
Verification of Parameterized Concurrent Programs
By Modular Reasoning about Data and Control

Zachary Kincaid Azadeh Farzan

University of Toronto

January 18, 2013

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 1 / 22



Parameterized concurrent programs

Goal
Compute numerical invariants (e.g. intervals, octagons, polyhedra) for
parameterized concurrent programs.
Solution: annotation ι such that if some thread T ’s program counter is at v,
then ι(v) holds over the globals & locals of T .

Our program model has:
• Unbounded concurrency: program is the parallel composition of n

copies of some thread T , where n is a parameter
• Invariants must be sound for all n

• Unbounded data domains
Natural model for device drivers, file systems, client/server-type programs, ...

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 2 / 22



Parameterized concurrent programs

Goal
Compute numerical invariants (e.g. intervals, octagons, polyhedra) for
parameterized concurrent programs.
Solution: annotation ι such that if some thread T ’s program counter is at v,
then ι(v) holds over the globals & locals of T .

Our program model has:
• Unbounded concurrency: program is the parallel composition of n

copies of some thread T , where n is a parameter
• Invariants must be sound for all n

• Unbounded data domains
Natural model for device drivers, file systems, client/server-type programs, ...

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 2 / 22



Parameterized concurrent programs

Goal
Compute numerical invariants (e.g. intervals, octagons, polyhedra) for
parameterized concurrent programs.
Solution: annotation ι such that if some thread T ’s program counter is at v,
then ι(v) holds over the globals & locals of T .

Our program model has:
• Unbounded concurrency: program is the parallel composition of n

copies of some thread T , where n is a parameter
• Invariants must be sound for all n

• Unbounded data domains

Natural model for device drivers, file systems, client/server-type programs, ...

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 2 / 22



Parameterized concurrent programs

Goal
Compute numerical invariants (e.g. intervals, octagons, polyhedra) for
parameterized concurrent programs.
Solution: annotation ι such that if some thread T ’s program counter is at v,
then ι(v) holds over the globals & locals of T .

Our program model has:
• Unbounded concurrency: program is the parallel composition of n

copies of some thread T , where n is a parameter
• Invariants must be sound for all n

• Unbounded data domains
Natural model for device drivers, file systems, client/server-type programs, ...

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 2 / 22



Contributions

1 We develop an attack on the parameterized verification problem based
on separating it into a data module and a control module

• Data module computes numerical invariants
• Control module computes a program model

Data module Control module

2 We propose data flow graphs as a program representation for
(parameterized) concurrent programs

3 We give a semicompositional algorithm for constructing data flow graphs

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 3 / 22



Contributions

1 We develop an attack on the parameterized verification problem based
on separating it into a data module and a control module

• Data module computes numerical invariants
• Control module computes a program model

Data module Control module

2 We propose data flow graphs as a program representation for
(parameterized) concurrent programs

3 We give a semicompositional algorithm for constructing data flow graphs

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 3 / 22



Contributions

1 We develop an attack on the parameterized verification problem based
on separating it into a data module and a control module

• Data module computes numerical invariants
• Control module computes a program model

Data module Control module

2 We propose data flow graphs as a program representation for
(parameterized) concurrent programs

3 We give a semicompositional algorithm for constructing data flow graphs

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 3 / 22



Contributions

1 We develop an attack on the parameterized verification problem based
on separating it into a data module and a control module

• Data module computes numerical invariants
• Control module computes a program model

Data module Control module

2 We propose data flow graphs as a program representation for
(parameterized) concurrent programs

3 We give a semicompositional algorithm for constructing data flow graphs

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 3 / 22



Sequential program analysis

• Flow analysis: solve a system of equations valued over some abstract
domain

• For sequential programs, equations come from the control flow graph:

t

u v

w

IN(t) = >
OUT (t) = JtK(IN(t))

IN(v) = OUT (t)
OUT (v) = JvK(IN(v))

IN(w) = OUT (u) ∨OUT (v)
OUT (w) = JwK(IN(w))

IN(u) = OUT (t) ∨OUT (w)
OUT (u) = JuK(IN(u))

• How about parameterized programs?

