
Proving Liveness of Parameterized
Programs

Zachary Kincaid
University of Toronto & Princeton University

July 5, 2016

Joint work with:
Azadeh Farzan, University of Toronto

Andreas Podelski, University of Freiburg

global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves
• no matter how many threads there are
• automatically

global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves

• no matter how many threads there are
• automatically

global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves
• no matter how many threads there are

• automatically

global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves
• no matter how many threads there are
• automatically

A parameterized concurrent program, P:
• thread template = finite directed graph with edges labeled by

instructions (in some programming language). Call the set of
instructions Σ.

• For any N ∈ N, P(N) denotes the program with N identical threads, all
of which execute P.

m:=t++ [m>=s]

s++

[m<s]

A trace is a sequence τ = ⟨σ1 : i1⟩⟨σ2 : i2⟩... ∈ (Σ× N)ω

Program instructions

Thread identifiers

• Associate linear-time property Φ w/ set of traces L(Φ) that satisfy it.
• Associate P(N) w/ set of traces L(P(N)) ⊆ (Σ× {1, ...,N})ω

corresponding to interleaved paths through the thread template

• Program traces L(P) =
∪
N

L(P(N))

• P correct ⇐⇒ every error trace in L(P) \ L(Φ) is infeasible.

A trace is a sequence τ = ⟨σ1 : i1⟩⟨σ2 : i2⟩... ∈ (Σ× N)ω

Program instructions

Thread identifiers

• Associate linear-time property Φ w/ set of traces L(Φ) that satisfy it.

• Associate P(N) w/ set of traces L(P(N)) ⊆ (Σ× {1, ...,N})ω
corresponding to interleaved paths through the thread template

• Program traces L(P) =
∪
N

L(P(N))

• P correct ⇐⇒ every error trace in L(P) \ L(Φ) is infeasible.

A trace is a sequence τ = ⟨σ1 : i1⟩⟨σ2 : i2⟩... ∈ (Σ× N)ω

Program instructions

Thread identifiers

• Associate linear-time property Φ w/ set of traces L(Φ) that satisfy it.
• Associate P(N) w/ set of traces L(P(N)) ⊆ (Σ× {1, ...,N})ω

corresponding to interleaved paths through the thread template

• Program traces L(P) =
∪
N

L(P(N))

• P correct ⇐⇒ every error trace in L(P) \ L(Φ) is infeasible.

A trace is a sequence τ = ⟨σ1 : i1⟩⟨σ2 : i2⟩... ∈ (Σ× N)ω

Program instructions

Thread identifiers

• Associate linear-time property Φ w/ set of traces L(Φ) that satisfy it.
• Associate P(N) w/ set of traces L(P(N)) ⊆ (Σ× {1, ...,N})ω

corresponding to interleaved paths through the thread template

• Program traces L(P) =
∪
N

L(P(N))

• P correct ⇐⇒ every error trace in L(P) \ L(Φ) is infeasible.

A trace is a sequence τ = ⟨σ1 : i1⟩⟨σ2 : i2⟩... ∈ (Σ× N)ω

Program instructions

Thread identifiers

• Associate linear-time property Φ w/ set of traces L(Φ) that satisfy it.
• Associate P(N) w/ set of traces L(P(N)) ⊆ (Σ× {1, ...,N})ω

corresponding to interleaved paths through the thread template

• Program traces L(P) =
∪
N

L(P(N))

• P correct ⇐⇒ every error trace in L(P) \ L(Φ) is infeasible.

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces
Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces
Property fails!

Proof Generalization

Two key problems:
1 How do we generalize proofs?

• Concurrency: Same proof applies to many interleavings.
• Parameterization: Same proof applies to many instantiations.

2 How do we check that a proof is complete?

• L(P) \ L(Φ) ⊆ ω(H,R): inclusion between infinite sets of infinite words
over an infinite alphabet

Two key problems:
1 How do we generalize proofs?

• Concurrency: Same proof applies to many interleavings.

• Parameterization: Same proof applies to many instantiations.

2 How do we check that a proof is complete?

• L(P) \ L(Φ) ⊆ ω(H,R): inclusion between infinite sets of infinite words
over an infinite alphabet

Two key problems:
1 How do we generalize proofs?

• Concurrency: Same proof applies to many interleavings.
• Parameterization: Same proof applies to many instantiations.

