A Practical Algorithm for Structure Embedding

Charlie Murphy

Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds

Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds

• Finite relational **structure** $\langle \mathcal{U}, \mathcal{R} \rangle$:

- Finite relational **structure** $\langle \mathcal{U}, \mathcal{R} \rangle$:
 - \mathcal{U} : finite universe of elements

- Finite relational **structure** $\langle \mathcal{U}, \mathcal{R} \rangle$:
 - \mathcal{U} : finite universe of elements
 - ${\mathcal R}$: finite set of relations over elements of ${\mathcal U}$

- Finite relational **structure** $\langle \mathcal{U}, \mathcal{R} \rangle$:
 - \mathcal{U} : finite universe of elements
 - ${\mathcal R}$: finite set of relations over elements of ${\mathcal U}$

• Examples:

- Finite relational **structure** $\langle \mathcal{U}, \mathcal{R} \rangle$:
 - \mathcal{U} : finite universe of elements
 - \mathcal{R} : finite set of relations over elements of \mathcal{U}

- Examples:
 - Graph $\equiv \langle V, edge \rangle$

- Finite relational **structure** $\langle \mathcal{U}, \mathcal{R} \rangle$:
 - \mathcal{U} : finite universe of elements
 - \mathcal{R} : finite set of relations over elements of \mathcal{U}

- Examples:
 - Graph $\equiv \langle V, edge \rangle$
 - NFA $\equiv \langle S, \{final, start\} \cup \{\Delta_a : a \in \Sigma\} \rangle$

- Finite relational **structure** $\langle \mathcal{U}, \mathcal{R} \rangle$:
 - \mathcal{U} : finite universe of elements
 - \mathcal{R} : finite set of relations over elements of \mathcal{U}

• Examples:

- Graph $\equiv \langle V, edge \rangle$
- NFA $\equiv \langle S, \{final, start\} \cup \{\Delta_a : a \in \Sigma\} \rangle$
- Database $\equiv \langle Values, \{table_1, ..., table_n\} \rangle$

 $\mathfrak{F} \stackrel{\text{def}}{=} \langle \{1,2,3,4,5\}, Start, Final, \Delta_a, \Delta_b \rangle$

$$\mathfrak{F} \stackrel{\text{def}}{=} \langle \{1,2,3,4,5\}, Start, Final, \Delta_a, \Delta_b \rangle$$
 where:
$$Start \stackrel{\text{def}}{=} \{1\}$$

$$Final \stackrel{\text{def}}{=} \{4\}$$

$$\Delta_a \stackrel{\text{def}}{=} \{\langle 1,2 \rangle, \langle 1,5 \rangle, \langle 3,1 \rangle, \langle 4,5 \rangle, \langle 5,4 \rangle \}$$

$$\Delta_b \stackrel{\text{def}}{=} \{\langle 1,3 \rangle, \langle 1,4 \rangle, \langle 2,1 \rangle, \langle 4,4 \rangle, \langle 5,5 \rangle \}$$

$$\mathfrak{A} \stackrel{\mathrm{def}}{=} \left\langle \{1,2,3,4\}, p^{\mathfrak{A}}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\rangle$$

$$p^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{1\}$$

$$q^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 1,2\rangle, \langle 1,3\rangle\}$$

$$r^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 3,4\rangle\}$$

$$\mathfrak{A} \stackrel{\mathrm{def}}{=} \left\langle \{1,2,3,4\}, p^{\mathfrak{A}}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\rangle$$

$$p^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{1\}$$

$$q^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 1,2\rangle, \langle 1,3\rangle\}$$

$$r^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 3,4\rangle\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\langle \{1,2,3,4\}, p^{\mathfrak{B}}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\rangle$$

$$p^{\mathfrak{B}} \stackrel{\text{def}}{=} \left\{ 1,3 \right\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \left\{ \langle 1,4 \rangle, \langle 1,5 \rangle, \langle 3,2 \rangle \right\}$$

$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \left\{ \langle 2,5 \rangle, \langle 5,2 \rangle \right\}$$

$$\mathfrak{A} \stackrel{\mathrm{def}}{=} \left\langle \{1,2,3,4\}, p^{\mathfrak{A}}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\rangle$$

$$p^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{1\}$$

$$q^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 1,2\rangle, \langle 1,3\rangle\}$$

$$r^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 3,4\rangle\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\langle \{1,2,3,4\}, p^{\mathfrak{B}}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\rangle$$

$$p^{\mathfrak{B}} \stackrel{\text{def}}{=} \left\{ 1,3 \right\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \left\{ \langle 1,4 \rangle, \langle 1,5 \rangle, \langle 3,2 \rangle \right\}$$

$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \left\{ \langle 2,5 \rangle, \langle 5,2 \rangle \right\}$$

$$\mathfrak{A} \stackrel{\mathrm{def}}{=} \left\langle \{1,2,3,4\}, p^{\mathfrak{A}}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\rangle$$

$$p^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{1\}$$

$$q^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 1,2\rangle, \langle 1,3\rangle\}$$

$$r^{\mathfrak{A}} \stackrel{\mathrm{def}}{=} \{\langle 3,4\rangle\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\langle \{1,2,3,4\}, p^{\mathfrak{B}}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\rangle$$

$$p^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,3\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{\langle 1,4\rangle, \langle 1,5\rangle, \langle 3,2\rangle\}$$

$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \{\langle 2,5\rangle, \langle 5,2\rangle\}$$

• Given $\mathfrak A$ and $\mathfrak B$ over a common **vocabulary** $\langle Q, ar \rangle$

- Given $\mathfrak A$ and $\mathfrak B$ over a common **vocabulary** $\langle Q, ar \rangle$
 - A **homomorphism** is a function $h:A \rightarrow B$

- Given $\mathfrak A$ and $\mathfrak B$ over a common **vocabulary** $\langle Q, ar \rangle$
 - A **homomorphism** is a function $h:A \rightarrow B$
 - $\forall q \in Q. \langle a_1, ..., a_{ar(q)} \rangle \in q^{\mathfrak{A}} \implies \langle h(a_1), ..., h(a_{ar(q)}) \rangle \in q^{\mathfrak{B}}$

- Given $\mathfrak A$ and $\mathfrak B$ over a common vocabulary $\langle Q, ar \rangle$
 - A **homomorphism** is a function $h: A \rightarrow B$
 - $\forall q \in Q. \langle a_1, ..., a_{ar(q)} \rangle \in q^{\mathfrak{A}} \implies \langle h(a_1), ..., h(a_{ar(q)}) \rangle \in q^{\mathfrak{B}}$
 - An **embedding** is an injective homomorphism

- Given $\mathfrak A$ and $\mathfrak B$ over a common vocabulary $\langle Q, ar \rangle$
 - A **homomorphism** is a function $h: A \rightarrow B$

•
$$\forall q \in Q. \langle a_1, ..., a_{ar(q)} \rangle \in q^{\mathfrak{A}} \implies \langle h(a_1), ..., h(a_{ar(q)}) \rangle \in q^{\mathfrak{B}}$$

- An **embedding** is an injective homomorphism
- Structure Embedding Problem:
 - Given $\mathfrak A$ and $\mathfrak B$ determine if $\mathfrak A$ embeds into $\mathfrak B$

