Proving Liveness of Parameterized Programs

Zachary Kincaid
University of Toronto \& Princeton University

July 5, 2016

Joint work with:
Azadeh Farzan, University of Toronto
Andreas Podelski, University of Freiburg

global t : int	// ticket counter
global $\mathrm{s}:$ int	// service counter
local m int	$/ /$ my ticket
init $\mathrm{s}=\mathrm{t}$	

do forever \{
m := $\mathrm{t}++\quad / /$ acquire ticket
do \{
// busy wait
\} until ($\mathrm{m}<=\mathrm{s}$)
// critical section
s++ // bump service counter
\}
global t: int // ticket counter
global t: int // ticket counter
global s : int // service counter
global s : int // service counter
localm:int // my ticket
localm:int // my ticket
init s=t
init s=t
do forever \{
m := t++ // acquire ticket
do \{
// busy wait
\} until (m <= s)
// critical section
s++ // bump service counter
\}
global t: int // ticket counter
global t: int // ticket counter
global s : int // service counter
global s : int // service counter
localm:int // my ticket
localm:int // my ticket
init s=t
init s=t
do forever \{
m := t++ // acquire ticket
do \{
// busy wait
\} until (m <= s)
// critical section
s++ // bump service counter
\}

Goal: Prove that no thread starves

- no matter how many threads there are
global t: int // ticket counter
global t: int // ticket counter
global s : int // service counter
global s : int // service counter
localm:int // my ticket
localm:int // my ticket
init s=t
init s=t
do forever \{
m := t++ // acquire ticket
do \{
// busy wait
\} until (m <= s)
// critical section
s++ // bump service counter
\}

Goal: Prove that no thread starves

- no matter how many threads there are
- automatically

A parameterized concurrent program, P :

- thread template $=$ finite directed graph with edges labeled by instructions (in some programming language). Call the set of instructions Σ.
- For any $N \in \mathbb{N}, P(N)$ denotes the program with N identical threads, all of which execute P.

Thread identifiers
A trace is a sequence $\tau=\left\langle\sigma_{1}: i_{1}\right\rangle\left\langle\sigma_{2}: i_{2}\right\rangle \ldots \in(\Sigma \times \mathbb{N})^{\omega}$
Program instructions

A trace is a sequence $\tau=\left\langle\sigma_{1}: i_{1}\right\rangle\left\langle\sigma_{2}: i_{2}\right\rangle \ldots \in(\Sigma \times \mathbb{N})^{\omega}$

- Associate linear-time property Φ w/ set of traces $\mathcal{L}(\Phi)$ that satisfy it.

A trace is a sequence $\tau=\left\langle\sigma_{1}: i_{1}\right\rangle\left\langle\sigma_{2}: i_{2}\right\rangle \ldots \in(\Sigma \times \mathbb{N})^{\omega}$

- Associate linear-time property $\Phi \mathrm{w} /$ set of traces $\mathcal{L}(\Phi)$ that satisfy it.
- Associate $P(N) \mathbf{w} /$ set of traces $\mathcal{L}(P(N)) \subseteq(\Sigma \times\{1, \ldots, N\})^{\omega}$ corresponding to interleaved paths through the thread template

A trace is a sequence $\tau=\left\langle\sigma_{1}: i_{1}\right\rangle\left\langle\sigma_{2}: i_{2}\right\rangle \ldots \in(\Sigma \times \mathbb{N})^{\omega}$

- Associate linear-time property $\Phi \mathrm{w} /$ set of traces $\mathcal{L}(\Phi)$ that satisfy it.
- Associate $P(N) \mathbf{w} /$ set of traces $\mathcal{L}(P(N)) \subseteq(\Sigma \times\{1, \ldots, N\})^{\omega}$ corresponding to interleaved paths through the thread template
- Program traces $\mathcal{L}(P)=\bigcup_{N} \mathcal{L}(P(N))$

A trace is a sequence $\tau=\left\langle\sigma_{1}: i_{1}\right\rangle\left\langle\sigma_{2}: i_{2}\right\rangle \ldots \in(\Sigma \times \mathbb{N})^{\omega}$

- Associate linear-time property $\Phi \mathrm{w} /$ set of traces $\mathcal{L}(\Phi)$ that satisfy it.
- Associate $P(N) \mathbf{w} /$ set of traces $\mathcal{L}(P(N)) \subseteq(\Sigma \times\{1, \ldots, N\})^{\omega}$ corresponding to interleaved paths through the thread template
- Program traces $\mathcal{L}(P)=\bigcup_{N} \mathcal{L}(P(N))$
- P correct \Longleftrightarrow every error trace in $\mathcal{L}(P) \backslash \mathcal{L}(\Phi)$ is infeasible.