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 4 / 22



Sequential program analysis

• Flow analysis: solve a system of equations valued over some abstract
domain

• For sequential programs, equations come from the control flow graph:

t

u v

w

IN(t) = >
OUT (t) = JtK(IN(t))

IN(v) = OUT (t)
OUT (v) = JvK(IN(v))

IN(w) = OUT (u) ∨OUT (v)
OUT (w) = JwK(IN(w))

IN(u) = OUT (t) ∨OUT (w)
OUT (u) = JuK(IN(u))

• How about parameterized programs?

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 4 / 22



Data flow

Represent data flow, not control flow:

ABC

x := x + 1

y := 1

x := x + y

x := -x

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 5 / 22



Data flow

Represent data flow, not control flow:

ABC

x := x + 1

y := 1

x := x + y

x := -x

x

y

x

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 5 / 22



Data flow

Represent data flow, not control flow:

ABC

x := x + 1

y := 1

x := x + y

x := -x

x

y

x

y

x

uninit

x y

y

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 5 / 22



Why data flow?

Invariant: x = 0

y := 0

acquire(lock)

assert(x = 0)

release(lock)

acquire(lock)

x := 1

x := 0

release(lock)

Break invariant

Restore invariant

x?

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 6 / 22



Data flow graphs

A DFG for a program P is a directed graph P ] = 〈Loc,→〉, where
• →⊆ Loc× V ars× Loc is a set of directed edges labeled by program

variables

x := x + 1 x := x + y
x

• Loc contains a distinguished uninit vertex
• Note: # of vertices does not depend on # of threads

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 7 / 22



Representing traces

• A program is represented by a DFG P ] if all its feasible traces are
represented by P ].

• A trace is represented by a DFG P ] if all data flow edges it witnesses
belong to P ]

• A trace witnesses a data flow u→x v iff it is of the form:
(x local⇒ requires n = m)

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 8 / 22



Representing traces

• A program is represented by a DFG P ] if all its feasible traces are
represented by P ].

• A trace is represented by a DFG P ] if all data flow edges it witnesses
belong to P ]

• A trace witnesses a data flow u→x v iff it is of the form:
(x local⇒ requires n = m)

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 8 / 22



Representing traces

• A program is represented by a DFG P ] if all its feasible traces are
represented by P ].

• A trace is represented by a DFG P ] if all data flow edges it witnesses
belong to P ]

• A trace witnesses a data flow u→x v iff it is of the form:

〈Tn, u〉
Thread m at v

Thread n executes u,
u modifies x

No modifications to x

(x local⇒ requires n = m)

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 8 / 22



Representing traces

• A program is represented by a DFG P ] if all its feasible traces are
represented by P ].

• A trace is represented by a DFG P ] if all data flow edges it witnesses
belong to P ]

• A trace witnesses a data flow u→x v iff it is of the form:

〈Tn, u〉
Thread m at v

Thread n executes u,
u modifies x

No modifications to x

(x local⇒ requires n = m)

ABC

x := x + 1

y := 1

x := x + y

x := -x

x

y

x

y

x

uninit

x y

y

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 8 / 22



Computing invariants with DFGs

• DFGs induce a set of equations: IN(v)x =
∨

u→xv

∃(V ars \ {x}).OUT (u)

IN(v) =
∧

x∈V ar

IN(v)x

OUT (v) = JvK(IN(v))

• Define an inductive annotation to be a solution to these equations.

Theorem (DFG soundness)

If σ is a trace represented by a DFG P ], and ι is an inductive annotation for
P ], then ι safely approximates the states reached by σ.

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 9 / 22



Computing invariants with DFGs

• DFGs induce a set of equations: IN(v)x =
∨

u→xv

∃(V ars \ {x}).OUT (u)

IN(v) =
∧

x∈V ar

IN(v)x

OUT (v) = JvK(IN(v))

• Define an inductive annotation to be a solution to these equations.

Theorem (DFG soundness)

If σ is a trace represented by a DFG P ], and ι is an inductive annotation for
P ], then ι safely approximates the states reached by σ.

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 9 / 22



Overview

Data module Control module

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 10 / 22



Overview

Data module Control module

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 10 / 22



Constructing data flow graphs

Goal

Compute the set of all 〈u, x, v〉 such that there is some feasible trace that
witnesses u→x v

• Strategy:
• Overapproximate the set of feasible traces
• Compute dataflow edges witnessed by one of these traces

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 11 / 22



Precise DFG construction needs data

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x?