- Given \mathfrak{A} and \mathfrak{B} over a common vocabulary $\langle Q, ar \rangle$
 - A **homomorphism** is a function $h: A \rightarrow B$

•
$$\forall q \in Q. \langle a_1, ..., a_{ar(q)} \rangle \in q^{\mathfrak{A}} \implies \langle h(a_1), ..., h(a_{ar(q)}) \rangle \in q^{\mathfrak{B}}$$

- An **embedding** is an injective homomorphism
- Structure Embedding Problem:
 - Given $\mathfrak A$ and $\mathfrak B$ determine if $\mathfrak A$ embeds into $\mathfrak B$
 - NP-Complete

- MatchEmbeds
 - Structure Embedding Problem

- MatchEmbeds
 - Structure Embedding Problem
 - NP Complete

- MatchEmbeds
 - Structure Embedding Problem
 - NP Complete
 - Occurs during verification of multi-threaded programs
 - Many (1000's) embedding queries are often required

- MatchEmbeds
 - Structure Embedding Problem
 - NP Complete
 - Occurs during verification of multi-threaded programs
 - Many (1000's) embedding queries are often required
 - Mostly monadic predicates
 - Most involve only a small number of threads

- MatchEmbeds
 - Structure Embedding Problem
 - NP Complete
 - Occurs during verification of multi-threaded programs
 - Many (1000's) embedding queries are often required
 - Mostly monadic predicates
 - Most involve only a small number of threads
 - Backtracking search

- MatchEmbeds
 - Structure Embedding Problem
 - NP Complete
 - Occurs during verification of multi-threaded programs
 - Many (1000's) embedding queries are often required
 - Mostly monadic predicates
 - Most involve only a small number of threads
 - Backtracking search
 - Polytime for monadic case

- MatchEmbeds
 - Structure Embedding Problem
 - NP Complete
 - Occurs during verification of multi-threaded programs
 - Many (1000's) embedding queries are often required
 - Mostly monadic predicates
 - Most involve only a small number of threads
 - Backtracking search
 - Polytime for monadic case
 - Practical for "real life" instances
 - Solves difficult instances quickly

Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds

Multi-threaded Program Verification

```
main_count():
    count = 0
    for i = 1 to N:
        fork thread_count
    assert(count ≤ N)

thread_count():
    count = count+1
```

Multi-threaded Program Verification

```
main_count():
    count = 0
    for i = 1 to N:
        fork thread_count
    assert(count \leq N)

thread_count():
    count = count+1
```

```
main ticket():
 s = t = 0
 while (*)
  fork thread ticket
thread ticket():
 local m
m = t++
 while (s < m); skip</pre>
 //mutual exclusion
 S++
```

Represent program states by conjunction of predicates

Represent program states by conjunction of predicates

```
Fib(a, b, n):
1 while (n > 0)
2 tmp = a + b
3 a = b
4 b = tmp
5 n--
6 return a
```

Represent program states by conjunction of predicates

```
Fib(a, b, n):

1 while (n > 0)

2 tmp = a + b

3 a = b

4 b = tmp

5 n--

6 return a
```

Predicate Abstraction

$$(pc = 3) \land (n > 0) \land (tmp \ge 2a) \land (a < b)$$

Represent program states by conjunction of predicates

```
Fib(a, b, n):

while (n > 0)

tmp = a + b

a = b

b = tmp

n--

return a
```

Predicate Abstraction

$$(pc = 3) \land (n > 0) \land (tmp \ge 2a) \land (a < b)$$

What about multi-threaded programs?

```
main ticket():
1 s = t = 0
2 while (*)
3 fork thread ticket
 thread ticket():
4 local m
5 m = t++
6 while (s < m); skip
7 //mutual exclusion
8 s++
```

```
main ticket():
                                          Relational vocabulary \langle Q, ar \rangle
                                            Q = \{l_i, S_{lt}, M_{lt}, \}
1 s = t = 0
                                            ar(l_i) = ar(S_{lt}) = 1, ar(M_{lt})
2 while (*)
3 fork thread ticket
 thread ticket():
4 local m
5 m = t++
6 \text{ while } (s < m); \text{ skip}
7 //mutual exclusion
8 s++
```

```
Relational vocabulary \langle Q, ar \rangle
 main ticket():
                                                        Q = \{l_i, S_{lt}, M_{lt}, \}
1 s = t = 0
                                                        ar(l_i) = ar(S_{lt}) = 1, ar(M_{lt}) = 2
2 while (*)
3 fork thread ticket
  thread ticket():
4 local m
                                                          l_4(j) \stackrel{\text{def}}{=} \text{thread j is at location 4}
5 m = t++
                                                        S_{lt}(j) \stackrel{\text{def}}{=} s < m_i
6 \text{ while } (s < m); \text{ skip}
                                                      M_{lt}(i,j) \stackrel{\text{def}}{=} m_i < m_i
7 //mutual exclusion
8 s++
```

```
Relational vocabulary \langle Q, ar \rangle
 main ticket():
                                                           Q = \{l_i, S_{lt}, M_{lt}, \}
1 s = t = 0
                                                           ar(l_i) = ar(S_{lt}) = 1, ar(M_{lt}) = 2
2 while (*)
3 fork thread ticket
                                                    l_4(1) \wedge l_6(2) \wedge l_7(3) \wedge S_{lt}(2) \wedge M_{lt}(2,3)
  thread ticket():
4 local m
                                                             l_4(j) \stackrel{\text{def}}{=} \text{thread j is at location 4}
5 m = t++
                                                           S_{lt}(j) \stackrel{\text{def}}{=} s < m_i
6 \text{ while } (s < m); \text{ skip}
                                                        M_{lt}(i,j) \stackrel{\text{def}}{=} m_i < m_i
7 //mutual exclusion
8 s++
```

Automata used to verify safety of multi-threaded programs

- Automata used to verify safety of multi-threaded programs
 - Structures represent program state

- Automata used to verify safety of multi-threaded programs
 - Structures represent program state
 - Program statements transition between structures

- Automata used to verify safety of multi-threaded programs
 - Structures represent program state
 - Program statements transition between structures
 - Program safety is reduced to checking emptiness of a PA

- Automata used to verify safety of multi-threaded programs
 - Structures represent program state
 - Program statements transition between structures
 - Program safety is reduced to checking emptiness of a PA
- Infinite state automata over infinite alphabet $(\Sigma \times \mathbb{N})$

• Determine if an accepting structure is reachable

- Determine if an accepting structure is reachable
- Undecidable in general

- Determine if an accepting structure is reachable
- Undecidable in general
 - Decidable for monadic PA
 - All predicates have arity ≤ 1
 - Predicates involving local variables of a single thread

- Determine if an accepting structure is reachable
- Undecidable in general
 - Decidable for monadic PA
 - All predicates have arity ≤ 1
 - Predicates involving local variables of a single thread
 - Only consider transitions along *interesting* ids
 - Universe of the current structure and 1 fresh element

- Determine if an accepting structure is reachable
- Undecidable in general
 - Decidable for monadic PA
 - All predicates have arity ≤ 1
 - Predicates involving local variables of a single thread
 - Only consider transitions along interesting ids
 - Universe of the current structure and 1 fresh element
 - Use embeddings to prune search space (Downward Compatibility)
 - Well structured transition system [Finkel and Schnoebelen. 2001]

Downward Compatibility

A wqo, \leq , is downward compatible with transition system, $\langle S, \rightarrow \rangle$, if

 $\forall t_1 \leq s_1 \text{ and transition } s_1 \rightarrow s_2 \text{ then } \exists t_2 \text{ s.t.} t_1 \rightarrow t_2 \text{ and } t_2 \leq s_2$

Downward Compatibility

A wqo, \leq , is downward compatible with transition system, $\langle S, \rightarrow \rangle$, if

 $\forall t_1 \leq s_1 \text{ and transition } s_1 \rightarrow s_2 \text{ then } \exists t_2 \text{ s. t. } t_1 \rightarrow t_2 \text{ and } t_2 \leq s_2$

For PA and embedding if a path from s_1 accepts then a path from t_1 will accept.

Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds

Match Embeds

Joint work with Zak Kincaid

MatchEmbeds

- Bipartite Graphs
 - Matchings

MatchEmbeds

- Bipartite Graphs
 - Matchings
- Monadic Case
 - Reduction to bipartite graph matching

MatchEmbeds

- Bipartite Graphs
 - Matchings
- Monadic Case
 - Reduction to bipartite graph matching
- Generalize bipartite graph matching strategy to general structures
 - Construct bipartite graph
 - Search matchings of graph for an embedding

Bipartite Graphs

- Bipartite Graphs, $G = \langle U, V, E \rangle$
 - *U* and *V* are disjoint
 - $E \subseteq U \times V$

Bipartite Graphs

- Bipartite Graphs, $G = \langle U, V, E \rangle$
 - *U* and *V* are disjoint
 - $E \subseteq U \times V$
- Matching, $M \subseteq E$
 - At most one edge contains any vertex
 - $\forall u \in U$, $|\{\langle u, v \rangle \in M\}| \le 1$
 - $\forall v \in V$, $|\{\langle u, v \rangle \in M\}| \le 1$

Bipartite Graphs

- Bipartite Graphs, $G = \langle U, V, E \rangle$
 - *U* and *V* are disjoint
 - $E \subseteq U \times V$
- Matching, $M \subseteq E$
 - At most one edge contains any vertex
 - $\forall u \in U, |\{\langle u, v \rangle \in M\}| \le 1$
 - $\forall v \in V$, $|\{\langle u, v \rangle \in M\}| \le 1$
- Total Matching, M
 - *M* is a matching
 - M covers U(|M| = |U|)

$$\mathfrak{A} \stackrel{\text{def}}{=} \langle \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \rangle$$

$$q^{\mathfrak{A} \stackrel{\text{def}}{=} \{1\}}$$

$$r^{\mathfrak{A} \stackrel{\text{def}}{=} \{2,3\}}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\langle \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\rangle$$
$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\}$$
$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,3\}$$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\}$$

B

$$\binom{1}{\{q\}}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\}$$
$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\}$$
$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,3\}$$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\langle \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\rangle$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$\boldsymbol{A}$$

B

$$1 \choose \{q\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\}$$
$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\}$$
$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,3\}$$

{*r*}

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{r\}$$

$$\{q\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\langle \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\rangle$$
$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\}$$
$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,3\}$$

$$\{r\}$$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{r\}$$

$$\{q\}$$

$$\{r\}$$
 $\{q\}$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\} \quad \begin{array}{l} sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q,r\} \\ sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{q\} \\ sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{q,r\} \end{array}$$

B

 $\{q,r\}$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{r\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\} \quad \begin{array}{l} sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q,r\} \\ sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{q\} \\ sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{q,r\} \end{array}$$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{r\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\} \quad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q,r\}$$

$$r^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,3\} \quad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{q\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{q,r\}$$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{r\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\} \quad \begin{array}{l} sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q,r\} \\ sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{q\} \\ sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{q,r\} \end{array}$$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{r\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\}$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\} \quad \begin{array}{l} sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q,r\} \\ sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{q\} \\ sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{q,r\} \end{array}$$

$$\mathfrak{A} \stackrel{\text{def}}{=} \left\{ \{1,2,3\}, q^{\mathfrak{A}}, r^{\mathfrak{A}} \right\}$$

$$q^{\mathfrak{A}} \stackrel{\text{def}}{=} \{1\} \qquad sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q\}$$

$$r^{\mathfrak{A}} \stackrel{\text{def}}{=} \{2,3\} \qquad sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{r\}$$

$$sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{r\}$$

$$\mathfrak{B} \stackrel{\text{def}}{=} \left\langle \{1,2,3\}, q^{\mathfrak{B}}, r^{\mathfrak{B}} \right\rangle$$

$$q^{\mathfrak{B}} \stackrel{\text{def}}{=} \{1,2,3\} \quad \begin{array}{l} sig(\mathfrak{A},1) \stackrel{\text{def}}{=} \{q,r\} \\ sig(\mathfrak{A},2) \stackrel{\text{def}}{=} \{q\} \\ sig(\mathfrak{A},3) \stackrel{\text{def}}{=} \{q,r\} \end{array}$$

- ullet ${\mathfrak A}$ and ${\mathfrak B}$
 - Structures over common vocabulary
 - Each relation has arity 1

- \bullet \mathfrak{A} and \mathfrak{B}
 - Structures over common vocabulary
 - Each relation has arity 1
- Signature Graph
 - $sig(\mathfrak{A}, a) \equiv \{q \in Q : q(a) \in \mathfrak{A}\}\$

- \bullet \mathfrak{A} and \mathfrak{B}
 - Structures over common vocabulary
 - Each relation has arity 1

Signature Graph

•
$$sig(\mathfrak{A}, a) \stackrel{\text{def}}{=} \{ q \in Q : \exists \langle a_1, \dots, a_{ar(q)} \rangle \in q^{\mathfrak{A}} . \exists i. a = a_i \}$$

- \bullet \mathfrak{A} and \mathfrak{B}
 - Structures over common vocabulary
 - Each relation has arity 1

Signature Graph

- $sig(\mathfrak{A}, a) \stackrel{\text{def}}{=} \{ q \in Q : \exists \langle a_1, \dots, a_{ar(q)} \rangle \in q^{\mathfrak{A}} . \exists i. a = a_i \}$
- $Sig(\mathfrak{A},\mathfrak{B}) \stackrel{\text{def}}{=} G(A,B,E)$
 - $E \stackrel{\text{def}}{=} \{ \langle a, b \rangle \in A \times B : sig(\mathfrak{A}, a) \subseteq sig(\mathfrak{B}, b) \}$

- \bullet \mathfrak{A} and \mathfrak{B}
 - Structures over common vocabulary
 - Each relation has arity 1

Signature Graph

- $sig(\mathfrak{A}, a) \stackrel{\text{def}}{=} \{ q \in Q : \exists \langle a_1, \dots, a_{ar(q)} \rangle \in q^{\mathfrak{A}} . \exists i. a = a_i \}$
- $Sig(\mathfrak{A},\mathfrak{B}) \stackrel{\text{def}}{=} G(A,B,E)$
 - $E \stackrel{\text{def}}{=} \{ \langle a, b \rangle \in A \times B : sig(\mathfrak{A}, a) \subseteq sig(\mathfrak{B}, b) \}$
- $M \subseteq E$ is a total matching on A iff f_M is a structure embedding

