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global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves
• no matter how many threads there are
• automatically



global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves

• no matter how many threads there are
• automatically



global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves
• no matter how many threads there are

• automatically



global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s= t

do forever {
m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter

}

Goal: Prove that no thread starves
• no matter how many threads there are
• automatically



A parameterized concurrent program, P:
• thread template = finite directed graph with edges labeled by

instructions (in some programming language). Call the set of
instructions Σ.

• For any N ∈ N, P(N) denotes the program with N identical threads, all
of which execute P.

m:=t++ [m>=s]

s++

[m<s]



A trace is a sequence τ = ⟨σ1 : i1⟩⟨σ2 : i2⟩... ∈ ( Σ× N )ω

Program instructions

Thread identifiers

• Associate linear-time property Φ w/ set of traces L(Φ) that satisfy it.
• Associate P(N) w/ set of traces L(P(N)) ⊆ (Σ× {1, ...,N})ω

corresponding to interleaved paths through the thread template

• Program traces L(P) =
∪
N

L(P(N))

• P correct ⇐⇒ every error trace in L(P) \ L(Φ) is infeasible.
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No corresponding executions At least one corresponding execution

Error traces
Property fails!
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Two key problems:
1 How do we generalize proofs?

• Concurrency: Same proof applies to many interleavings.
• Parameterization: Same proof applies to many instantiations.

2 How do we check that a proof is complete?

• L(P) \ L(Φ) ⊆ ω(H,R): inclusion between infinite sets of infinite words
over an infinite alphabet
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⟨m:=t++ : 1⟩⟨m:=t++ : 2⟩︸ ︷︷ ︸
Stem

(⟨[m>s] : 2⟩⟨[m<=s] : 1⟩⟨s++ : 1⟩⟨m:=t++ : 1⟩︸ ︷︷ ︸
Loop

)ω

{old(s) = s}
⟨[m>s] : 2⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨[m<=s] : 1⟩

{old(s) = s ∧ m(2) ≥ old(s)}
⟨s++ : 1⟩

{old(s) < s ∧ m(2) ≥ old(s)}
⟨m:=t++ : 1⟩

{ old(s) < s ∧ m(2) ≥ old(s) }
Variance proof

{s = t}
⟨m:=t++ : 1⟩

{true}
⟨m:=t++ : 2⟩

{true}
⟨[m>s] : 2⟩

{true}
⟨[m<=s] : 1⟩

{true}
⟨s++ : 1⟩
{true}

⟨m:=t++ : 1⟩
{true}

Invariance proof
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{old(s) = s}
⟨[m>s] : 2⟩

{m(2) ≥ old(s)}

{old(s) = s}
⟨s++ : 1⟩

{old(s) < s}

{φ}
⟨σ : i⟩
{φ}



Sequencing

{s ≤ t}
m := t++ : 1
{m(1) < t}

{m(1) < t}
m := t++ : 2
{m(1) < m(2)}

{s ≤ t}
m := t++ : 1;
m := t++ : 2
{m(1) < m(2)}
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Symmetry

P(N) = P ∥ P ∥· · · ∥ P︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]
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Symmetry

P(N) = P ∥ P ∥· · · ∥ P︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(2)∧m(2) < m(3)}
[m <= s] : 3

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]



Conjunction

{m(1) < t}
m := t++ : 3
{m(1) < m(3)}

{m(2) < t}
m := t++ : 3
{m(2) < m(3)}

{m(1) < t ∧ m(2) < t}
m := t++ : 3

{m(1) < m(3) ∧ m(2) < m(3)}
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A Well-founded proof space (WFPS) ⟨H,R⟩ is a set of valid Hoare triples H
which is closed under sequencing, symmetry, and conjunction, along with a
set of ranking formulas R which is closed under symmetry.

H is a set of theorems about finite traces. How do we prove infeasibility of
infinite traces?
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A WFPS ⟨H,R⟩ proves a trace τ infeasible if there is some ranking formula
r ∈ R, some decomposition of τ :

· · ·τ

τ1 τ2 τ3

and some sequence of “intermediate formulas” φ1, φ2, ... such that

{pre}τ1{φ1} {φ1 ∧ old(x) = x}τ2{r}
{pre}τ1τ2{φ2} {φ2 ∧ old(x) = x}τ3{r}

...
{pre}τ1τ2...τi{φi} {φi ∧ old(x) = x}τi+1{r}

all belong to H.

The set of traces ⟨H,R⟩ proves infeasible is denoted ω(H,R).
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Infinite traces → finite traces

An ultimately periodic trace is a trace of the form πρρρ · · ·
Every ultimately periodic trace can be written (not uniquely) as a lasso π$ρ.
Given a language L ⊆ Σω , define its lasso language $(L) as:

$(L) = {π$ρ : πρω ∈ L}

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(ω(H,R)), then L(P) \ L(Φ) ⊆ ω(H,R).

• For any N ∈ N, L(P) ∩ (Σ× {1, ...,N})ω is ω-regular. Same for L(Φ)
and ω(H,R).

• Fact: If L1 and L2 are ω-regular, then UP(L1) ⊆ L2 implies L1 ⊆ L2.
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Infinite language → automaton

Quantified Predicate Automata (QPA): a class of infinite-state automata
that recognize words over an infinite alphabet.

• There is a QPA that recognizes $(L(P)).
• There is a QPA that recognizes $(L(Φ)).
• There is not a QPA that recognizes $(ω(H,R)).
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But...

There is a QPA that recognizes all lassos π$ρ such that there exists some
intermediate assertion φ and some ranking formula r ∈ R such that

{pre}π{φ} and {φ ∧ old(x) = x}ρ{r}
belong to H. Call this language $(H,R).

Membership of π$ρ in $(H,R) does not imply that πρω ∈ ω(H,R). It does
not even imply that πρω is infeasible!

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(H,R), then L(P) \ L(Φ) ⊆ ω(H,R).
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• πρω ∈ L(P)\L(Φ)⇒ πρn$ρk ∈ $(L(P))\$(L(Φ)) for all n ≥ 0, k ≥ 1.
• H contains {pre}πρn{φn,k} and {φn,k ∧ old(x) = x}ρk{rn,k}. Ramsey!



But...

There is a QPA that recognizes all lassos π$ρ such that there exists some
intermediate assertion φ and some ranking formula r ∈ R such that

{pre}π{φ} and {φ ∧ old(x) = x}ρ{r}
belong to H. Call this language $(H,R).

Membership of π$ρ in $(H,R) does not imply that πρω ∈ ω(H,R). It does
not even imply that πρω is infeasible!

Theorem

If $(L(P)) \ $(L(Φ)) ⊆ $(H,R), then L(P) \ L(Φ) ⊆ ω(H,R).

QPA language containment can be used to check proofs



Summary

Two key problems:
1 How do we generalize proofs?

• Well-founded proof spaces

2 How do we check that a proof is complete?
• Lassos + Quantified Predicate Automata



Thanks!