Infeasible traces

No corresponding executions

At least one corresponding execution

Infeasible traces
Feasible traces

Error traces

Infeasible traces
Feasible traces

Infeasible traces
Feasible traces

Infeasible traces
Feasible traces

Infeasible traces
Feasible traces

Error traces

$$
\xi
$$

Infeasible traces
Feasible traces

Error traces
\}
n
Property fails!

Two key problems:
(1) How do we generalize proofs?
(2) How do we check that a proof is complete?

Two key problems:
(1) How do we generalize proofs?

- Concurrency: Same proof applies to many interleavings.
(2) How do we check that a proof is complete?

Two key problems:
(1) How do we generalize proofs?

- Concurrency: Same proof applies to many interleavings.
- Parameterization: Same proof applies to many instantiations.
(2) How do we check that a proof is complete?

$$
\underbrace{\langle\mathrm{m}:=\mathrm{t}++: 1\rangle\langle\mathrm{m}:=\mathrm{t}++: 2\rangle}_{\text {Stem }}(\underbrace{\langle\mathrm{m}>\mathrm{s}]: 2\rangle\langle[\mathrm{m}<=\mathrm{s}]: 1\rangle\langle\mathrm{s}++: 1\rangle\langle\mathrm{m}:=\mathrm{t}++: 1\rangle}_{\text {Loop }})^{\omega}
$$

```
Stem
```

$$
\begin{aligned}
& \{\text { old }(\mathrm{s})=\mathrm{s}\} \\
& \langle[m>s]: 2\rangle \\
& \{\operatorname{old}(\mathrm{s})=\mathrm{s} \wedge \mathrm{~m}(2) \geq \text { old }(\mathrm{s})\} \\
& \langle[m<=s]: 1\rangle \\
& \{\operatorname{old}(\mathrm{s})=\mathrm{s} \wedge \mathrm{~m}(2) \geq \text { old }(\mathrm{s})\} \\
& \left\langle\mathrm{s}^{++}: 1\right\rangle \\
& \{\operatorname{old}(\mathrm{s})<\mathrm{s} \wedge \mathrm{~m}(2) \geq \text { old }(\mathrm{s})\} \\
& \langle m:=t++: 1\rangle \\
& \{\operatorname{old}(\mathrm{s})<\mathrm{s} \wedge \mathrm{~m}(2) \geq \operatorname{old}(\mathrm{s})\}
\end{aligned}
$$

Variance proof

$$
\begin{array}{ccc}
\{\text { old }(\mathrm{s})=\mathrm{s}\} & \{\text { old }(\mathrm{s})=\mathrm{s}\} & \{\varphi\} \\
\langle[\mathrm{m}>\mathrm{s}]: 2\rangle & \langle\mathrm{s}++: 1\rangle & \langle\sigma: i\rangle \\
\{\mathrm{m}(2) \geq \text { old }(\mathrm{s})\} & \{o l d(s)<\mathrm{s}\} & \{\varphi\}
\end{array}
$$

Sequencing

$$
\begin{gathered}
\{s \leq t\} \\
m:=t++: 1 \\
\{m(1)<t\} \\
\{m(1)<t\} \\
m:=t++: 2 \\
\{m(1)<m(2)\}
\end{gathered}
$$

Sequencing

$$
\begin{aligned}
& \{s \leq t\} \\
& m:=\mathrm{t}++: 1 \\
& \{m(1)<t\} \\
& \{m(1)<t\} \\
& \mathrm{m}:=\mathrm{t}++: 2 \\
& \{m(1)<m(2)\} \\
& \{s \leq t\} \\
& m:=t++: 1 \text {; } \\
& \mathrm{m}:=\mathrm{t}++: 2 \\
& \{m(1)<m(2)\}
\end{aligned}
$$

Symmetry

$$
P(N)=\underbrace{P\|P\| \cdots \| P}_{N \text { times }}
$$

$$
\begin{gathered}
\{s \leq m(1) \wedge m(1)<m(2)\} \\
{[m<=s]: 2}
\end{gathered}
$$