- \bullet $\mathfrak A$ and $\mathfrak B$
 - Structures over common vocabulary
 - Each relation has arity 1
- Signature Graph
 - $sig(\mathfrak{A}, a) \stackrel{\text{def}}{=} \{ q \in Q : \exists \langle a_1, \dots, a_{ar(q)} \rangle \in q^{\mathfrak{A}} . \exists i. a = a_i \}$
 - $Sig(\mathfrak{A},\mathfrak{B}) \stackrel{\mathrm{def}}{=} G(A,B,E)$
 - $E \stackrel{\text{def}}{=} \{ \langle a, b \rangle \in A \times B : sig(\mathfrak{A}, a) \subseteq sig(\mathfrak{B}, b) \}$
 - $M \subseteq E$ is a total matching on A iff f_M is a structure embedding
- Structure embedding takes $O(|A||B|\sqrt{|A|+|B|})$ [Hopcroft and Karp. 1973]

• Inspired by monadic reduction to bipartite graph matching

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph
 - 2. Compute maximum matching

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph
 - 2. Compute maximum matching
 - 3. Check for conflicts

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph
 - 2. Compute maximum matching
 - 3. Check for conflicts
 - 4. Decide on edges in matching and recurse

General Case

General Case

General Case

$$M_1 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle\}$$
 $M_2 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle\}$
 $M_3 \stackrel{\text{def}}{=} \{\langle 1,3 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle\}$
 $M_4 \stackrel{\text{def}}{=} \{\langle 1,3 \rangle, \langle 2,4 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle\}$
 $M_5 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,3 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle\}$
 $M_6 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,3 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle\}$
 $M_7 \stackrel{\text{def}}{=} \{\langle 1,3 \rangle, \langle 2,1 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle\}$
 $M_8 \stackrel{\text{def}}{=} \{\langle 1,3 \rangle, \langle 2,1 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle\}$

- Consistent with q(1,2)
 - $\exists q(3,2) \in \mathfrak{B} \land \langle 2,2 \rangle \in G$

- Consistent with q(1,2)
 - $\exists q(3,2) \in \mathfrak{B} \land \langle 2,2 \rangle \in G$
- Consistent with q(1,3)
 - $\exists q(3,2) \in \mathfrak{B} \land \langle 3,2 \rangle \in G$

- Inconsistent with q(1,2)
 - $\nexists q(*,3) \in \mathfrak{B}$

Goals:

Remove inconsistent edges

Goals:

- Remove inconsistent edges
- Preserve embeddings

Goals:

- Remove inconsistent edges
- Preserve embeddings
- Efficiently Computable $O(E^2)$
 - Fixpoint Algorithm¹

[Russel and Norvig. 2009]¹

$$M_1 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle\}$$

 $M_2 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle\}$
 $M_3 \stackrel{\text{def}}{=} \{\langle 1,3 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle\}$
 $M_4 \stackrel{\text{def}}{=} \{\langle 1,3 \rangle, \langle 2,4 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle\}$

Compute Matching

 $M_1 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle \}$

Compute Conflict Set

$$M_1 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle \}$$

$$Conflict(f_{M_1}) \stackrel{\text{def}}{=} \{q(1,3)\}$$

Compute Conflict Set

$$M_1 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle \}$$

$$Conflict(f_{M_1}) \stackrel{\text{def}}{=} \{q(1,3)\}$$

Compute Decisions

$$M_1 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle \}$$

$$Conflict(f_{M_1}) \stackrel{\text{def}}{=} \{q(1,3)\}$$

$$Decisions(M_1) \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 3,2 \rangle\}$$

Compute Decisions

$$M_1 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,2 \rangle, \langle 4,5 \rangle \}$$

$$Conflict(f_{M_1}) \stackrel{\text{def}}{=} \{q(1,3)\}$$

$$Decisions(M_1) \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 3,2 \rangle\}$$

Decide $[3 \mapsto 2]$

• Remove (3,5)

Decide $[3 \mapsto 2]$

 $\{p,q\}$

 $\{p,q\}$

{*q*}

 $\{q,r\}$

• Remove $\langle 3,5 \rangle$, $\langle 2,2 \rangle$, $\langle 4,2 \rangle$

Decide $[3 \mapsto 2]$

- Remove (3,5), (2,2), (4,2)
- Compute consistent sub-graph

Backtrack $[3 \mapsto 2]$

Backtrack $[3 \mapsto 2]$

• Blame $\langle 3,2 \rangle$

• Blame (3,2)

 $\{p,q\}$

{q}

• Compute consistent sub-graph

Compute Matching

 $M_2 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle \}$

Compute Conflict Set

$$M_2 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle \}$$

$$Conflict(f_{M_2}) \stackrel{\text{def}}{=} \emptyset$$

Compute Conflict Set

$$M_2 \stackrel{\text{def}}{=} \{\langle 1,1 \rangle, \langle 2,4 \rangle, \langle 3,5 \rangle, \langle 4,2 \rangle \}$$

$$Conflict(f_{M_2}) \stackrel{\text{def}}{=} \emptyset$$

 f_{M_2} is an Embedding

Function embeds(G) $G \leftarrow filter(G)$

```
Function embeds(G)
G \leftarrow filter(G)
M \leftarrow maximum\_matching(G)
```

```
Function embeds(G)
G \leftarrow filter(G)
M \leftarrow maximum\_matching(G)
if |M| \neq |G.A| then
return false
end
```

```
Function embeds(G)
G \leftarrow filter(G)
M \leftarrow maximum\_matching(G)
if |M| \neq |G.A| then
return false
end
if f_M is an embedding then
return true
end
```

```
Function embeds(G)
G \leftarrow filter(G)
M \leftarrow maximum\_matching(G)
if |M| \neq |G,A| then
return \ false
end
if \ f_M \ is \ an \ embedding \ then
return \ true
end
Select \ a \ decision \ \langle a,b \rangle \in M
```

```
Function embeds(G)
G \leftarrow filter(G)
M \leftarrow maximum\_matching(G)
if |M| \neq |G,A| then
return false
end
if f_M is an embedding then
return true
end
Select\ a\ decision\ \langle a,b\rangle \in M
if embeds(G\setminus\{\langle u,v\rangle\in E: u=a\ xor\ v=b\}) then
return true
```

```
Function embeds(G)
 G \leftarrow filter(G)
 M \leftarrow \mathbf{maximum\_matching}(G)
 if |M| \neq |G.A| then
   return false
  end
 if f_M is an embedding then
    return true
  end
 Select a decision \langle a, b \rangle \in M
 if embeds(G \setminus \{\langle u, v \rangle \in E : u = a \text{ xor } v = b\}) then
    return true
 else
   return embeds(G\setminus\{\langle a,b\rangle\})
  end
```

• Inspired by monadic reduction to bipartite graph matching

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph
 - 2. Compute maximum matching

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph
 - 2. Compute maximum matching
 - 3. Check for conflicts

- Inspired by monadic reduction to bipartite graph matching
 - If f_M is a structure embedding then $M \subseteq E$ is a matching covering A
- Backtracking search algorithm over total matchings
 - 1. Remove inconsistent edges from graph
 - 2. Compute maximum matching
 - 3. Check for conflicts
 - 4. Decide on edges in matching and recurse

Match Embeds for Program verification

Practical procedure for deciding structure embedding problem

Match Embeds for Program verification

- Practical procedure for deciding structure embedding problem
- For Predicate Automata prune unnecessary branches:

Match Embeds for Program verification

- Practical procedure for deciding structure embedding problem
- For Predicate Automata prune unnecessary branches:

• Need to search for some already explored t_1 to prune s_1 .