2 How do we check that a proof is complete?

• L(P) \ L(Φ) ⊆ ω(H,R): inclusion between infinite sets of infinite words
over an infinite alphabet

⟨m:=t++ : 1⟩⟨m:=t++ : 2⟩︸ ︷︷ ︸
Stem

(⟨[m>s] : 2⟩⟨[m<=s] : 1⟩⟨s++ : 1⟩⟨m:=t++ : 1⟩︸ ︷︷ ︸
Loop

)ω

{old(s) = s}
⟨[m>s] : 2⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨[m<=s] : 1⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨s++ : 1⟩

{old(s) < s ∧ m(2) ≥ old(s)}
⟨m:=t++ : 1⟩

{ old(s) < s ∧ m(2) ≥ old(s) }
Variance proof

{s = t}
⟨m:=t++ : 1⟩

{true}
⟨m:=t++ : 2⟩

{true}
⟨[m>s] : 2⟩

{true}
⟨[m<=s] : 1⟩

{true}
⟨s++ : 1⟩
{true}

⟨m:=t++ : 1⟩
{true}

Invariance proof

⟨m:=t++ : 1⟩⟨m:=t++ : 2⟩︸ ︷︷ ︸
Stem

(⟨[m>s] : 2⟩⟨[m<=s] : 1⟩⟨s++ : 1⟩⟨m:=t++ : 1⟩︸ ︷︷ ︸
Loop

)ω

{old(s) = s}
⟨[m>s] : 2⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨[m<=s] : 1⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨s++ : 1⟩

{old(s) < s ∧ m(2) ≥ old(s)}
⟨m:=t++ : 1⟩

{ old(s) < s ∧ m(2) ≥ old(s) }
Variance proof

Ranking formula

{s = t}
⟨m:=t++ : 1⟩

{true}
⟨m:=t++ : 2⟩

{true}
⟨[m>s] : 2⟩

{true}
⟨[m<=s] : 1⟩

{true}
⟨s++ : 1⟩
{true}

⟨m:=t++ : 1⟩
{true}

Invariance proof

⟨m:=t++ : 1⟩⟨m:=t++ : 2⟩︸ ︷︷ ︸
Stem

(⟨[m>s] : 2⟩⟨[m<=s] : 1⟩⟨s++ : 1⟩⟨m:=t++ : 1⟩︸ ︷︷ ︸
Loop

)ω

{old(s) = s}
⟨[m>s] : 2⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨[m<=s] : 1⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨s++ : 1⟩

{old(s) < s ∧ m(2) ≥ old(s)}
⟨m:=t++ : 1⟩

{ old(s) < s ∧ m(2) ≥ old(s) }
Variance proof

{s = t}
⟨m:=t++ : 1⟩

{true}
⟨m:=t++ : 2⟩

{true}
⟨[m>s] : 2⟩

{true}
⟨[m<=s] : 1⟩

{true}
⟨s++ : 1⟩
{true}

⟨m:=t++ : 1⟩
{true}

Invariance proof

{old(s) = s}
⟨[m>s] : 2⟩

{m(2) ≥ old(s)}

{old(s) = s}
⟨s++ : 1⟩

{old(s) < s}

{φ}
⟨σ : i⟩
{φ}

Sequencing

{s ≤ t}
m := t++ : 1
{m(1) < t}

{m(1) < t}
m := t++ : 2
{m(1) < m(2)}

{s ≤ t}
m := t++ : 1;
m := t++ : 2
{m(1) < m(2)}

Sequencing

{s ≤ t}
m := t++ : 1
{m(1) < t}

{m(1) < t}
m := t++ : 2
{m(1) < m(2)}

{s ≤ t}
m := t++ : 1;
m := t++ : 2
{m(1) < m(2)}

Symmetry

P(N) = P ∥ P ∥· · · ∥ P︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]

Symmetry

P(N) = P ∥ P ∥· · · ∥ P︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(2)∧m(2) < m(1)}
[m <= s] : 1

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]

Symmetry

P(N) = P ∥ P ∥· · · ∥ P︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(2)∧m(2) < m(3)}
[m <= s] : 3

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]

Conjunction

{m(1) < t}
m := t++ : 3
{m(1) < m(3)}

{m(2) < t}
m := t++ : 3
{m(2) < m(3)}

{m(1) < t ∧ m(2) < t}
m := t++ : 3

{m(1) < m(3) ∧ m(2) < m(3)}

Conjunction

{m(1) < t}
m := t++ : 3
{m(1) < m(3)}

{m(2) < t}
m := t++ : 3
{m(2) < m(3)}

{m(1) < t ∧ m(2) < t}
m := t++ : 3

{m(1) < m(3) ∧ m(2) < m(3)}

A Well-founded proof space (WFPS) ⟨H,R⟩ is a set of valid Hoare triples H
which is closed under sequencing, symmetry, and conjunction, along with a
set of ranking formulas R which is closed under symmetry.

