Recall Compositional Recurrence Analysis

« D: set of arithmetic transition formulas

cpeYE I X = X" AY[x = x]

CpB®YE VY

+ " ~ extract + solve system of recurrence relations
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Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables
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Tensor semantic algebra of CRA
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Tensor semantic algebra of CRA
Tensored transition formula ~ formula over four copies of the

program variables

PRV LI T Ox T T AVX =X T T
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Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

PRV LI T Ox T T AVX =X T T
+ & @ v, & as for the untensored case
c ot 2 px i XX X
cpOYEplx—xx =X AYx e T X T
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Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

PRV LI T Ox T T AVX =X T T
+ & @ v, & as for the untensored case
c ot 2 px i XX X
cpOYEplx—xx =X AYx e T X T
cEg, (@ =2+1)0 (@ =21)= (' =2+1A7 =27)

readout(®) = Im.®[x — x, x’ = m, X — m, % > X|
+ E.g., readout(s/ = 2+ 1A7 =27) =x' =2x + 2
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Newtonian program analysis is a nested fixpoint computation

Outer fixpoint
computation

1) A0

70 — (0

Inner fixpoint
computation

where Y% is the least solution of

e
Y= fit'") @ Dfi ()
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Newtonian program analysis is a nested fixpoint computation

Outer fixpoint 70) — f(ﬁ
computation i+1) — A9)
Inner fixpoint where Y is the least solution of

computation (7D) @ Dfl (V)

Outer fixpoint computation requires two ingredients:

© Ascending chain condition
* po < p1 < p2 < ... eventually stabilizes

@ Decidable entailment
* Need to be able to check p;11 < p;
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Problem: (CRA) transition formulas have neither

O Transition formulas have infinite ascending chains
(convergence is not guaranteed)

® Transition formula entailment is undecidable (convergence
can’t be detected)
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(convergence is not guaranteed)

® Transition formula entailment is undecidable (convergence
can’t be detected)

Solution: outer fixpoint computation in a domain with decidable
equivalence + widening.
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Problem: (CRA) transition formulas have neither

O Transition formulas have infinite ascending chains
(convergence is not guaranteed)

® Transition formula entailment is undecidable (convergence
can’t be detected)

Solution: outer fixpoint computation in a domain with decidable
equivalence + widening.

Incur precision loss due to abstraction + widening

We can do better!
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CRA’s iteration operator

while(i < n): CTTTTTPPPPTPTPRPee loop body :as,
if (x): zl<n ) :
()._ . S A (X' =x+iAy =y) \:
Ix.—x i My Y =yriad=x )i
else A =41 :
yi=y+i “An =n :
i =1+ 1 / ...............................
e msnraennnnns recurrences s .
E i(k) — i(k*l) +1 .
ENCINCINC I
: (B > 5 (h=1) :
: y® > gD

\Cl
e TITTITLII I loop abstraction sas=»

EEIk.kZO/\i':i+k/\x'+y':x—|—y+k(k+1)/2—|—kio/\x'Zx/\y/ZyE
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CRA’s iteration operator

while(i < n): CTTTTTPPPPTPTPRPee loop body :as,
if (%) - :1i<n .
'f()j_ . N X' =x+iny =y) \:
Ix.—x i My (Y =ytriax =0 )
else A =141 :
y=y+i1 sAR =n :
i1 i imssassssssasssssssnssnnanannnd
eeesae s ennaans recurrences =s. Polyhedron
E i(k) — i(k*l) +1
E ) 4y D) D)
: (B > y (=1 :
5 g > gD
\Cl
LT L P P e L PP PRI PEE T PP PR PRI PETTEITRETY loop abstraction s
EEIk.kZO/\i':i—l—k/\x'—i—y':x—|—y+k(k—|—1)/2—|—kio/\x'Zx/\ylzyi
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Iteration domains
[Kincaid, Breck, Boroujeni, Reps ’17]

Semantic Algebra Iteration domain

Lattice w/
Effective equivalence
& widening operators

Key idea: we have an opportunity to detect / enforce
convergence at every place we apply the x operator.



© Rewrite system of equations so all variables appear below
a star (~ Gauss-Jordan elimination):

X = aXbXc+ dWXZw(aQ bXc)*

Getensor product ~ readoD
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© Rewrite system of equations so all variables appear below
a star (~ Gauss-Jordan elimination):

X=aXbXc+ d~ X=dx(a® bXc)*

@® Resulting system can be solved iteratively:
g CRA oo : PRTPRRNE Po|yhedra ....... :

po = ala® byge)
v = dX Cl(po) :
- p1=poVa(a® bric)

(repeat until p,,+1 = py)
@ rnerrey @wisconsin



Summary

Algebraic analyses can be extended to recursive procedures
using

© Tensor domains, to re-arrange recursion into loops

® lteration domains, to detect and enforce convergence
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