- Check if B embeds a structure within a set of structures
 - $\exists \mathfrak{A} \in Str$. \mathfrak{A} embeds into \mathfrak{B}

- Check if B embeds a structure within a set of structures
 - $\exists \mathfrak{A} \in Str$. \mathfrak{A} embeds into \mathfrak{B}
- Key idea: no need to check all structures

- Check if B embeds a structure within a set of structures
 - $\exists \mathfrak{A} \in Str$. \mathfrak{A} embeds into \mathfrak{B}
- Key idea: no need to check all structures
 - Store structures in a k-d tree

- Check if B embeds a structure within a set of structures
 - $\exists \mathfrak{A} \in Str$. \mathfrak{A} embeds into \mathfrak{B}
- Key idea: no need to check all structures
 - Store structures in a k-d tree
 - Map each \mathfrak{A} to $v(\mathfrak{A}) \in \mathbb{N}^d$

- Check if B embeds a structure within a set of structures
 - $\exists \mathfrak{A} \in Str$. \mathfrak{A} embeds into \mathfrak{B}
- Key idea: no need to check all structures
 - Store structures in a k-d tree
 - Map each \mathfrak{A} to $v(\mathfrak{A}) \in \mathbb{N}^d$
 - If \mathfrak{A} embeds into \mathfrak{B} then $v(\mathfrak{A}) \leq v(\mathfrak{B})$

- Check if B embeds a structure within a set of structures
 - $\exists \mathfrak{A} \in Str$. \mathfrak{A} embeds into \mathfrak{B}
- Key idea: no need to check all structures
 - Store structures in a k-d tree
 - Map each \mathfrak{A} to $v(\mathfrak{A}) \in \mathbb{N}^d$
 - If $\mathfrak A$ embeds into $\mathfrak B$ then $v(\mathfrak A) \leq v(\mathfrak B)$
 - Use range queries on k-d tree and test returned structures

- Let structures be over vocabulary $\langle Q, ar \rangle$
 - v maps structures to $2^{|Q|}$ vectors
 - $v(\mathfrak{A})_i = 1 \Leftrightarrow q_i^{\mathfrak{A}} \neq \emptyset \quad (q_i(\dots) \in \mathfrak{A})$

- Let structures be over vocabulary $\langle Q, ar \rangle$
 - v maps structures to $2^{|Q|}$ vectors
 - $v(\mathfrak{A})_i = 1 \Leftrightarrow q_i^{\mathfrak{A}} \neq \emptyset \quad (q_i(\dots) \in \mathfrak{A})$

If $\mathfrak A$ embeds into $\mathfrak B$

$$v(\mathfrak{A})_i = 1 \implies v(\mathfrak{B})_i = 1$$

 $v(\mathfrak{A}) \le v(\mathfrak{B})$

- Let structures be over vocabulary $\langle Q, ar \rangle$
 - v maps structures to $2^{|Q|}$ vectors
 - $v(\mathfrak{A})_i = 1 \Leftrightarrow q_i^{\mathfrak{A}} \neq \emptyset \quad (q_i(\dots) \in \mathfrak{A})$

If $\mathfrak A$ embeds into $\mathfrak B$

$$v(\mathfrak{A})_i = 1 \implies v(\mathfrak{B})_i = 1$$

 $v(\mathfrak{A}) \le v(\mathfrak{B})$

k-d Tree Structure

- Range Query: $\mathfrak{A} = \langle q_2(1), q_2(2) \rangle$
 - 1. Check root
 - 2. Check left tree
 - 3. At level *i* check right tree if $q_{i+1}^{\mathfrak{A}} \neq \emptyset$

- Range Query: $\mathfrak{A} = \langle q_2(1), q_2(2) \rangle$
 - 1. Check root
 - 2. Check left tree
 - 3. At level *i* check right tree if $q_{i+1}^{\mathfrak{A}} \neq \emptyset$

- Range Query: $\mathfrak{A} = \langle q_2(1), q_2(2) \rangle$
 - 1. Check root
 - 2. Check left tree
 - 3. At level *i* check right tree if $q_{i+1}^{\mathfrak{A}} \neq \emptyset$

- Range Query: $\mathfrak{A} = \langle q_2(1), q_2(2) \rangle$
 - 1. Check root
 - 2. Check left tree
 - 3. At level *i* check right tree if $q_{i+1}^{\mathfrak{A}} \neq \emptyset$

- Range Query: $\mathfrak{A} = \langle q_2(1), q_2(2) \rangle$
 - 1. Check root
 - 2. Check left tree
 - 3. At level *i* check right tree if $q_{i+1}^{\mathfrak{A}} \neq \emptyset$

• Is Match embeds Practical?

- Is Match embeds Practical?
 - Does it improve performance of Proof Spaces?

- Is Match embeds Practical?
 - Does it improve performance of Proof Spaces?
 - Does the k-d structure improve Proof Spaces?

- Is Match embeds Practical?
 - Does it improve performance of Proof Spaces?
 - Does the k-d structure improve Proof Spaces?
- Compared to Constraint Satisfaction Problem Solvers:
 - Gecode a top competitor in MiniZinc (CSP Competition)
 - HaifaCSP 1st prize in 2017 MiniZinc competition
 - OrTool's Google's Optimization/CSP solver

Given structures $\mathfrak{A}=\langle A,q_1,\ldots,q_n\rangle$ and $\mathfrak{B}=\langle B,p_1,\ldots,p_m\rangle$

```
Given structures \mathfrak{A}=\langle A,q_1,\ldots,q_n\rangle and \mathfrak{B}=\langle B,p_1,\ldots,p_m\rangle
For each a\in A:
create variable X_a with domain \{b\in B\colon sig(\mathfrak{A},a)\subseteq sig(\mathfrak{B},b)\}
```

```
Given structures \mathfrak{A} = \langle A, q_1, ..., q_n \rangle and \mathfrak{B} = \langle B, p_1, ..., p_m \rangle
For each a \in A:
create variable X_a with domain \{b \in B : sig(\mathfrak{A}, a) \subseteq sig(\mathfrak{B}, b)\}
```

```
For each \langle a, a' \rangle \in A \times A \ s.t. \ a \neq a': (all-different) create constraint X_a \neq X_{a'}
```

```
Given structures \mathfrak{A} = \langle A, q_1, ..., q_n \rangle and \mathfrak{B} = \langle B, p_1, ..., p_m \rangle
For each a \in A:
create variable X_a with domain \{b \in B : sig(\mathfrak{A}, a) \subseteq sig(\mathfrak{B}, b)\}
```

For each $\langle a, a' \rangle \in A \times A \ s.t. \ a \neq a'$: (all-different) create constraint $X_a \neq X_{a'}$

For each
$$q_i \in \mathfrak{A}$$
 and each $\langle a_1, \dots, a_{ar(q_i)} \rangle \in q_i^{\mathfrak{A}}$: create constraint $\langle X_{a_1}, \dots, X_{a_{ar(q_i)}} \rangle \in q_i^{\mathfrak{B}}$

Experiment Count Threads

```
main():
    count = 0
    for i = 1 to N:
        fork thread
    assert(count \le N)

thread():
    count = count+1
```


Experiment Secret Sharing

```
main():
 from = 0
 while (*)
  local secret = *
  assume (secret > 0)
  for i = 1 to N:
   to = secret
   fork thread
   while (to > 0): skip
  if (from > 0):
   assert(from == secret)
thread():
  local m = to
  to = 0
  from = m
```


- Is Match embeds Practical?
 - Does it improve performance of Proof Spaces?
 - Does the k-d structure improve Proof Spaces?