H is a set of theorems about finite traces. How do we prove infeasibility of
infinite traces?

A Well-founded proof space (WFPS) ⟨H,R⟩ is a set of valid Hoare triples H
which is closed under sequencing, symmetry, and conjunction, along with a
set of ranking formulas R which is closed under symmetry.

H is a set of theorems about finite traces. How do we prove infeasibility of
infinite traces?

A WFPS ⟨H,R⟩ proves a trace τ infeasible if there is some ranking formula
r ∈ R, some decomposition of τ :

· · ·τ

τ1 τ2 τ3

and some sequence of “intermediate formulas” φ1, φ2, ... such that

{pre}τ1{φ1} {φ1 ∧ old(x) = x}τ2{r}
{pre}τ1τ2{φ2} {φ2 ∧ old(x) = x}τ3{r}

...
{pre}τ1τ2...τi{φi} {φi ∧ old(x) = x}τi+1{r}

all belong to H.

The set of traces ⟨H,R⟩ proves infeasible is denoted ω(H,R).

A WFPS ⟨H,R⟩ proves a trace τ infeasible if there is some ranking formula
r ∈ R, some decomposition of τ :

· · ·τ

τ1 τ2 τ3

and some sequence of “intermediate formulas” φ1, φ2, ... such that

{pre}τ1{φ1} {φ1 ∧ old(x) = x}τ2{r}
{pre}τ1τ2{φ2} {φ2 ∧ old(x) = x}τ3{r}

...
{pre}τ1τ2...τi{φi} {φi ∧ old(x) = x}τi+1{r}

all belong to H.
The set of traces ⟨H,R⟩ proves infeasible is denoted ω(H,R).

Two key problems:
1 How do we generalize proofs?

• Concurrency: Same proof applies to many interleavings.
• Parameterization: Same proof applies to many instantiations.

2 How do we check that a proof is complete?

• L(P) \ L(Φ) ⊆ ω(H,R): inclusion between infinite sets of infinite words
over an infinite alphabet

Two key problems:
1 How do we generalize proofs?

• Concurrency: Same proof applies to many interleavings.
• Parameterization: Same proof applies to many instantiations.

2 How do we check that a proof is complete?
• L(P) \ L(Φ) ⊆ ω(H,R): inclusion between infinite sets of infinite words

over an infinite alphabet

Infinite traces → finite traces

An ultimately periodic trace is a trace of the form πρρρ · · ·
Every ultimately periodic trace can be written (not uniquely) as a lasso π$ρ.
Given a language L ⊆ Σω , define its lasso language $(L) as:

$(L) = {π$ρ : πρω ∈ L}

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(ω(H,R)), then L(P) \ L(Φ) ⊆ ω(H,R).

• For any N ∈ N, L(P) ∩ (Σ× {1, ...,N})ω is ω-regular. Same for L(Φ)
and ω(H,R).

• Fact: If L1 and L2 are ω-regular, then UP(L1) ⊆ L2 implies L1 ⊆ L2.

Infinite traces → finite traces

An ultimately periodic trace is a trace of the form πρρρ · · ·
Every ultimately periodic trace can be written (not uniquely) as a lasso π$ρ.
Given a language L ⊆ Σω , define its lasso language $(L) as:

$(L) = {π$ρ : πρω ∈ L}

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(ω(H,R)), then L(P) \ L(Φ) ⊆ ω(H,R).

• For any N ∈ N, L(P) ∩ (Σ× {1, ...,N})ω is ω-regular. Same for L(Φ)
and ω(H,R).

• Fact: If L1 and L2 are ω-regular, then UP(L1) ⊆ L2 implies L1 ⊆ L2.

