Proof Spaces for Unbounded Parallelism

Zachary Kincaid University of Toronto January 16, 2015

Joint work with: Azadeh Farzan, University of Toronto Andreas Podelski, University of Freiburg

- Unbounded/unknown number of threads
 - E.g., webservers, computations parallelized over $N\,{\rm processors},\ldots$

- Unbounded/unknown number of threads
 - E.g., webservers, computations parallelized over N processors, ...
 - Single template T executed by every thread

$$T^N = \underbrace{T \parallel T \parallel \cdots \parallel T}_{N \text{ times}}$$

- Unbounded/unknown number of threads
 - E.g., webservers, computations parallelized over N processors, ...
 - Single template T executed by every thread

$$T^N = \underbrace{T \parallel T \parallel \cdots \parallel T}_{N \text{ times}}$$

• Goal: prove that a given program is free of (certain types of) errors.

- Unbounded/unknown number of threads
 - E.g., webservers, computations parallelized over N processors, ...
 - Single template T executed by every thread

$$T^N = \underbrace{T \parallel T \parallel \cdots \parallel T}_{N \text{ times}}$$

• Goal: prove that a given program is free of (certain types of) errors.

local m : int init $s \leq t$

global t : int // ticket counter global s : int // service counter // my ticket

// acquire ticket m := t++ do { // busy wait

} until (m <= s)</pre> // critical section // bump service counter S++

Proving correctness of a multi-threaded program is hard.

 $\forall i, j \in \mathsf{Thread.pc}(i) \neq \mathsf{init} \land \mathsf{pc}(j) \neq \mathsf{init} \land \mathsf{m}(i) = \mathsf{m}(j) \Rightarrow i = j$

Proving correctness of a multi-threaded program is hard.

 $\forall i, j \in \mathsf{Thread.pc}(i) \neq \mathsf{init} \land \mathsf{pc}(j) \neq \mathsf{init} \land \mathsf{m}(i) = \mathsf{m}(j) \Rightarrow i = j$

Proving correctness of a trace of a multi-threaded program is easy.

Re-use sequential verification!

Proving correctness of a multi-threaded program is hard.

 $\forall i, j \in \mathsf{Thread.pc}(i) \neq \mathsf{init} \land \mathsf{pc}(j) \neq \mathsf{init} \land \mathsf{m}(i) = \mathsf{m}(j) \Rightarrow i = j$

Proving correctness of a trace of a multi-threaded program is easy.

Re-use sequential verification!

Program is correct \iff each of its traces are correct.

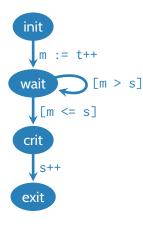
Proof Spaces

global t : int local m: int init $s \leq t$

// ticket counter global s : int // service counter // my ticket

// acquire ticket m := t++ do { // busy wait

} until (m <= s)</pre> // critical section s++ // bump service counter



global t : int local m: int init $s \leq t$

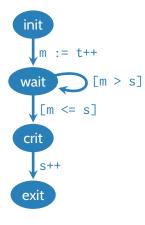
// ticket counter global s : int // service counter // my ticket

m := t++ do {

// acquire ticket

// busy wait

} until (m <= s)</pre> // critical section // bump service counter s++



$$m := t++:1$$

$$m := t++:2$$

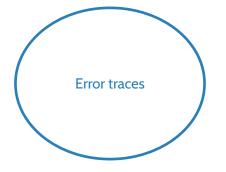
$$[m <= s]:1$$

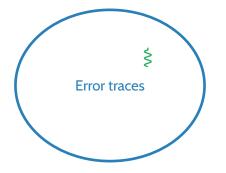
$$[m <= s]:2$$
Commands
$$Fror trace \in (\Sigma \times \mathbb{N})^*$$
Thread IDs