- Is Match embeds Practical?
 - Does it improve performance of Proof Spaces?
 - Does the k-d structure improve Proof Spaces?
- Can MatchEmbeds solve difficult problem instances?

- Is Match embeds Practical?
 - Does it improve performance of Proof Spaces?
 - Does the k-d structure improve Proof Spaces?
- Can MatchEmbeds solve difficult problem instances?

- Compared to Constraint Satisfaction Problem Solvers:
 - Gecode a top competitor in MiniZinc (CSP Competition)
 - HaifaCSP 1st prize in 2017 MiniZinc competition
 - OrTool's Google's Optimization/CSP solver

PA emptiness checks lead to "easy" embedding instances

- PA emptiness checks lead to "easy" embedding instances
- Generate random "difficult" instances

- PA emptiness checks lead to "easy" embedding instances
- Generate random "difficult" instances
 - Generate vocabulary with 2-10 monadic predicates and 1 edge predicate

- PA emptiness checks lead to "easy" embedding instances
- Generate random "difficult" instances
 - Generate vocabulary with 2-10 monadic predicates and 1 edge predicate
 - Generate source a

- PA emptiness checks lead to "easy" embedding instances
- Generate random "difficult" instances
 - Generate vocabulary with 2-10 monadic predicates and 1 edge predicate
 - Generate source **A**
 - $|A| \in [10,50]$ universe size
 - $p \in [0.1, 0.25]$ probability of universe element to appear in monadic predicate
 - $e \in (0,0.1]$ probability of edge between elements

- PA emptiness checks lead to "easy" embedding instances
- Generate random "difficult" instances
 - Generate vocabulary with 2-10 monadic predicates and 1 edge predicate
 - Generate source $\mathfrak A$
 - $|A| \in [10,50]$ universe size
 - $p \in [0.1, 0.25]$ probability of universe element to appear in monadic predicate
 - $e \in (0,0.1]$ probability of edge between elements
 - Generate target ${\mathfrak B}$
 - $|B| \in [|A|, 2|A|]$
 - $p' \in [p, 2p]$
 - $e' \in [e, 4e]$

- Generate 100 instances
 - 48 positive embeddings
 - 47 negative embeddings
 - 5 unsolved embeddings

Experiment Random Monadic Structures

- Generate 100 instances
 - 56 positive embeddings
 - 44 negative embeddings

Experiment Random Monadic Structures

- Generate 100 instances
 - 56 positive embeddings
 - 44 negative embeddings
- Match Embeds & HaifaCSP¹
 - Polytime monadic instances

[Régin, 1994]¹

• Régin's Algorithm:

- Régin's Algorithm:
 - Constraint of difference (filtering algorithm):

- Régin's Algorithm:
 - Constraint of difference (filtering algorithm):
 - 1. Remove filtered edges
 - 2. Compute Maximum Matching
 - 3. Remove any edges not belonging to maximum matching

- Régin's Algorithm:
 - Constraint of difference (filtering algorithm):
 - 1. Remove filtered edges
 - 2. Compute Maximum Matching
 - 3. Remove any edges not belonging to maximum matching
- Sub-graph Isomorphism:

- Régin's Algorithm:
 - Constraint of difference (filtering algorithm):
 - 1. Remove filtered edges
 - 2. Compute Maximum Matching
 - 3. Remove any edges not belonging to maximum matching
- Sub-graph Isomorphism:
 - Specialization of structure embedding

- Régin's Algorithm:
 - Constraint of difference (filtering algorithm):
 - 1. Remove filtered edges
 - 2. Compute Maximum Matching
 - 3. Remove any edges not belonging to maximum matching
- Sub-graph Isomorphism:
 - Specialization of structure embedding
 - Focus: find all such isomorphisms

- Régin's Algorithm:
 - Constraint of difference (filtering algorithm):
 - 1. Remove filtered edges
 - 2. Compute Maximum Matching
 - 3. Remove any edges not belonging to maximum matching
- Sub-graph Isomorphism:
 - Specialization of structure embedding
 - Focus: find all such isomorphisms
 - Exploit local structure rather than global structure
 - None known to take advantage of all difference constraint

Summary

- MatchEmbeds:
 - Structure Embedding Problem
 - Practical (1-2 orders of magnitude faster than existing solutions)
 - Polytime for monadic instances

Summary

- MatchEmbeds:
 - Structure Embedding Problem
 - Practical (1-2 orders of magnitude faster than existing solutions)
 - Polytime for monadic instances
 - Improves Proof Spaces
 - Verify programs with 70 threads vs 20-30 threads

Summary

- MatchEmbeds:
 - Structure Embedding Problem
 - Practical (1-2 orders of magnitude faster than existing solutions)
 - Polytime for monadic instances
 - Improves Proof Spaces
 - Verify programs with 70 threads vs 20-30 threads
- k-d structure (multi-source embeddings)
 - Avoids unnecessary embeddings
 - Further Improves Proof Spaces
 - Verify programs with 20+ more threads.

References

- [1] Kincaid, Z. Podelski, A., Farzan, A. *Proof Spaces for Unbounded Parallelism*. POPL, pgs. 407-420 (2015).
- [2] Finkel, A. Schnoebelen, Ph. *Well Structured Transition Systems Everywhere*. Theoretical Computer Science Vol 256:1, pgs. 63-92 (2001).
- [3] Hopcroft, J., Karp, R. *An n*^{5/2} *Algorithm for Maximum Matchings in Bipartite Graphs*. SIAM Journal of Computing, Vol. 2, No. 5 : pgs. 225-231 (1973).
- [4] Régin, J.C.: A filtering Algorithm for Constraints of Difference in CSPs. In: AAAI. pgs. 362-367 (1994)
- [5] Russell, S.J., Norvig, P. Artificial Intelligence a Modern Approach, 3rd Edition. Prentice Hall series in Artificial Intelligence, Prentice Hall (2009)

Extra Slides

[Kincaid et. al. 2015]

Unbounded number of threads

- Unbounded number of threads
 - Webservers, databases, computations over *N* threads

- Unbounded number of threads
 - Webservers, databases, computations over N threads
 - Uses single template T executed by each thread

$$T^N = T \parallel T \parallel \cdots \parallel T$$

- Unbounded number of threads
 - Webservers, databases, computations over N threads
 - Uses single template T executed by each thread

$$T^N = T \parallel T \parallel \cdots \parallel T$$
N times

- Unbounded number of threads
 - Webservers, databases, computations over N threads
 - Uses single template T executed by each thread

$$T^N = T \parallel T \parallel \cdots \parallel T$$
N times

• Key Ideas:

- Key Ideas:
 - Multi-threaded verification is hard

- Key Ideas:
 - Multi-threaded verification is hard
 - Verify individual traces
 - Reuse sequential verification

- Key Ideas:
 - Multi-threaded verification is hard
 - Verify individual traces
 - Reuse sequential verification

Program P is correct \Leftrightarrow all traces of P are correct

- Key Ideas:
 - Multi-threaded verification is hard
 - Verify individual traces
 - Reuse sequential verification

Program P is correct \Leftrightarrow all traces of P are correct

Focus:

$$P = T^N = T \parallel T \parallel \cdots \parallel T$$
N times

• A proof space is a valid set of Hoare triples

- A proof space is a valid set of Hoare triples
 - Closed under sequencing

- A proof space is a valid set of Hoare triples
 - Closed under sequencing

$$\frac{\left\{P(a_{1},...,a_{ar(P)})\right\}C:t\left\{Q(b_{1},...,b_{ar(Q)})\right\}}{\left\{Q(b_{1},...,b_{ar(Q)})\right\}C':s\left\{R(c_{1},...,c_{ar(R)})\right\}}{\left\{P(a_{1},...,a_{ar(P)})\right\}C:t;C':s\left\{R(c_{1},...,c_{ar(R)})\right\}} \quad (seq)$$

- A proof space is a valid set of Hoare triples
 - Closed under sequencing, symmetry

- A proof space is a valid set of Hoare triples
 - Closed under sequencing, symmetry

$$\frac{\pi \colon \mathbb{N} \to \mathbb{N} \text{ is a permutation } \left\{P(a_1, \dots, a_{ar(P)})\right\} C \colon t\left\{Q(b_1, \dots, b_{ar(R)})\right\}}{\left\{P(\pi(a_1), \dots, \pi(a_{ar(P)}))\right\} C \colon \pi(t)\left\{Q(\pi(b_1), \dots, \pi(b_{ar(Q)}))\right\}} \tag{symm}$$

- A proof space is a valid set of Hoare triples
 - Closed under sequencing, symmetry, conjunction

- A proof space is a valid set of Hoare triples
 - Closed under sequencing, symmetry, conjunction

$$\frac{\left\{P(a_{1},...,a_{ar(P)})\right\}C:t\left\{Q(b_{1},...,b_{ar(Q)})\right\}}{\left\{P(a_{1},...,a_{ar(P)})\right\}C:t\left\{S(d_{1},...,d_{ar(S)})\right\}} (conj)}{\left\{P(a_{1},...,a_{ar(P)})\land R(c_{1},...,c_{ar(R)})\right\}C:t\left\{Q(b_{1},...,b_{ar(Q)})\land S(d_{1},...,d_{ar(S)})\right\}}$$

- A **proof space** is a **valid** set of Hoare triples
 - Closed under sequencing, symmetry, conjunction
 - Generated from a finite "basis" of Hoare triples

Proof Spaces

- A proof space is a valid set of Hoare triples
 - Closed under sequencing, symmetry, conjunction
 - Generated from a finite "basis" of Hoare triples

If a proof space, H, exists such that for every error trace, τ , $\{\text{pre}\}\ \tau\ \{\text{false}\}\ \in H$

then the program is safe.

- For any Proof Space, H,
 - $\{\tau: \{pre\} \mid \tau \mid \{false\} \in H\}$ is recognized by a Predicate Automata, A(H)

- For any Proof Space, H,
 - $\{\tau: \{pre\} \mid \tau \mid \{false\} \in H\}$ is recognized by a Predicate Automata, A(H)
- For any Program, P,
 - The set of error traces of P is recognized by a PA, Err

- For any Proof Space, H,
 - $\{\tau: \{pre\} \mid \tau \mid \{false\} \in H\}$ is recognized by a Predicate Automata, A(H)
- For any Program, P,
 - The set of error traces of P is recognized by a PA, Err
- PA languages are closed under intersection and complement

- For any Proof Space, H,
 - $\{\tau: \{pre\} \mid \tau \mid \{false\} \in H\}$ is recognized by a Predicate Automata, A(H)
- For any Program, P,
 - The set of error traces of P is recognized by a PA, Err
- PA languages are closed under intersection and complement

Proof space inclusion then reduces to PA emptiness:

$$\forall \tau \in \text{Error Trace.} \{pre\} \ \tau \ \{false\} \in H$$

$$\Leftrightarrow$$

$$Err \cap \overline{A(H)} = \emptyset$$

• Relational vocabulary $\langle Q, ar \rangle$

$$Q = \{p, q\}, ar(p) = 2, ar(q) = 1$$

• Relational vocabulary $\langle Q, ar \rangle$

$$Q = \{p, q\}, ar(p) = 2, ar(q) = 1$$

• Relational vocabulary $\langle Q, ar \rangle$

$$Q = \{p, q\}, ar(p) = 2, ar(q) = 1$$

- Infinite State Automata over Infinite Alphabet ($\Sigma \times \mathbb{N}$)
- A = $\langle Q, ar, \Sigma, \delta, \varphi_{start}, F \rangle$

- Infinite State Automata over Infinite Alphabet ($\Sigma \times \mathbb{N}$)
- A = $\langle Q, ar, \Sigma, \delta, \varphi_{start}, F \rangle$
 - $\langle Q, ar \rangle$: Relational vocabulary
 - Q: Finite set of predicate symbols
 - ar : $Q \rightarrow \mathbb{N}$

- Infinite State Automata over Infinite Alphabet ($\Sigma \times \mathbb{N}$)
- A = $\langle Q, ar, \Sigma, \delta, \varphi_{start}, F \rangle$
 - $\langle Q, ar \rangle$: Relational vocabulary
 - *Q* : Finite set of predicate symbols
 - ar : $Q \rightarrow \mathbb{N}$
 - Σ : Finite set of letters

- Infinite State Automata over Infinite Alphabet ($\Sigma \times \mathbb{N}$)
- A = $\langle Q, ar, \Sigma, \delta, \varphi_{start}, F \rangle$
 - $\langle Q, ar \rangle$: Relational vocabulary
 - Q : Finite set of predicate symbols
 - ar : $Q \rightarrow \mathbb{N}$
 - Σ : Finite set of letters
 - $\varphi_{start} \in \mathcal{F}(Q, ar)$: Initial formula (with no free variables)

- Infinite State Automata over Infinite Alphabet ($\Sigma \times \mathbb{N}$)
- A = $\langle Q, ar, \Sigma, \delta, \varphi_{start}, F \rangle$
 - $\langle Q, ar \rangle$: Relational vocabulary
 - *Q* : Finite set of predicate symbols
 - $ar: Q \rightarrow \mathbb{N}$
 - Σ : Finite set of letters
 - $\varphi_{start} \in \mathcal{F}(Q, ar)$: Initial formula (with no free variables)
 - $F \subseteq Q$: Set of accepting predicate symbols.

