Linear Arithmetic Satisfiability via Strategy Improvement

Azadeh Farzan¹ Zachary Kincaid^{1,2}

¹University of Toronto

²Princeton University

July 13, 2016

integer) arithmetic. Applications in program analysis & synthesis

- The problem: satisfiability modulo the theory of linear rational (& integer) arithmetic.
 - Applications in program analysis & synthesis
- SMT solvers handle the ground fragment. Techniques for quantifiers:
 - Quantifier elimination (expensive)
 - Heuristic quantifier instantiation (incomplete)

- The problem: satisfiability modulo the theory of linear rational (& integer) arithmetic.
 - Applications in program analysis & synthesis
- SMT solvers handle the ground fragment. Techniques for quantifiers:
 - Quantifier elimination (expensive)
 Houristic quantifier instantiation (incomplete)
 - Heuristic quantifier instantiation (incomplete)

Today: alternating quantifier satisfiability modulo linear rational (& integer) arithmetic via strategy improvement.

$$\varphi \triangleq \underbrace{ \exists w. \forall x. \exists y. \forall z.}_{\textit{quantifier prefix}} \underbrace{(y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{\textit{matrix}}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false

$$\varphi \triangleq \underbrace{ \frac{\exists w. \forall x. \exists y. \forall z.}{quantifier\ prefix}}_{quantifier\ prefix} \underbrace{ (y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{matrix}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false
- A play of this game: SAT and UNSAT take turns picking elements of Q.

$$\varphi \triangleq \underbrace{ \frac{\exists w. \forall x. \exists y. \forall z.}{quantifier\ prefix}}_{quantifier\ prefix} \underbrace{ (y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{matrix}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false
- A play of this game: SAT and UNSAT take turns picking elements of Q.

$$[w \mapsto 1;$$

$$\varphi \triangleq \underbrace{ \exists w. \forall x. \exists y. \forall z.}_{\textit{quantifier prefix}} \underbrace{(y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{\textit{matrix}}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false
- A play of this game: SAT and UNSAT take turns picking elements of Q.

$$[w \mapsto 1; x \mapsto \frac{2}{3};$$

$$\varphi \triangleq \underbrace{ \exists w. \forall x. \exists y. \forall z.}_{\textit{quantifier prefix}} \underbrace{(y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{\textit{matrix}}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false
- A play of this game: SAT and UNSAT take turns picking elements of Q.

$$[w \mapsto 1; x \mapsto \frac{2}{3}; y \mapsto -1;$$

$$\varphi \triangleq \underbrace{ \exists w. \forall x. \exists y. \forall z.}_{\textit{quantifier prefix}} \underbrace{(y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{\textit{matrix}}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false
- A play of this game: SAT and UNSAT take turns picking elements of Q.

$$[w \mapsto 1; x \mapsto \frac{2}{3}; y \mapsto -1; x \mapsto 1]$$

$$\varphi \triangleq \underbrace{ \exists w. \forall x. \exists y. \forall z.}_{\textit{quantifier prefix}} \underbrace{(y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{\textit{matrix}}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false
- A play of this game: SAT and UNSAT take turns picking elements of Q.

$$[w \mapsto 1; x \mapsto \frac{2}{3}; y \mapsto -1; x \mapsto 1]$$

The SAT player wins if the corresponding structure is a model of the matrix.

$$\varphi \triangleq \underbrace{\exists w. \forall x. \exists y. \forall z.}_{\textit{quantifier prefix}} \underbrace{(y < 1 \lor 2w < y) \land (z < y \lor x < z)}_{\textit{matrix}}$$

- Two players: SAT and UNSAT
 - SAT wants to make the formula true
 - UNSAT wants to make the formula false
- A play of this game: SAT and UNSAT take turns picking elements of Q.

$$[w \mapsto 1; x \mapsto \frac{2}{3}; y \mapsto -1; x \mapsto 1]$$

The SAT player wins if the corresponding structure is a model of the matrix.

• φ is satisfiable \iff SAT has a winning strategy

$$\varphi \triangleq \exists w. \forall x. \exists y. \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$$

- What does it mean to improve a strategy?

- · How can we find counter-strategies?

Strategy skeletons

 $\exists w$

 $\forall x$

 $\exists y$

 $\forall z$

$$\varphi \triangleq \exists w. \forall x. \exists y. \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$$

$$x > 0$$

$$x \leq 0$$

$$x \leq 0$$

Strategy skeletons

$$\varphi \triangleq \exists w. \forall x. \exists y. \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$$

 $\exists w$

 $\forall x$

 $\exists y$

Strategy skeletons

$$\varphi \triangleq \exists w. \forall x. \exists y. \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$$

$$\varphi \triangleq \exists w. \forall x. \exists y. \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$$

$$\varphi \triangleq \exists \textit{w}. \forall \textit{x}. \exists \textit{y}. \forall \textit{z}. (y < 1 \lor 2\textit{w} < \textit{y}) \land (\textit{z} < \textit{y} \lor \textit{x} < \textit{z})$$

$$\neg ((2\underline{x} < 1 \lor 0 < 2\underline{x}) \land (\underline{z}_2 < 2\underline{x} \lor \underline{x} < \underline{z}_2))$$

$$\varphi \triangleq \exists w. \forall x. \exists y. \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$$

$$\varphi \triangleq \forall x. \exists y. x < y$$

$$\varphi \triangleq \forall x. \exists y. x < y$$

Given:

- ground formula F
- model $m \models F$
- variable x

select(m, x, F) finds a term t such that:

Given:

- ground formula F
- model $m \models F$
- variable x

select(m, x, F) finds a term t such that:

• (Model preservation) $m\{x \mapsto [\![t]\!]^m\} \models F$

Given:

- ground formula F
- model $m \models F$
- variable x

select(m, x, F) finds a term t such that:

- (Model preservation) $m\{x \mapsto [\![t]\!]^m\} \models F$
- (Finite image) {select $(m, x, F) : m \models F$ } is finite

Given:

- ground formula F
- model $m \models F$
- variable x

select(m, x, F) finds a term t such that:

- (Model preservation) $m\{x \mapsto [\![t]\!]^m\} \models F$
- (Finite image) {select $(m, x, F) : m \models F$ } is finite

Idea: there is a set of terms T such that $\exists x.F$ is equivalent to $\bigvee_{t \in T} F[x \mapsto t]$.

Use model m to select the right disjunct. (similar to model based projection - [Komuravelli, Gurfinkel, Chaki 2014]).

Experimental results

2421 instances drawn from SMTLIB2 & Mjollnir benchmark suite, 300s time limit.