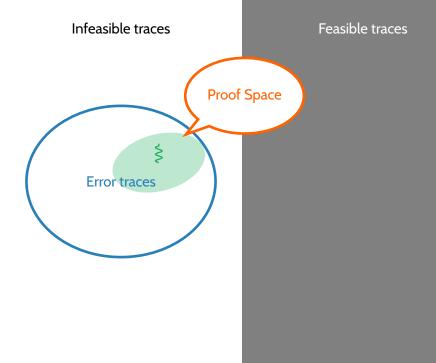
Feasible traces

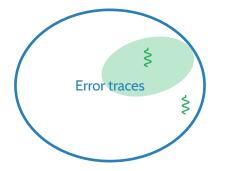
No corresponding executions

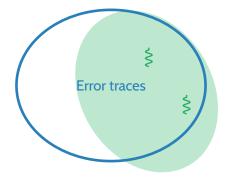
At least one corresponding execution

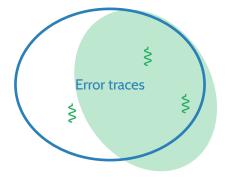


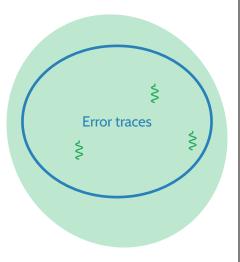


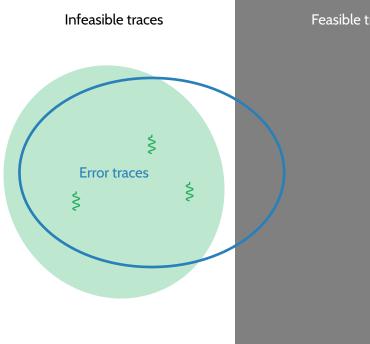


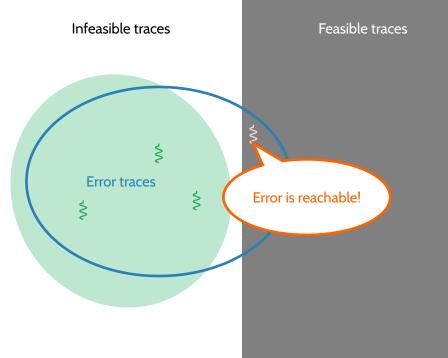


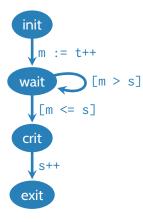




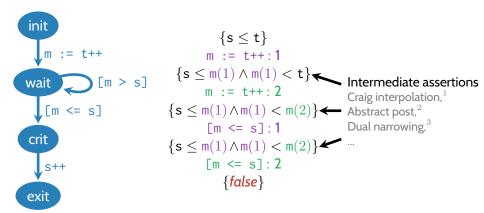








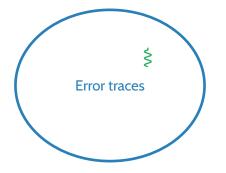
- $\begin{array}{l} \{s\leq t\} \\ \text{m }:= t{}+{}+{}:1 \end{array}$
- m := t++:2
- [m <= s]:1
- [m <= s]:2 {*false*}

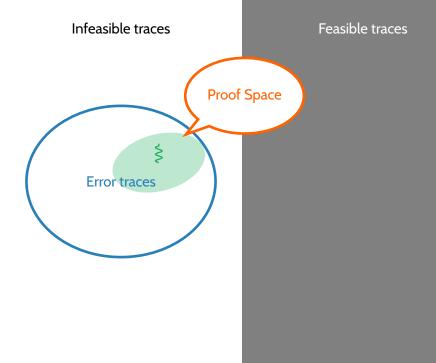


- ¹ T A. Henzinger, R. Jhala, R. Majumdar, K. L. McMillan. Abstractions from proofs. POPL'04
- ² P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. POPL'77.
- ³ P. Cousot. Abstracting Induction by Extrapolation and Interpolation. VMCAI'15.

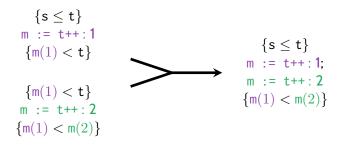
"Small theorems" from sequential verifiers

 $\{ s \le m(1) \land m(1) < m(2) \}$ $[m \le s]: 2$ $\{ false \}$ $\{ s \le m(1) \land m(1) < m(2) \}$ $s^{++}: 1$ $\{ s \le m(2) \}$





$$\{ s \le t \} \\ m := t ++ : 1 \\ \{ m(1) < t \} \\ m := t ++ : 2 \\ \{ m(1) < m(2) \}$$



