# Verification of Parameterized Concurrent Programs By Modular Reasoning about Data and Control

Zachary Kincaid Azadeh Farzan

University of Toronto

January 18, 2013

#### Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs. Solution: annotation  $\iota$  such that if some thread *T*'s program counter is at v, then  $\iota(v)$  holds over the globals & locals of *T*.

#### Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs. Solution: annotation  $\iota$  such that if some thread *T*'s program counter is at v, then  $\iota(v)$  holds over the globals & locals of *T*.

Our program model has:

- Unbounded concurrency: program is the parallel composition of *n* copies of some thread *T*, where *n* is a parameter
  - Invariants must be sound for all n

#### Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs. Solution: annotation  $\iota$  such that if some thread *T*'s program counter is at v, then  $\iota(v)$  holds over the globals & locals of *T*.

Our program model has:

- Unbounded concurrency: program is the parallel composition of *n* copies of some thread *T*, where *n* is a parameter
  - Invariants must be sound for all *n*
- Unbounded data domains

#### Goal

Compute numerical invariants (e.g. intervals, octagons, polyhedra) for parameterized concurrent programs. Solution: annotation  $\iota$  such that if some thread *T*'s program counter is at v, then  $\iota(v)$  holds over the globals & locals of *T*.

Our program model has:

- Unbounded concurrency: program is the parallel composition of *n* copies of some thread *T*, where *n* is a parameter
  - Invariants must be sound for all  $\boldsymbol{n}$
- Unbounded data domains

Natural model for device drivers, file systems, client/server-type programs, ...

- We develop an attack on the parameterized verification problem based on separating it into a **data** module and a **control** module
  - Data module computes numerical invariants
  - Control module computes a program model



- We develop an attack on the parameterized verification problem based on separating it into a **data** module and a **control** module
  - Data module computes numerical invariants
  - Control module computes a program model



We propose data flow graphs as a program representation for (parameterized) concurrent programs

- We develop an attack on the parameterized verification problem based on separating it into a **data** module and a **control** module
  - Data module computes numerical invariants
  - Control module computes a program model



- We propose data flow graphs as a program representation for (parameterized) concurrent programs
- 8 We give a semicompositional algorithm for constructing data flow graphs

- We develop an attack on the parameterized verification problem based on separating it into a **data** module and a **control** module
  - Data module computes numerical invariants
  - Control module computes a program model



We propose data flow graphs as a program representation for (parameterized) concurrent programs

8 We give a semicompositional algorithm for constructing data flow graphs

## Sequential program analysis

- Flow analysis: solve a system of equations valued over some abstract domain
- For sequential programs, equations come from the control flow graph:



## Sequential program analysis

- Flow analysis: solve a system of equations valued over some abstract domain
- For sequential programs, equations come from the control flow graph:



How about parameterized programs?

### Data flow

Represent data flow, not control flow:



### Data flow

Represent data flow, not control flow:



### Data flow

Represent data flow, not control flow:



Invariant: x = 0



A DFG for a program P is a directed graph  $P^{\sharp} = \langle Loc, \rightarrow \rangle$ , where

•  $\rightarrow \subseteq Loc \times Vars \times Loc$  is a set of directed edges labeled by program variables

$$x := x + 1 \xrightarrow{X} x := x + y$$

- Loc contains a distinguished uninit vertex
- Note: # of vertices does not depend on # of threads

 A program is *represented* by a DFG P<sup>♯</sup> if all its feasible traces are represented by P<sup>♯</sup>.

- A program is represented by a DFG P<sup>#</sup> if all its feasible traces are represented by P<sup>#</sup>.
- A trace is *represented* by a DFG  $P^{\sharp}$  if all data flow edges it witnesses belong to  $P^{\sharp}$

- A program is represented by a DFG P<sup>#</sup> if all its feasible traces are represented by P<sup>#</sup>.
- A trace is *represented* by a DFG P<sup>#</sup> if all data flow edges it witnesses belong to P<sup>#</sup>
- A trace *witnesses* a data flow  $u \rightarrow^x v$  iff it is of the form:



- A program is represented by a DFG P<sup>#</sup> if all its feasible traces are represented by P<sup>#</sup>.
- A trace is *represented* by a DFG P<sup>#</sup> if all data flow edges it witnesses belong to P<sup>#</sup>
- A trace *witnesses* a data flow  $u \rightarrow^x v$  iff it is of the form:



## Computing invariants with DFGs

- DFGs induce a set of equations:  $IN(v)_{x} = \bigvee_{\substack{u \to x \\ v \in Var}} \exists (Vars \setminus \{x\}).OUT(u)$   $IN(v) = \bigwedge_{x \in Var} IN(v)_{x}$   $OUT(v) = \llbracket v \rrbracket (IN(v))$
- Define an *inductive annotation* to be a solution to these equations.