\{false\}

Symmetry

$$
P(N)=\underbrace{P\|P\| \cdots \| P}_{N \text { times }}
$$

$$
\begin{aligned}
& \text { \{false\} } \\
& \text { \{false\} }
\end{aligned}
$$

Symmetry

$$
P(N)=\underbrace{P\|P\| \cdots \| P}_{N \text { times }}
$$

$$
\left.\begin{array}{c}
\{\mathrm{s} \leq \mathrm{m}(1) \wedge \mathrm{m}(1)<\mathrm{m}(2)\} \\
\text { [m }<=\mathrm{s}]: 2 \\
\{\text { false }\}
\end{array} ~ \xrightarrow[{~[1 \mapsto 2}]\right]{[2 \mapsto 3]} \quad \begin{gathered}
{[\mathrm{s} \leq \mathrm{m}(2) \wedge \mathrm{m}(2)<\mathrm{m}(3)\}} \\
{[\mathrm{m}<=\mathrm{s}]: 3} \\
\{\text { false }\}
\end{gathered}
$$

Conjunction

$$
\begin{gathered}
\{m(1)<t\} \\
m:=t++: 3 \\
\{m(1)<m(3)\}
\end{gathered}
$$

$$
\begin{gathered}
\{m(2)<t\} \\
m:=t++: 3 \\
\{m(2)<m(3)\}
\end{gathered}
$$

Conjunction

$$
\left.\begin{array}{l}
\qquad m(1)<t\} \\
m:=t++: 3 \\
\{m(1)<m(3)\}
\end{array} \begin{array}{c}
\{m(2)<t\} \\
m:=t++: 3 \\
\{m(1)<t \wedge m(2)<t\} \\
\{m:=t++: 3
\end{array}\right\}
$$

A Well-founded proof space (WFPS) $\langle H, R\rangle$ is a set of valid Hoare triples H

 which is closed under sequencing, symmetry, and conjunction, along with a set of ranking formulas R which is closed under symmetry.
A Well-founded proof space (WFPS) $\langle H, R\rangle$ is a set of valid Hoare triples H

 which is closed under sequencing, symmetry, and conjunction, along with a set of ranking formulas R which is closed under symmetry.H is a set of theorems about finite traces. How do we prove infeasibility of infinite traces?

A WFPS $\langle H, R\rangle$ proves a trace τ infeasible if there is some ranking formula $r \in R$, some decomposition of τ :

and some sequence of "intermediate formulas" $\varphi_{1}, \varphi_{2}, \ldots$ such that

```
{pre} }\mp@subsup{\tau}{1}{}{\mp@subsup{\varphi}{1}{}
{pre}}\mp@subsup{\tau}{1}{}\mp@subsup{\tau}{2}{}{\mp@subsup{\varphi}{2}{}
```

$$
\begin{aligned}
& \left\{\varphi_{1} \wedge \operatorname{old}(\mathbf{x})=\mathbf{x}\right\} \tau_{2}\{r\} \\
& \left\{\varphi_{2} \wedge \operatorname{old}(\mathbf{x})=\mathbf{x}\right\} \tau_{3}\{r\}
\end{aligned}
$$

$$
\{\text { pre }\} \tau_{1} \tau_{2} \ldots \tau_{i}\left\{\varphi_{i}\right\}
$$

$$
\left\{\varphi_{i} \wedge \operatorname{old}(\mathbf{x})=\mathbf{x}\right\} \tau_{i+1}\{r\}
$$

all belong to H.

A WFPS $\langle H, R\rangle$ proves a trace τ infeasible if there is some ranking formula $r \in R$, some decomposition of τ :

and some sequence of "intermediate formulas" $\varphi_{1}, \varphi_{2}, \ldots$ such that

```
{pre}}\mp@subsup{\tau}{1}{}{\mp@subsup{\varphi}{1}{}
{pre}}\mp@subsup{\tau}{1}{}\mp@subsup{\tau}{2}{}{\mp@subsup{\varphi}{2}{}
```

$$
\begin{aligned}
& \left\{\varphi_{1} \wedge \operatorname{old}(\mathbf{x})=\mathbf{x}\right\} \tau_{2}\{r\} \\
& \left\{\varphi_{2} \wedge \operatorname{old}(\mathbf{x})=\mathbf{x}\right\} \tau_{3}\{r\}
\end{aligned}
$$

$$
\{\text { pre }\} \tau_{1} \tau_{2} \ldots \tau_{i}\left\{\varphi_{i}\right\}
$$

$$
\left\{\varphi_{i} \wedge \operatorname{old}(\mathbf{x})=\mathbf{x}\right\} \tau_{i+1}\{r\}
$$

all belong to H.
The set of traces $\langle H, R\rangle$ proves infeasible is denoted $\omega(H, R)$.