Symmetry

$$T^N = \underbrace{T \parallel T \parallel \cdots \parallel T}_{N \text{ times}}$$

```
 \begin{aligned} \{ \mathbf{s} \leq \mathbf{m}(1) \wedge \mathbf{m}(1) < \mathbf{m}(2) \} \\ & [\mathbf{m} <= \mathbf{s}] : \mathbf{2} \\ & \{ \textit{false} \} \end{aligned}
```

Symmetry

$$T^N = \underbrace{T \parallel T \parallel \cdots \parallel T}_{N \text{ times}}$$

$$\begin{array}{c} \{ \mathbf{s} \leq \mathbf{m}(1) \wedge \mathbf{m}(1) < \mathbf{m}(2) \} \\ [\mathbf{m} \leq \mathbf{s}] : \mathbf{2} \\ \{ false \} \end{array} \xrightarrow{[1 \mapsto 2]} \begin{array}{c} \{ \mathbf{s} \leq \mathbf{m}(2) \wedge \mathbf{m}(2) < \mathbf{m}(1) \} \\ [\mathbf{m} \leq \mathbf{s}] : \mathbf{1} \\ \{ false \} \end{array}$$

Symmetry

$$T^N = \underbrace{T \parallel T \parallel \cdots \parallel T}_{N \text{ times}}$$

$$\begin{array}{c|c} \{ \mathsf{s} \leq \mathsf{m}(1) \land \mathsf{m}(1) < \mathsf{m}(2) \} & [1 \mapsto 2] \\ [\mathsf{m} <= \mathsf{s}] : \mathbf{2} & \\ \{ \textit{false} \} \end{array} \begin{array}{c} [1 \mapsto 2] \\ [2 \mapsto 3] \end{array} \begin{array}{c} \{ \mathsf{s} \leq \mathsf{m}(2) \land \mathsf{m}(2) < \mathsf{m}(3) \} \\ [\mathsf{m} <= \mathsf{s}] : \mathbf{3} \\ \{ \textit{false} \} \end{array}$$

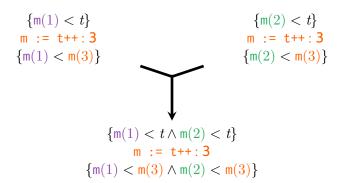
Conjunction

$$\{ m(1) < t \}$$

m := t++: 3
$$\{ m(1) < m(3) \}$$

 $\{ m(2) < t \}$ m := t++: 3 $\{ m(2) < m(3) \}$

Conjunction



A *Proof space* is a set of valid Hoare triples which is closed under sequencing, symmetry, and conjunction.

A *Proof space* is a set of valid Hoare triples which is closed under sequencing, symmetry, and conjunction.

• Finitely generated: there is a finite "basis" which generates the space

A *Proof space* is a set of valid Hoare triples which is closed under sequencing, symmetry, and conjunction.

• Finitely generated: there is a finite "basis" which generates the space Proof rule: if there exists a proof space H such that for all error traces τ

 $\{\mathsf{pre}\} \tau \{\mathsf{false}\} \in H,$

then the program is correct.

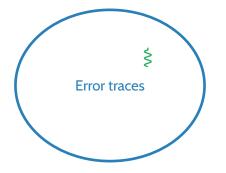
Relative completeness

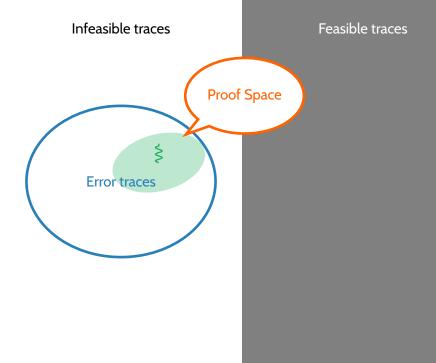
Theorem

Every inductive invariant (with control variables & universal thread quantification) corresponds to a proof space.