## Computing invariants with DFGs

- DFGs induce a set of equations:  $IN(v)_{x} = \bigvee_{u \to x_{v}} \exists (Vars \setminus \{x\}).OUT(u)$   $IN(v) = \bigwedge_{x \in Var} IN(v)_{x}$   $OUT(v) = \llbracket v \rrbracket (IN(v))$
- Define an *inductive annotation* to be a solution to these equations.

#### Theorem (DFG soundness)

If  $\sigma$  is a trace represented by a DFG  $P^{\sharp}$ , and  $\iota$  is an inductive annotation for  $P^{\sharp}$ , then  $\iota$  safely approximates the states reached by  $\sigma$ .





#### Goal

- Strategy:
  - · Overapproximate the set of feasible traces
  - · Compute dataflow edges witnessed by one of these traces

## Precise DFG construction needs data



## Precise DFG construction needs data



## Precise DFG construction needs data



Use an annotation  $\iota$  to rule out infeasible traces: a trace  $\sigma$  is  $\iota$ -infeasible if there is some subtrace  $\sigma'\langle T_n, v \rangle$ , some thread m, and some location u such that

- Thread m is at location u after executing  $\sigma'$
- Thread n may not execute v in any state satisfying  $\iota(u)$ .













• 
$$\iota(x := alloc(...)) : flag = 0 \Rightarrow infeasible$$



• 
$$\iota(x := alloc(...)): flag = 0 \Rightarrow infeasible$$
  
•  $\iota(x := alloc(...)): true \Rightarrow feasible$ 

#### Goal

- Strategy:
  - Overapproximate the set of feasible traces
  - · Compute dataflow edges witnessed by one of these traces

#### Goal

- Strategy:
  - ✓ Overapproximate the set of feasible traces by *ι*-feasible traces
  - Compute dataflow edges witnessed by one of these traces

#### Goal

- Strategy:
  - ✓ Overapproximate the set of feasible traces by *ι*-feasible traces
  - · Compute dataflow edges witnessed by one of these traces
    - Parameterization is still an obstacle

#### Goal

- Strategy:
  - ✓ Overapproximate the set of feasible traces by *ι*-feasible traces
  - Compute dataflow edges witnessed by one of these traces
    - Parameterization is still an obstacle
    - Data flow edges for 2-thread *i*-feasible witnesses can be computed efficiently

# Projection

#### Lemma (projection)

Let  $\iota$  be an annotation, let  $\sigma$  be an  $\iota$ -feasible trace, and let N be a set of threads. Then  $\sigma|_N$ , the projection of  $\sigma$  onto N, is also  $\iota$ -feasible.



# Projection

#### Lemma (projection)

Let  $\iota$  be an annotation, let  $\sigma$  be an  $\iota$ -feasible trace, and let N be a set of threads. Then  $\sigma|_N$ , the projection of  $\sigma$  onto N, is also  $\iota$ -feasible.



# Projection

#### Lemma (projection)

Let  $\iota$  be an annotation, let  $\sigma$  be an  $\iota$ -feasible trace, and let N be a set of threads. Then  $\sigma|_N$ , the projection of  $\sigma$  onto N, is also  $\iota$ -feasible.



• A data flow edge  $u \rightarrow^x v$  has an  $\iota$ -feasible witness iff it has a 2-thread  $\iota$ -feasible witness

- · Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG



DFG construction

- · Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG



- · Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG



- · Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG



- · Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG



- · Given a DFG, we know how to compute numerical invariants
- Given numerical invariants, we know how to compute a DFG



- We implemented our algorithm in a tool, DUET
- Integer overflow & array bounds checks for 15 Linux device drivers
  - DUET proves 1312/1597 (82%) assertions correct in 13m9s

Boolean abstractions of Linux device drivers:

| Suite 1           | DUET | Linear interfaces <sup>1</sup> | Improvement  |
|-------------------|------|--------------------------------|--------------|
| Assertions proved | 2503 | 1382                           | 81% increase |
| Average time      | 3.4s | 16.9s                          | 5x speedup   |

| Suite 2           | DUET | Dynamic cutoff detection <sup>2</sup> | Improvement   |
|-------------------|------|---------------------------------------|---------------|
| Assertions proved | 55   | 19                                    | 189% increase |
| Average time      | 8.2s | 24.9s                                 | 3x speedup    |

<sup>1</sup>S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent programs using linear interfaces. In CAV, pages 629–644. 2010.

<sup>2</sup>A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized concurrent programs. In CAV, pages 645–659. 2010.

Z. Kincaid (U. Toronto)

· Separate reasoning into a data module and a control module

- · Separate reasoning into a data module and a control module
- Data flow graphs represent parameterized programs

- Separate reasoning into a data module and a control module
- Data flow graphs represent parameterized programs
- Semi-compositional DFG construction algorithm

Thank you for your attention.

- Improved algorithms for inferring groups of related variables to improve DFGs analyses over relational domains (e.g., octagons, polyhedra)
- Extension to handle aliasing