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 12 / 22



Precise DFG construction needs data

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x? 〈T1,x := null〉

〈T2,assume(flag)〉

〈T2,assert(x != null)〉

x

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 12 / 22



Precise DFG construction needs data

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x? 〈T1,x := null〉

〈T2,assume(flag)〉

〈T2,assert(x != null)〉

x

flag = 0
Cannot execute!

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 12 / 22



ι-feasible traces

Use an annotation ι to rule out infeasible traces: a trace σ is ι-infeasible if
there is some subtrace σ′〈Tn, v〉, some thread m, and some location u such
that

• Thread m is at location u after executing σ′

• Thread n may not execute v in any state satisfying ι(u).

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 13 / 22



ι-feasible traces: example

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x?

• ι(x := alloc(...)) : flag = 0⇒ infeasible
• ι(x := alloc(...)) : true⇒ feasible

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 14 / 22



ι-feasible traces: example

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x?

〈T1,x := null〉

〈T2,assume(flag)〉

〈T2,assert(x != null)〉

x

• ι(x := alloc(...)) : flag = 0⇒ infeasible
• ι(x := alloc(...)) : true⇒ feasible

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 14 / 22



ι-feasible traces: example

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x?

〈T1,x := null〉

〈T2,assume(flag)〉

〈T2,assert(x != null)〉

x

guard: flag 6= 0
T1 at x := alloc(...)
T2 at assume(flag)
is ι(x := alloc(...)) ∧ flag 6= 0
satisfiable?

• ι(x := alloc(...)) : flag = 0⇒ infeasible
• ι(x := alloc(...)) : true⇒ feasible

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 14 / 22



ι-feasible traces: example

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x?

〈T1,x := null〉

〈T2,assume(flag)〉

〈T2,assert(x != null)〉

x

guard: flag 6= 0
T1 at x := alloc(...)
T2 at assume(flag)
is ι(x := alloc(...)) ∧ flag 6= 0
satisfiable?

• ι(x := alloc(...)) : flag = 0⇒ infeasible

• ι(x := alloc(...)) : true⇒ feasible

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 14 / 22



ι-feasible traces: example

(flag is initially 0)

assume(flag)

assert(x != null)

x := null

x := alloc(...)

flag := 1

x?

〈T1,x := null〉

〈T2,assume(flag)〉

〈T2,assert(x != null)〉

x

guard: flag 6= 0
T1 at x := alloc(...)
T2 at assume(flag)
is ι(x := alloc(...)) ∧ flag 6= 0
satisfiable?

• ι(x := alloc(...)) : flag = 0⇒ infeasible
• ι(x := alloc(...)) : true⇒ feasible

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 14 / 22



Constructing data flow graphs

Goal

Compute the set of all 〈u, x, v〉 such that there is some feasible trace that
witnesses u→x v

• Strategy:
• Overapproximate the set of feasible traces
• Compute dataflow edges witnessed by one of these traces

• Parameterization is still an obstacle
• Data flow edges for 2-thread ι-feasible witnesses can be computed efficiently

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 15 / 22



Constructing data flow graphs

Goal

Compute the set of all 〈u, x, v〉 such that there is some feasible trace that
witnesses u→x v

• Strategy:
X Overapproximate the set of feasible traces by ι-feasible traces
• Compute dataflow edges witnessed by one of these traces

• Parameterization is still an obstacle
• Data flow edges for 2-thread ι-feasible witnesses can be computed efficiently

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 15 / 22



Constructing data flow graphs

Goal

Compute the set of all 〈u, x, v〉 such that there is some feasible trace that
witnesses u→x v

• Strategy:
X Overapproximate the set of feasible traces by ι-feasible traces
• Compute dataflow edges witnessed by one of these traces

• Parameterization is still an obstacle

• Data flow edges for 2-thread ι-feasible witnesses can be computed efficiently

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 15 / 22



Constructing data flow graphs

Goal

Compute the set of all 〈u, x, v〉 such that there is some feasible trace that
witnesses u→x v

• Strategy:
X Overapproximate the set of feasible traces by ι-feasible traces
• Compute dataflow edges witnessed by one of these traces

• Parameterization is still an obstacle
• Data flow edges for 2-thread ι-feasible witnesses can be computed efficiently

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 15 / 22



Projection

Lemma (projection)

Let ι be an annotation, let σ be an ι-feasible trace, and let N be a set of
threads. Then σ|N , the projection of σ onto N , is also ι-feasible.

