space
Proof rule: if there exists a proof space H such that for all error traces τ

{pre}τ{false} ∈ H,

then the program is correct.



A Proof space is a set of valid Hoare triples which is closed under
sequencing, symmetry, and conjunction.

• Finitely generated: there is a finite “basis” which generates the space

Proof rule: if there exists a proof space H such that for all error traces τ

{pre}τ{false} ∈ H,

then the program is correct.



A Proof space is a set of valid Hoare triples which is closed under
sequencing, symmetry, and conjunction.

• Finitely generated: there is a finite “basis” which generates the space
Proof rule: if there exists a proof space H such that for all error traces τ

{pre}τ{false} ∈ H,

then the program is correct.



Relative completeness

Theorem

Every inductive invariant (with control variables & universal
thread quantification) corresponds to a proof space.



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Error is reachable!

Proof Space



Predicate Automata



Predicate automata (PA)

Vocabulary (Q, ar) is a finite relational first-order vocabulary

Q = {p, q}, ar(p) = 2, ar(q) = 1

p(1, 2)

p(1, 2) ∧ p(2, 3) ∧ q(1)true

Configurations



Predicate automata (PA)

Vocabulary (Q, ar) is a finite relational first-order vocabulary

Q = {p, q}, ar(p) = 2, ar(q) = 1

p(1, 2)

p(1, 2) ∧ p(2, 3) ∧ q(1)true

Configurations



q(i)

q(i)

p(i, j) ∧ q(j)

a : j

[i =
j]

a : j
[true]

q(1)

q(1)

p(1, 1) ∧ q(1)

a : 1

a : 1

q(2) p(2, 1) ∧ q(1)a : 1

q(1) ∧ q(2)

p(2, 1) ∧ q(1)

p(1, 1) ∧ p(2, 1) ∧ q(1)

a : 1

a : 1



q(i)

q(i)

p(i, j) ∧ q(j)

a : j

[i =
j]

a : j
[true]

q(1)

q(1)

p(1, 1) ∧ q(1)

a : 1

a : 1

q(2) p(2, 1) ∧ q(1)a : 1

q(1) ∧ q(2)

p(2, 1) ∧ q(1)

p(1, 1) ∧ p(2, 1) ∧ q(1)

a : 1

a : 1



q(i)

q(i)

p(i, j) ∧ q(j)

a : j

[i =
j]

a : j
[true]

q(1)

q(1)

p(1, 1) ∧ q(1)

a : 1

a : 1

q(2) p(2, 1) ∧ q(1)a : 1

q(1) ∧ q(2)

p(2, 1) ∧ q(1)

p(1, 1) ∧ p(2, 1) ∧ q(1)

a : 1

a : 1



q(i)

q(i)

p(i, j) ∧ q(j)

a : j

[i =
j]

a : j
[true]

q(1)

q(1)

p(1, 1) ∧ q(1)

a : 1

a : 1

q(2) p(2, 1) ∧ q(1)a : 1

q(1) ∧ q(2)

p(2, 1) ∧ q(1)

p(1, 1) ∧ p(2, 1) ∧ q(1)

a : 1

a : 1



Proof checking

• For any H, {τ : {pre}τ{false} ∈ H} is recognized by a PA A(H)

• For any program, set of error traces is recognized by a PA Err
• PA languages are closed under intersection and complement



Proof checking

• For any H, {τ : {pre}τ{false} ∈ H} is recognized by a PA A(H)

• For any program, set of error traces is recognized by a PA Err

• PA languages are closed under intersection and complement



Proof checking

• For any H, {τ : {pre}τ{false} ∈ H} is recognized by a PA A(H)

• For any program, set of error traces is recognized by a PA Err
• PA languages are closed under intersection and complement



Proof checking

• For any H, {τ : {pre}τ{false} ∈ H} is recognized by a PA A(H)

• For any program, set of error traces is recognized by a PA Err
• PA languages are closed under intersection and complement

Proof space inclusion reduces to PA emptiness

∀τ ∈ Error trace.{pre}τ{false} ∈ H
⇐⇒

Err ∩ A(H) = ∅



Theorem

The emptiness problem for predicate automata is undecidable.

Theorem

The emptiness problem for monadic predicate automata (∀q ∈ Q, ar(q) ≤ 1)
is decidable.



Theorem

The emptiness problem for predicate automata is undecidable.

Theorem

The emptiness problem for monadic predicate automata (∀q ∈ Q, ar(q) ≤ 1)
is decidable.



Proof spaces: a theoretical foundation for verifying multi-threaded
programs

• Prove traces, not programs
• Sample - generalize - check loop

• Proof generalization via a simple deductive system
• Complete relative to inductive invariants

• Reduce “proof checking” to an automata-theoretic problem
• Interesting decidable sub-problem



Proof spaces: a theoretical foundation for verifying multi-threaded
programs

• Prove traces, not programs
• Sample - generalize - check loop

• Proof generalization via a simple deductive system
• Complete relative to inductive invariants

• Reduce “proof checking” to an automata-theoretic problem
• Interesting decidable sub-problem



Proof spaces: a theoretical foundation for verifying multi-threaded
programs

• Prove traces, not programs
• Sample - generalize - check loop

• Proof generalization via a simple deductive system
• Complete relative to inductive invariants

• Reduce “proof checking” to an automata-theoretic problem
• Interesting decidable sub-problem