Infinite traces → finite traces

An ultimately periodic trace is a trace of the form πρρρ · · ·
Every ultimately periodic trace can be written (not uniquely) as a lasso π$ρ.
Given a language L ⊆ Σω , define its lasso language $(L) as:

$(L) = {π$ρ : πρω ∈ L}

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(ω(H,R)), then L(P) \ L(Φ) ⊆ ω(H,R).

• For any N ∈ N, L(P) ∩ (Σ× {1, ...,N})ω is ω-regular. Same for L(Φ)
and ω(H,R).

• Fact: If L1 and L2 are ω-regular, then UP(L1) ⊆ L2 implies L1 ⊆ L2.

Infinite language → automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata
that recognize words over an infinite alphabet.

• There is a QPA that recognizes $(L(P)).
• There is a QPA that recognizes $(L(Φ)).
• There is not a QPA that recognizes $(ω(H,R)).

Infinite language → automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata
that recognize words over an infinite alphabet.

• There is a QPA that recognizes $(L(P)).

• There is a QPA that recognizes $(L(Φ)).
• There is not a QPA that recognizes $(ω(H,R)).

Infinite language → automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata
that recognize words over an infinite alphabet.

• There is a QPA that recognizes $(L(P)).
• There is a QPA that recognizes $(L(Φ)).

• There is not a QPA that recognizes $(ω(H,R)).

Infinite language → automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata
that recognize words over an infinite alphabet.

• There is a QPA that recognizes $(L(P)).
• There is a QPA that recognizes $(L(Φ)).
• There is not a QPA that recognizes $(ω(H,R)).

But...

There is a QPA that recognizes all lassos π$ρ such that there exists some
intermediate assertion φ and some ranking formula r ∈ R such that

{pre}π{φ} and {φ ∧ old(x) = x}ρ{r}
belong to H. Call this language $(H,R).

Membership of π$ρ in $(H,R) does not imply that πρω ∈ ω(H,R). It does
not even imply that πρω is infeasible!

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(H,R), then L(P) \ L(Φ) ⊆ ω(H,R).

But...

There is a QPA that recognizes all lassos π$ρ such that there exists some
intermediate assertion φ and some ranking formula r ∈ R such that

{pre}π{φ} and {φ ∧ old(x) = x}ρ{r}
belong to H. Call this language $(H,R).

Membership of π$ρ in $(H,R) does not imply that πρω ∈ ω(H,R). It does
not even imply that πρω is infeasible!

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(H,R), then L(P) \ L(Φ) ⊆ ω(H,R).

But...

There is a QPA that recognizes all lassos π$ρ such that there exists some
intermediate assertion φ and some ranking formula r ∈ R such that

{pre}π{φ} and {φ ∧ old(x) = x}ρ{r}
belong to H. Call this language $(H,R).

Membership of π$ρ in $(H,R) does not imply that πρω ∈ ω(H,R). It does
not even imply that πρω is infeasible!

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(H,R), then L(P) \ L(Φ) ⊆ ω(H,R).

But...

There is a QPA that recognizes all lassos π$ρ such that there exists some
intermediate assertion φ and some ranking formula r ∈ R such that

{pre}π{φ} and {φ ∧ old(x) = x}ρ{r}
belong to H. Call this language $(H,R).

Membership of π$ρ in $(H,R) does not imply that πρω ∈ ω(H,R). It does
not even imply that πρω is infeasible!

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(H,R), then L(P) \ L(Φ) ⊆ ω(H,R).

• πρω ∈ L(P)\L(Φ)⇒ πρn$ρk ∈ $(L(P))\$(L(Φ)) for all n ≥ 0, k ≥ 1.
• H contains {pre}πρn{φn,k} and {φn,k ∧ old(x) = x}ρk{rn,k}. Ramsey!

But...

There is a QPA that recognizes all lassos π$ρ such that there exists some
intermediate assertion φ and some ranking formula r ∈ R such that

{pre}π{φ} and {φ ∧ old(x) = x}ρ{r}
belong to H. Call this language $(H,R).

Membership of π$ρ in $(H,R) does not imply that πρω ∈ ω(H,R). It does
not even imply that πρω is infeasible!

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(H,R), then L(P) \ L(Φ) ⊆ ω(H,R).

QPA language containment can be used to check proofs

Summary

Two key problems:
1 How do we generalize proofs?

• Well-founded proof spaces

2 How do we check that a proof is complete?
• Lassos + Quantified Predicate Automata

Thanks!