Two key problems:
(1) How do we generalize proofs?

- Concurrency: Same proof applies to many interleavings.
- Parameterization: Same proof applies to many instantiations.
(2) How do we check that a proof is complete?

Two key problems:
(1) How do we generalize proofs?

- Concurrency: Same proof applies to many interleavings.
- Parameterization: Same proof applies to many instantiations.

2. How do we check that a proof is complete?

- $\mathcal{L}(P) \backslash \mathcal{L}(\Phi) \subseteq \omega(H, R)$: inclusion between infinite sets of infinite words over an infinite alphabet

Infinite traces \rightarrow finite traces

An ultimately periodic trace is a trace of the form $\pi \rho \rho \rho \rho \ldots$
Every ultimately periodic trace can be written (not uniquely) as a lasso $\pi \$ \rho$. Given a language $L \subseteq \Sigma^{\omega}$, define its lasso language $\$(L)$ as:

$$
\$(L)=\left\{\pi \$ \rho: \pi \rho^{\omega} \in L\right\}
$$

Infinite traces \rightarrow finite traces

An ultimately periodic trace is a trace of the form $\pi \rho \rho \rho \ldots$
Every ultimately periodic trace can be written (not uniquely) as a lasso $\pi \$ \rho$. Given a language $L \subseteq \Sigma^{\omega}$, define its lasso language $\$(L)$ as:

$$
\$(L)=\left\{\pi \$ \rho: \pi \rho^{\omega} \in L\right\}
$$

```
Theorem
If \(\$(\mathcal{L}(P)) \backslash \$(\mathcal{L}(\Phi)) \subseteq \$(\omega(H, R))\), then \(\mathcal{L}(P) \backslash \mathcal{L}(\Phi) \subseteq \omega(H, R)\).
```


Infinite traces \rightarrow finite traces

An ultimately periodic trace is a trace of the form $\pi \rho \rho \rho \ldots$ Every ultimately periodic trace can be written (not uniquely) as a lasso $\pi \$ \rho$. Given a language $L \subseteq \Sigma^{\omega}$, define its lasso language $\$(L)$ as:

$$
\$(L)=\left\{\pi \$ \rho: \pi \rho^{\omega} \in L\right\}
$$

Theorem
 If $\$(\mathcal{L}(P)) \backslash \$(\mathcal{L}(\Phi)) \subseteq \$(\omega(H, R))$, then $\mathcal{L}(P) \backslash \mathcal{L}(\Phi) \subseteq \omega(H, R)$.

- For any $N \in \mathbb{N}, \mathcal{L}(P) \cap(\Sigma \times\{1, \ldots, N\})^{\omega}$ is ω-regular. Same for $\mathcal{L}(\Phi)$ and $\omega(H, R)$.
- Fact: If L_{1} and L_{2} are ω-regular, then $U P\left(L_{1}\right) \subseteq L_{2}$ implies $L_{1} \subseteq L_{2}$.

Infinite language \rightarrow automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata that recognize words over an infinite alphabet.

Infinite language \rightarrow automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata that recognize words over an infinite alphabet.

- There is a QPA that recognizes $\$(\mathcal{L}(P))$.

Infinite language \rightarrow automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata that recognize words over an infinite alphabet.

- There is a QPA that recognizes $\$(\mathcal{L}(P))$.
- There is a QPA that recognizes $\$(\mathcal{L}(\Phi))$.

Infinite language \rightarrow automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata that recognize words over an infinite alphabet.

- There is a QPA that recognizes $\$(\mathcal{L}(P))$.
- There is a QPA that recognizes $\$(\mathcal{L}(\Phi))$.
- There is not a QPA that recognizes $\$(\omega(H, R))$.

But...

There is a QPA that recognizes all lassos $\pi \$ \rho$ such that there exists some intermediate assertion φ and some ranking formula $r \in R$ such that

$$
\{\text { pre }\} \pi\{\varphi\} \quad \text { and } \quad\{\varphi \wedge \text { old }(\mathbf{x})=\mathbf{x}\} \rho\{r\}
$$

belong to H. Call this language $\$(H, R)$.