- Infinite State Automata over Infinite Alphabet ($\Sigma \times \mathbb{N}$)
- A = $\langle Q, ar, \Sigma, \delta, \varphi_{start}, F \rangle$
 - $\langle Q, ar \rangle$: Relational vocabulary
 - *Q* : Finite set of predicate symbols
 - ar : $Q \rightarrow \mathbb{N}$
 - Σ : Finite set of letters
 - $\varphi_{start} \in \mathcal{F}(Q, ar)$: Initial formula (with no free variables)
 - $F \subseteq Q$: Set of accepting predicate symbols.
 - $\delta: Q \times \Sigma \to \mathcal{F}(Q,ar)$ the only free variables of $\delta(q,\sigma)$ are the free variables of q and σ

Emptiness Algorithm

```
Closed \leftarrow \emptyset
N \leftarrow \emptyset
E \leftarrow \emptyset
wl \leftarrow dnf(\varphi_{start})

while wl \neq [] do

C \leftarrow head(wl)
    wl \leftarrow tail(wl)
    if \neg \exists C' \in \grave{C} losed s.t.C' \leq C then
        foreach i \in supp(C) \cup \{1 + \max supp(c)\}\ do
           foreach \sigma \in \overset{\cdot}{\Sigma} \overset{\cdot}{do}
foreach C's.t.C \overset{\sigma:i}{\rightarrow} C' and C' \notin N do
                   N \leftarrow N \cup \{C'\}_{\sigma:i}
                   E \leftarrow E \cup \{C \xrightarrow{SR} C'\}
                   if C is accepting then
                       return a word w labeling a path in the graph (N, E) from C to a root
                   else
                      wl \leftarrow wl ++ [C']
    Closed \leftarrow Closed \cup \{C\}
return Empty
```

Configurations and Coverings

- A Configuration, C, Accepts iff $\{q | q(i_0, \dots, i_{ar(q)}) \in C\} \subseteq F$
- $C \xrightarrow{\sigma:k} C'$ iff C' is a cube of (in DNF)

$$\bigwedge_{\substack{q(i_1,\cdots,i_{ar(q)})\in C}} \delta(q,\sigma)[\mathbf{i}_o\mapsto k,\mathbf{i}_1\mapsto i_1,\cdots,\mathbf{i}_{ar(q)}\mapsto i_{ar(q)}]$$

• If $C \leq C'$,

If C' is accepting then C must be accepting

If
$$C' \xrightarrow{\sigma: j} \overline{C'}$$
 then $\exists k, C \xrightarrow{\delta: k} \overline{C}$ and $\overline{C} \leqslant \overline{C'}$

Therefore, if C' can reach an accepting state then so must C

$$C = \{q(1,2), q(1,3), r(2)\}$$

$$C = \{q(1,2), q(1,3), r(2)\}$$
$$supp(C) = \{1,2,3\}$$

$$C = \{q(1,2), q(1,3), r(2)\}$$
 $C' = \{q(8,7), q(8,6), r(7), r(6)\}$
 $supp(C) = \{1,2,3\}$

$$C = \{q(1,2), q(1,3), r(2)\}$$
 $C' = \{q(8,7), q(8,6), r(7), r(6)\}$
 $supp(C) = \{1,2,3\}$ $supp(C') = \{6,7,8\}$

$$C = \{q(1,2), q(1,3), r(2)\} \qquad C' = \{q(8,7), q(8,6), r(7), r(6)\}$$

$$supp(C) = \{1,2,3\} \qquad supp(C') = \{6,7,8\}$$

$$C \leq C'$$

$$C = \{q(1,2), q(1,3), r(2)\} \qquad C' = \{q(8,7), q(8,6), r(7), r(6)\}$$

$$supp(C) = \{1,2,3\} \qquad supp(C') = \{6,7,8\}$$

$$C \leqslant C'$$

$$\pi = \{1 \mapsto 8, 2 \mapsto 6, 3 \mapsto 7, \dots\}$$

$$C = \{q(8,6), q(8,7), r(6)\} \subseteq C' = \{q(8,7), q(8,6), r(7), r(6)\}$$

$$supp(C) = \{1,2,3\} \qquad supp(C') = \{6,7,8\}$$

$$C \leq C'$$

$$\pi = \{1 \mapsto 8, 2 \mapsto 6, 3 \mapsto 7, \dots\}$$

$$C = \{q(8,7), q(8,6), r(7)\} \subseteq C' = \{q(8,7), q(8,6), r(7), r(6)\}$$

$$supp(C) = \{1,2,3\} \qquad supp(C') = \{6,7,8\}$$

$$C \leq C'$$

$$\pi = \{1 \mapsto 8, 2 \mapsto 6, 3 \mapsto 7, ...\} \qquad \pi = \{1 \mapsto 8, 2 \mapsto 7, 3 \mapsto 6, ...\}$$

$$C = \{q(0), r(1)\}$$

$$C = \{q(0), r(1)\}$$

 $supp(C) = \{0,1\}$

$$C = \{q(0), r(1)\}\$$
 $C' = \{q(2), r(2)\}\$ $supp(C) = \{0,1\}$

$$C = \{q(0), r(1)\}\$$
 $C' = \{q(2), r(2)\}\$ $supp(C) = \{0,1\}\$ $supp(C') = \{2\}\$

$$C = \{q(0), r(1)\}\$$
 $C' = \{q(2), r(2)\}\$ $supp(C) = \{0,1\}\$ $Supp(C') = \{2\}\$

$$C = \{q(0), r(1)\}\$$
 $C' = \{q(2), r(2)\}\$
 $supp(C) = \{0,1\}\$ $supp(C') = \{2\}\$

 $C \leqslant C'$

 π must be a permutation (injective)

• For configurations C and C', C covers C' ($C \leq C'$)

• For configurations C and C', C covers C' ($C \leq C'$) $\exists \pi : \mathbb{N} \to \mathbb{N}, \forall q \in Q,$ $q(i_1, \dots, i_{ar(q)}) \in C \to q(\pi(i_1), \dots, \pi(i_{ar(q)})) \in C'$

• For configurations C and C', C covers C' ($C \leq C'$) $\exists \pi: \mathbb{N} \to \mathbb{N}, \forall q \in Q$, $q(i_1, \cdots, i_{ar(q)}) \in C \to q\left(\pi(i_1), \cdots, \pi(i_{ar(q)})\right) \in C'$ Alternatively, $\left\{q\left(\pi(i_1), \cdots, \pi(i_{ar(q)})\right) \middle| q(i_1, \cdots, i_{ar(q)}) \in C\right\} \subseteq C'$

• For configurations C and C', C covers C' ($C \leq C'$)

$$\exists \ \pi: \ \mathbb{N} \to \mathbb{N}, \forall \ q \in Q,$$

$$q\big(i_1, \cdots, i_{ar(q)}\big) \in \mathcal{C} \to q\left(\pi(i_1), \cdots, \pi\big(i_{ar(q)}\big)\right) \in \mathcal{C}'$$
 Alternatively,
$$\left\{q\left(\pi(i_1), \cdots, \pi\big(i_{ar(q)}\big)\right) \middle| q\big(i_1, \cdots, i_{ar(q)}\big) \in \mathcal{C}\right\} \subseteq \mathcal{C}'$$

• Downward Compatibility with PA^{1,2}

[Kincaid et. al. 2015]¹ [Finkel and Schnoebelen. 2001]²