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A parameterized concurrent program, P

- thread template = finite directed graph with edges labeled by

instructions (in some programming language). Call the set of
instructions X.

+ Forany N € N, P(N) denotes the program with Nidentical threads, all
of which execute P.

[m<s]

m:=t++ S > [m>=s]

St++




Thread identifiers
Atraceis asequence T = (o7 : i1) {09 : i)... efZ x N ¥
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- Associate linear-time property ® w/ set of traces £(®) that satisfy it.

- Associate P(N) w/ set of traces L(P(N)) C (X x {1,..., N})¥
corresponding to interleaved paths through the thread template

- Program traces £(P U L(P

+ Pcorrect <= every error trace in L(P) \ L(®) is infeasible.
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Stem Loop

{old(s) = s}

([m>s] : 2)
{old(s) = s Am(2) > old(s)}

([Im<=s]: 1)
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(me=t++: 1)(m:=t++:2) (([m>s]:2)([m<=s]: 1)(s++: 1)(m:=t++:1))%

Stem
{old(s) = s}
(Im>s] : 2)

{old(s) = s Am(2) > old(s)}
([Im<=s]: 1)

{old(s) = s Am(2) > old(s)}

(s++:1)

{old(s) < s Am(2) > old(s)}

(m:=t++: 1)

{ old(s) < sAm(2) >old(s) }

Variance proof

Loop

{s=1
(m:=t++:1)
{true}
(m:=t++:2)
{true}
([m>s] : 2)
{true}
(Im<=s]: 1)
{true}
(s*++: 1)
{true}
(m:=t++: 1)
{true}

Invariance proof



{old(s) = s} {old(s) = s} {0}
([m>s] : 2) (s++:1) (o1

)]
{m(2) > old(s)}  {old(s) < s} {}



Sequencing

{s<t}
m = t++:1

{m(1) <t}
{m(1) <t}

m:= t++:2

{m(1) <m(2)}



Sequencing

s<t)
m := t++:1
{s<t}
{m(1) <t} > m o= t++:1;
m := t++:2
m{n:(zl)tit:}z {m(1) < m(2)}

{m(1) <m(2)}
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Symmetry

P(N)=P| P|---|| P

N times
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Symmetry

P(N)=P| P|---|| P

N times

{s<m(l)Am(1) <m(2)} =) {s <m2)Am(2) <m(3)}
[m <= s]:2 — [m<=s]:3
{false} 2+ 3] {false}



Conjunction

{m(1) <1} {n(2) <1}
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Conjunction

{m(1) < t} {m(2) < t}

m := t++:3 m:= t++:3

{m(1) <m(3)} {m(2) <m(3)}

<t

{m(1

{m(1) < m(3

m(2) < t}
++:3

m(2) <m(3)}
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A Well-founded proof space (WFPS) (H, R) is a set of valid Hoare triples H
which is closed under sequencing, symmetry, and conjunction, along with a
set of ranking formulas R which is closed under symmetry.
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His a set of theorems about finite traces. How do we prove infeasibility of
infinite traces?
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The set of traces (H, R) proves infeasible is denoted w(H, R).



Two key problems:
@ How do we generalize proofs?
- Concurrency: Same proof applies to many interleavings.
- Parameterization: Same proof applies to many instantiations.

@ How do we check that a proof is complete?



Two key problems:
@ How do we generalize proofs?
- Concurrency: Same proof applies to many interleavings.
- Parameterization: Same proof applies to many instantiations.
@ How do we check that a proof is complete?

« L(P)\ L(®) C w(H, R): inclusion between infinite sets of infinite words
over an infinite alphabet
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An ultimately periodic trace is a trace of the form mppp - - -
Every ultimately periodic trace can be written (not uniquely) as a lasso 7$p.
Given a language L C X, define its lasso language $(L) as:

$(L) = {n$p: mp“ € L}

IFS(L(P))\ $(L(®)) C $(w(H, R)), then L(P)\ L(D) C w(H, R).

« Forany Ne N, L(P) N (2 x {1, ..., N})* is w-regular. Same for £(®)
and w(H, R).

« Fact: If L; and Ly are w-regular, then UP(L;) C Ly implies L; C L.
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Infinite language — automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata
that recognize words over an infinite alphabet.

+ There is a QPA that recognizes $(L(P)).

« There is a QPA that recognizes $(L(®)).
+ There is not a QPA that recognizes $(w(H, R)).
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But...

There is a QPA that recognizes all lassos 7$p such that there exists some
intermediate assertion ¢ and some ranking formula r € R such that

{prejm{x} and  {pAold(x) = x}p{r}
belong to H. Call this language $(H, R).

Membership of 7$p in $( H, R) does notimply that 7p“ € w(H, R). It does
not even imply that 7p® is infeasible!

IFS(L(P)) \ $(L(®)) C $(H, R), then L(P) \ L(®) C w(H, R).

QPA language containment can be used to check proofs




Summary

Two key problems:
@ How do we generalize proofs?
+ Well-founded proof spaces

® How do we check that a proof is complete?
- Lassos + Quantified Predicate Automata



Thanks!