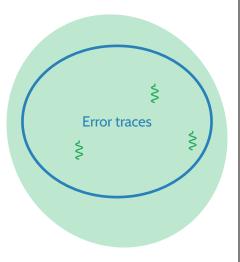
Infeasible traces

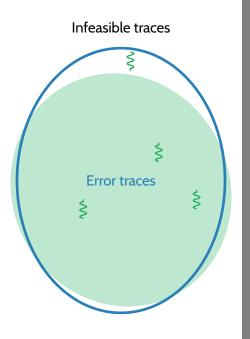
Feasible traces





Infeasible traces





Feasible traces

Predicate Automata

Predicate automata (PA)

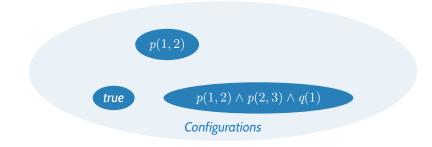
Vocabulary (Q, ar) is a finite relational first-order vocabulary

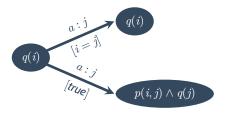
$$Q = \{p, q\}, ar(p) = 2, ar(q) = 1$$

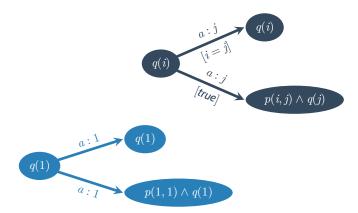
Predicate automata (PA)

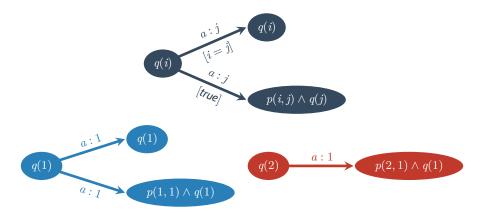
Vocabulary (Q, ar) is a finite relational first-order vocabulary

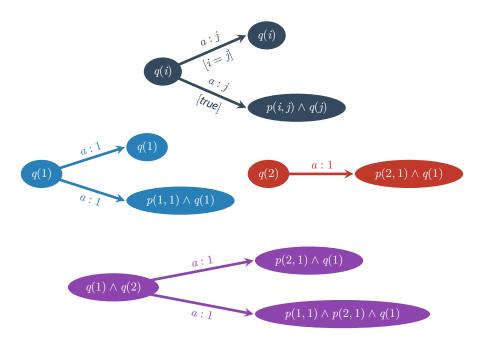
$$Q = \{p, q\}, ar(p) = 2, ar(q) = 1$$











• For any H, $\{\tau : \{pre\} \tau \{ false \} \in H \}$ is recognized by a PA A(H)

- For any H, $\{\tau : \{pre\} \tau \{ false \} \in H \}$ is recognized by a PA A(H)
- For any program, set of error traces is recognized by a PA Err

- For any H, $\{\tau : \{\mathsf{pre}\} \tau \{\mathit{false}\} \in H\}$ is recognized by a PA A(H)
- For any program, set of error traces is recognized by a PA Err
- PA languages are closed under intersection and complement

- For any H, $\{\tau : \{\mathsf{pre}\} \tau \{\mathit{false}\} \in H\}$ is recognized by a PA A(H)
- For any program, set of error traces is recognized by a PA Err
- PA languages are closed under intersection and complement

Proof space inclusion reduces to PA emptiness

$$\forall \tau \in \text{Error trace.} \{\text{pre}\} \tau \{\text{false}\} \in H$$
$$\overleftarrow{\text{Err}} \cap \overleftarrow{A(H)} = \emptyset$$

Theorem

The emptiness problem for predicate automata is undecidable.

Theorem

The emptiness problem for predicate automata is undecidable.

Theorem

The emptiness problem for monadic predicate automata ($\forall q \in Q, ar(q) \leq 1$) is decidable.

Proof spaces: a theoretical foundation for verifying multi-threaded programs

- Prove traces, not programs
 - Sample generalize check loop

Proof spaces: a theoretical foundation for verifying multi-threaded programs

- Prove traces, not programs
 - Sample generalize check loop
- Proof generalization via a simple deductive system
 - Complete relative to inductive invariants

Proof spaces: a theoretical foundation for verifying multi-threaded programs

- Prove traces, not programs
 - Sample generalize check loop
- Proof generalization via a simple deductive system
 - Complete relative to inductive invariants
- Reduce "proof checking" to an automata-theoretic problem
 - Interesting decidable sub-problem