Recall Compositional Recurrence Analysis

« D: set of arithmetic transition formulas

cpeYE I X = X" AY[x = x]

CpB®YE VY

+ " ~ extract + solve system of recurrence relations

PRINCETON
W UNIVERSITY @WISCONSIN

Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

INCETON
@ ey @wisconsiy

Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

Beginning of path

End of path

L ¥ PRINCETON

Tensor semantic algebra of CRA

Beginning of continuation , opies of the

program variables End of continuation
N
X

Beginning of path

End of path

L ¥ PRINCETON

Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

PRV LI T Ox T T AVX =X T T

INCETON
@ ey @wisconsiy

Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

PRV LI T Ox T T AVX =X T T
- ® ¢ P, &* as for the untensored case

@ ey @wisconsin

Tensor semantic algebra of CRA
Tensored transition formula ~ formula over four copies of the

program variables

PRV LI T Ox T T AVX =X T T
- ® ¢ P, &* as for the untensored case
. got £ olx = x',x' x|

@ ey @wisconsin

Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

PRV LI T Ox T T AVX =X T T
+ & @ v, & as for the untensored case
c ot 2 px i XX X
cpOYEplx—xx =X AYx e T X T
cEg, (@ =2+1)0 (@ =21)= (' =2+1A7 =27)

@ ey @wisconsin

Tensor semantic algebra of CRA

Tensored transition formula ~ formula over four copies of the
program variables

PRV LI T Ox T T AVX =X T T
+ & @ v, & as for the untensored case
c ot 2 px i XX X
cpOYEplx—xx =X AYx e T X T
cEg, (@ =2+1)0 (@ =21)= (' =2+1A7 =27)

readout(®) = Im.®[x — x, x’ = m, X — m, % > X|
+ E.g., readout(s/ = 2+ 1A7 =27) =x' =2x + 2

@ ey @wisconsin

Newtonian program analysis is a nested fixpoint computation

Outer fixpoint
computation

1) A0

70 — (0

Inner fixpoint
computation

where Y% is the least solution of

e
Y= fit'") @ Dfi ()

' @ ey @wisconsiy

Newtonian program analysis is a nested fixpoint computation

Outer fixpoint 70) — f(ﬁ
computation i+1) — A9)
Inner fixpoint where Y is the least solution of

computation (7D) @ Dfl (V)

Outer fixpoint computation requires two ingredients:

© Ascending chain condition
* po < p1 < p2 < ... eventually stabilizes

@ Decidable entailment
* Need to be able to check p;11 < p;

PRINCETON

3 v UNIVERSITY

B wiscons

Problem: (CRA) transition formulas have neither

O Transition formulas have infinite ascending chains
(convergence is not guaranteed)

® Transition formula entailment is undecidable (convergence
can’t be detected)

@ ey @wisconsin

Problem: (CRA) transition formulas have neither

O Transition formulas have infinite ascending chains
(convergence is not guaranteed)

® Transition formula entailment is undecidable (convergence
can’t be detected)

Solution: outer fixpoint computation in a domain with decidable
equivalence + widening.

@ ey @wisconsin

Problem: (CRA) transition formulas have neither

O Transition formulas have infinite ascending chains
(convergence is not guaranteed)

® Transition formula entailment is undecidable (convergence
can’t be detected)

Solution: outer fixpoint computation in a domain with decidable
equivalence + widening.
Incur precision loss due to abstraction + widening

@ ey @wisconsin

Problem: (CRA) transition formulas have neither

O Transition formulas have infinite ascending chains
(convergence is not guaranteed)

® Transition formula entailment is undecidable (convergence
can’t be detected)

Solution: outer fixpoint computation in a domain with decidable
equivalence + widening.

Incur precision loss due to abstraction + widening

We can do better!

@ ey @wisconsin

CRA’s iteration operator

while(i < n): CTTTTTPPPPTPTPRPee loop body :as,
if (x): zl<n) :
()._ . S A (X' =x+iAy =y) \:
Ix.—x i My Y =yriad=x)i
else A =41 :
yi=y+i “An =n :
i =1+ 1 /
e msnraennnnns recurrences s .
E i(k) — i(k*l) +1 .
ENCINCINC I
: (B > 5 (h=1) :
: y® > gD

\Cl
e TITTITLII I loop abstraction sas=»

EEIk.kZO/\i':i+k/\x'+y':x—|—y+k(k+1)/2—|—kio/\x'Zx/\y/ZyE

L ¥ PRINCETON

CRA’s iteration operator

while(i < n): CTTTTTPPPPTPTPRPee loop body :as,
if (%) - :1i<n .
'f()j_ . N X' =x+iny =y) \:
Ix.—x i My (Y =ytriax =0)
else A =141 :
y=y+i1 sAR =n :
i1 i imssassssssasssssssnssnnanannnd
eeesae s ennaans recurrences =s. Polyhedron
E i(k) — i(k*l) +1
E) 4y D) D)
: (B > y (=1 :
5 g > gD
\Cl
LT L P P e L PP PRI PEE T PP PR PRI PETTEITRETY loop abstraction s
EEIk.kZO/\i':i—l—k/\x'—i—y':x—|—y+k(k—|—1)/2—|—kio/\x'Zx/\ylzyi

L ¥ PRINCETON

Iteration domains
[Kincaid, Breck, Boroujeni, Reps ’17]

Semantic Algebra Iteration domain

Lattice w/
Effective equivalence
& widening operators

Key idea: we have an opportunity to detect / enforce
convergence at every place we apply the x operator.

© Rewrite system of equations so all variables appear below
a star (~ Gauss-Jordan elimination):

X = aXbXc+ dWXZw(aQ bXc)*

Getensor product ~ readoD

PRINCETON
W UNIVERSITY @WISCONSIN

© Rewrite system of equations so all variables appear below
a star (~ Gauss-Jordan elimination):

X=aXbXc+ d~ X=dx(a® bXc)*

@® Resulting system can be solved iteratively:
g CRA oo : PRTPRRNE Po|yhedra :

po = ala® byge)
v = dX Cl(po) :
- p1=poVa(a® bric)

(repeat until p,,+1 = py)
@ rnerrey @wisconsin

Summary

Algebraic analyses can be extended to recursive procedures
using

© Tensor domains, to re-arrange recursion into loops

® lteration domains, to detect and enforce convergence

PRINCETON
UNIVERSITY @WISCONSIN