But...

There is a QPA that recognizes all lassos $\pi \$ \rho$ such that there exists some intermediate assertion φ and some ranking formula $r \in R$ such that

$$
\{\text { pre }\} \pi\{\varphi\} \quad \text { and } \quad\{\varphi \wedge \operatorname{old}(\mathbf{x})=\mathbf{x}\} \rho\{r\}
$$

belong to H. Call this language $\$(H, R)$.
Membership of $\pi \$ \rho$ in $\$(H, R)$ does not imply that $\pi \rho^{\omega} \in \omega(H, R)$. It does not even imply that $\pi \rho^{\omega}$ is infeasible!

But...

There is a QPA that recognizes all lassos $\pi \$ \rho$ such that there exists some intermediate assertion φ and some ranking formula $r \in R$ such that

$$
\{\text { pre }\} \pi\{\varphi\} \quad \text { and } \quad\{\varphi \wedge \text { old }(\mathbf{x})=\mathbf{x}\} \rho\{r\}
$$

belong to H. Call this language $\$(H, R)$.
Membership of $\pi \$ \rho$ in $\$(H, R)$ does not imply that $\pi \rho^{\omega} \in \omega(H, R)$. It does not even imply that $\pi \rho^{\omega}$ is infeasible!

Theorem

If $\$(\mathcal{L}(P)) \backslash \$(\mathcal{L}(\Phi)) \subseteq \(H, R), then $\mathcal{L}(P) \backslash \mathcal{L}(\Phi) \subseteq \omega(H, R)$.

But...

There is a QPA that recognizes all lassos $\pi \$ \rho$ such that there exists some intermediate assertion φ and some ranking formula $r \in R$ such that

$$
\{\text { pre }\} \pi\{\varphi\} \quad \text { and } \quad\{\varphi \wedge \text { old }(\mathbf{x})=\mathbf{x}\} \rho\{r\}
$$

belong to H. Call this language $\$(H, R)$.
Membership of $\pi \$ \rho$ in $\$(H, R)$ does not imply that $\pi \rho^{\omega} \in \omega(H, R)$. It does not even imply that $\pi \rho^{\omega}$ is infeasible!

Theorem

If $\$(\mathcal{L}(P)) \backslash \$(\mathcal{L}(\Phi)) \subseteq \(H, R), then $\mathcal{L}(P) \backslash \mathcal{L}(\Phi) \subseteq \omega(H, R)$.

- $\pi \rho^{\omega} \in \mathcal{L}(P) \backslash \mathcal{L}(\Phi) \Rightarrow \pi \rho^{n} \$ \rho^{k} \in \$(\mathcal{L}(P)) \backslash \$(\mathcal{L}(\Phi))$ for all $n \geq 0, k \geq 1$.
- H contains $\{$ pre $\} \pi \rho^{n}\left\{\varphi_{n, k}\right\}$ and $\left\{\varphi_{n, k} \wedge\right.$ old $\left.(\mathbf{x})=\mathbf{x}\right\} \rho^{k}\left\{r_{n, k}\right\}$. Ramsey!

But...

There is a QPA that recognizes all lassos $\pi \$ \rho$ such that there exists some intermediate assertion φ and some ranking formula $r \in R$ such that

$$
\{\text { pre }\} \pi\{\varphi\} \quad \text { and } \quad\{\varphi \wedge \text { old }(\mathbf{x})=\mathbf{x}\} \rho\{r\}
$$

belong to H. Call this language $\$(H, R)$.
Membership of $\pi \$ \rho$ in $\$(H, R)$ does not imply that $\pi \rho^{\omega} \in \omega(H, R)$. It does not even imply that $\pi \rho^{\omega}$ is infeasible!

Theorem

If $\$(\mathcal{L}(P)) \backslash \$(\mathcal{L}(\Phi)) \subseteq \(H, R), then $\mathcal{L}(P) \backslash \mathcal{L}(\Phi) \subseteq \omega(H, R)$.

QPA language containment can be used to check proofs

Summary

Two key problems:
(1) How do we generalize proofs?

- Well-founded proof spaces

2 How do we check that a proof is complete?

- Lassos + Quantified Predicate Automata

Thanks!