〈Tn, u〉
Thread m at v

Thread n executes u,
u modifies x

No modifications to x

• A data flow edge u→x v has an ι-feasible witness iff it has a 2-thread
ι-feasible witness

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 16 / 22



Projection

Lemma (projection)

Let ι be an annotation, let σ be an ι-feasible trace, and let N be a set of
threads. Then σ|N , the projection of σ onto N , is also ι-feasible.

〈Tn, u〉
Thread m at v

Thread n executes u,
u modifies x

No modifications to x

• A data flow edge u→x v has an ι-feasible witness iff it has a 2-thread
ι-feasible witness

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 16 / 22



Projection

Lemma (projection)

Let ι be an annotation, let σ be an ι-feasible trace, and let N be a set of
threads. Then σ|N , the projection of σ onto N , is also ι-feasible.

〈Tn, u〉
Thread m at v

Thread n executes u,
u modifies x

No modifications to x

• A data flow edge u→x v has an ι-feasible witness iff it has a 2-thread
ι-feasible witness

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 16 / 22



Feedback loop

• Given a DFG, we know how to compute numerical invariants
• Given numerical invariants, we know how to compute a DFG

Data analysis DFG construction

Sequential reaching definitions

Sequential DFG

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 17 / 22



Feedback loop

• Given a DFG, we know how to compute numerical invariants
• Given numerical invariants, we know how to compute a DFG

Data analysis DFG construction

Annotation

Sequential reaching definitions

Sequential DFG

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 17 / 22



Feedback loop

• Given a DFG, we know how to compute numerical invariants
• Given numerical invariants, we know how to compute a DFG

Data analysis DFG construction

Annotation

Data flow edges

Sequential reaching definitions

Sequential DFG

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 17 / 22



Feedback loop

• Given a DFG, we know how to compute numerical invariants
• Given numerical invariants, we know how to compute a DFG

Data analysis DFG construction

Data flow edges

Annotation

Sequential reaching definitions

Sequential DFG

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 17 / 22



Feedback loop

• Given a DFG, we know how to compute numerical invariants
• Given numerical invariants, we know how to compute a DFG

Data analysis DFG construction

Annotation

Data flow edges

Sequential reaching definitions

Sequential DFG

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 17 / 22



Feedback loop

• Given a DFG, we know how to compute numerical invariants
• Given numerical invariants, we know how to compute a DFG

Data analysis DFG construction

Annotation

Data flow edges

Sequential reaching definitions

Sequential DFG

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 17 / 22



Experimental results

• We implemented our algorithm in a tool, DUET

• Integer overflow & array bounds checks for 15 Linux device drivers
• DUET proves 1312/1597 (82%) assertions correct in 13m9s

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 18 / 22



Experimental results: Boolean programs

Boolean abstractions of Linux device drivers:

Suite 1 DUET Linear interfaces1 Improvement
Assertions proved 2503 1382 81% increase

Average time 3.4s 16.9s 5x speedup

Suite 2 DUET Dynamic cutoff detection2 Improvement
Assertions proved 55 19 189% increase

Average time 8.2s 24.9s 3x speedup

1S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized
concurrent programs using linear interfaces. In CAV, pages 629–644. 2010.

2A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized
concurrent programs. In CAV, pages 645–659. 2010.

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 19 / 22



Conclusion

• Separate reasoning into a data module and a control module

• Data flow graphs represent parameterized programs
• Semi-compositional DFG construction algorithm

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 20 / 22



Conclusion

• Separate reasoning into a data module and a control module
• Data flow graphs represent parameterized programs

• Semi-compositional DFG construction algorithm

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 20 / 22



Conclusion

• Separate reasoning into a data module and a control module
• Data flow graphs represent parameterized programs
• Semi-compositional DFG construction algorithm

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 20 / 22



Questions?

Thank you for your attention.

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 21 / 22



Bonus slide: future work

• Improved algorithms for inferring groups of related variables to improve
DFGs analyses over relational domains (e.g., octagons, polyhedra)

• Extension to handle aliasing

Z. Kincaid (U. Toronto) Modular Reasoning about Data and Control January 18, 2013 22 / 22


