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Structures

* Finite relational structure (U, R):
e ‘U : finite universe of elements
e R : finite set of relations over elements of ‘U

e Examples:
* Graph = (V,edge)
* NFA = (S, {final,start} U {A,:a € X})
* Database = (Values, {table, ..., table,})
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¥ & ({1,2,3,4,5}, Start, Final, A, Ap)




Structures

& ¥ ({1,2,3,4,5}, Start, Final, A4, Ap)
where:
Start & {1}
Final & {4}
Ag = {(1,2),(1,5),(3,1),(4.5),(5,4)}

Ab = {<113>1 (114>; <2r1>) <4r4>1 (515}}




Structure Embedding

A = ({1,2,3,4}, p%, q%, 1Y)

{1}
- {(1,2),(1,3)}
= {(3,4)}
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Structure Embedding

A ({1,2,34},p% q% r¥) B« ({1,2,3,4},p% q% r?)

p¥ {1} p3 @ (13}
g% = {(1,2),(1,3)} g% = {(1,4),(1,5),(3,2)}
r¥ & {(3,4)}

r® & {(2,5),(5,2)}
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Structure Embedding

({1234} p¥, q¥, r¥)

SO o OO NN+
qa = {{1,2),(1,3)}

r¥ & {(3,4)}

B & ({1,2,3,4},p%, q°%, %)
p® & (1,3}

r def
SOSS OZ ORROSSOJIRH
| r r8 & £(25) (5,2))



Structure Embedding

= ({1,2,3,4}, p%, q%, %)

A q <::::> q r % %5{1}
qm = {(1,2),(1,3)}

r¥ & {(3,4)}

Eh(z) Eh(l) Eh(g) Eh(4)
I ] | i d=<{1234}pﬂ3 58 %)

p® & {1,3}

T def
(OSSO S OFS OSSO =y
| r r8 & £(25) (5,2))

16
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Structure Embedding

» Given U and B over a common vocabulary (Q, ar)
A homomorphismis a functionh: A - B

* Vq € Q.(ay, ...,aar(q)) € q¥ = (h(ay), ...,h(aar(q))) € q®
 An embedding is an injective homomorphism

e Structure Embedding Problem:
* Given A and B determine if A embeds into BV
* NP-Complete
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Contributions

e MatchEmbeds

e Structure Embedding Problem
* NP Complete
e Occurs during verification of multi-threaded programs
* Many (1000’s) embedding queries are often required
e Mostly monadic predicates
* Most involve only a small number of threads
* Backtracking search
e Polytime for monadic case
* Practical for “real life” instances
* Solves difficult instances quickly
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Multi-threaded Program Verification

main count () :
count 0

1 1 N:
thread count

(count < N)

thread count(():
count = count+l



Multi-threaded Program Verification

main ticket():
s =t =20
(*)
thread ticket

thread ticket():
m
m = t++
(s < m); skip
//mutual exclusion
s++
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Predicate Abstraction

* Represent program states by conjunction of predicates

_ Predicate Abstraction
Fib(a, b, n):

1 (n > 0) (pc=3)A(Mm>0)A(tmp = 2a) A(a < b)
2 tmp = a + b

3 a =Db

4 b = tmp What about multi-threaded programs?
9 n-—-

6 a
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main ticket():
1 s =t =20
2 (™)
3 thread ticket
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m
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Predicate Abstraction

* Represent program states by structures

main ticket():
1 s =t =20
2 (™)
3 thread ticket
thread ticket():
m
m = t++
(s < m),; skip
//mutual exclusion
s++

O J o O b»

Relational vocabulary (Q, ar)

Q — {li'Slt’ Mlt;}
ar(l;) = ar(S,) = 1, ar(My,)



Predicate Abstraction

* Represent program states by structures

main_ ticket () : Relational vocabulary (Q, ar)

1 s =t =20 Q = {li,Sit, Myt }
2 (%) ar(l;) = ar(S;;) = L, ar(My) = 2
3 thread ticket

thread ticket():

4 m [,(j) & thread j is at location 4
5 m = t++ S51t(j) € s <m

6 (s < m); skip My (i,j) & m; <m

7 //mutual exclusion

8 s++



Predicate Abstraction

* Represent program states by structures

main_ ticket () : Relational vocabulary (Q, ar)

1 s =t =20 Q = {li,Sit, Myt }
2 (%) ar(l;) = ar(S;;) = L, ar(My) = 2
3 thread ticket

_ (D) AL (2) A7 (3) A S (2) A My (2,3)
thread ticket():

4 m [,(j) & thread j is at location 4
5 m = t++ S51t(j) € s <m

6 (s < m); skip My (i,j) & m; <m

7 //mutual exclusion

8 s++
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Predicate Automata

* Automata used to verify safety of multi-threaded programs
* Structures represent program state
¢ Program statements transition between structures
* Program safety is reduced to checking emptiness of a PA

* Infinite state automata over infinite alphabet (2XN)
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Emptiness Checking

* Determine if an accepting structure is reachable

* Undecidable in general

* Decidable for monadic PA
* All predicates have arity < 1
* Predicates involving local variables of a single thread
* Only consider transitions along interesting ids
e Universe of the current structure and 1 fresh element
* Use embeddings to prune search space (Downward Compatibility)
* Well structured transition system [Finkel and Schnoebelen. 2001]
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Downward Compatibility

A wqo, ¥, is downward compatible with transition system, (S, —), if

V t; < sq and transition s; = s, then dt, s.t.t; > t, and t, < s,

For PA and embedding if a path from s; accepts then a path from t; will accept.



Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds



Match Embeds

Joint work with Zak Kincaid
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MatchEmbeds

* Bipartite Graphs
* Matchings

* Monadic Case
* Reduction to bipartite graph matching

* Generalize bipartite graph matching strategy to general structures
* Construct bipartite graph
* Search matchings of graph for an embedding



Bipartite Graphs

* Bipartite Graphs, G = (U,V,E)
* U and V are disjoint
e E C UXV
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Bipartite Graphs

* Bipartite Graphs, G = (U,V,E)
* U and V are disjoint
e E C UXV

 Matching, M € E
* At most one edge contains any vertex
VueU, |[{{u,v)eM} <1
cVveV, [{{uuv) eM} <1
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Bipartite Graphs

* Bipartite Graphs, G = (U,V,E)
* U and V are disjoint
e £ C UXV

* Matching, M € E
* At most one edge contains any vertex
VueU, |[{{u,v)eM} <1
cVveV, [{{uuv) eM} <1

* Total Matching, M

M is a matching
* M covers U (|[M| = |U|)

61



Monadic Case

62



Monadic Case

A & ({1,2,3},q%, )
My sigLD = g}
r?l

63



Monadic Case

A

B

“ ({1,2,3}, q%, )

Mgy sigLD) E {g)
U et (2,3} sig(Y,2) & {r}

iq}

64



Monadic Case

A = ({1,2,3}, g%, )

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

iq}
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Monadic Case

A = ({1,2,3}, g%, )

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

iq,7}

B & ({1,2,3},q°%,r%)
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e
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Monadic Case

A = ({1,2,3}, g%, )

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

B & ({1,2,3},q°%,r%)

q% ar £1,2,3} sig(U, 1) & {q,r}
B def sig(%,2) = {q}

T 1,3 , o

11,3} sig(U,3) = 1q,7}




Monadic Case

A = ({1,2,3}, g%, )

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

iq}

B & ({1,2,3},q°%,r%)

q% ar £1,2,3} sig(U, 1) & {q,r}
B def sig(%,2) = {q}

T 1,3 , o

11,3} sig(U,3) = 1q,7}

r}

r}

iq,7}

{q,7}
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Monadic Case

A = ({1,2,3}, g%, )

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

B & ({1,2,3},q°%,r%)

q% ar £1,2,3} sig(U, 1) & {q,r} {T}
7B def {1 3} sig(%,2) = {q}
' sig(¥,3) = {q,7}

r} {q,7}



onadic Case

A = ({1,2,3}, g%, )
g% = {1} sig(U, 1) = {q}
ri et f

sig(U,2) ¥ {r}
2,3} sig(Y,3) & {r}

B & ({1,2,3},q°%,r%)

def {1,3} Sig(QI' 2) = {q}

sig(¥,3) € {q,7}

qﬂ3 def {1'2,3} sig(AU, 1) € {q,T}
7,.23

A B

Maximum Matchings?

(1,2),
M; & {(2,1),}
(3,3)

19}

r} 3

o—o

{7"} {q ) T'} [Hopcroft and Karp. 1973]!
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onadic Case

g¥ & {1} Slg(QI 1) = {q}
A sig(W,2) = {r}
r 12,3} sig(YU,3) & {r}

B & ({1,2,3},q°%,r%)

qﬂ3 def {1'2,3} sig(AU, 1) € {q,T'}
ou 1a 9D (0
r 1;3 . def
11,3} sig(¥,3) & {q,r}

r}

B

iq,7}

{q,7}

Maximum Matchings?

(1,2),
| {(2 1)}
(3,3)

(1,2),
, {(2 3)}
(3,1)

[Hopcroft and Karp. 1973]!
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Monadic Case

e Aand B

 Structures over common vocabulary
e Each relation has arity 1

* Signature Graph

 sig(W,a) = {q € Q:3(ay, ...,aar(q)) € q¥.3i.a = a;}
* Sig(A,B) € G(A,B,E)
« E & {{(a,b) € AXB:sig(U,a) S sig(B,b)}
* M C E is a total matching on A iff f;; is a structure embedding

e Structure embedding takes O (|A] IBI\/IAI + | B|) [Hopcroft and Karp. 1973]
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Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching
3. Check for conflicts
4. Decide on edges in matching and recurse
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General Case

}
r
q

v q}

~
r
q

86




General Case

M; = {(1,1),(2,4),(3,2),{4,5)}
M; = {(1,1),(2,4),(3,5),(4,2)}
Ms £ {(1,3),(2,4),(3,2),(4,5)}
M, = {(1,3),(2,4),(3,5),(4,2)}
Ms £ {(1,1),(2,3),(3,2),(4,5)}
Me £ {(1,1),(2,3),(3,5),(4,2)}
M; = {(1,3),(2,1),(3,2),{4,5)}
Mg = {(1,3),(2,1),43,5 ),{4,2)}

87



Consistency

Consider edge (1,3):
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Consistency

@ 0

p,q}

B
’ Consider edge (1,3):
{

/Edge Consistency:
Let A and B be structures over vocabulary (Q, ar).

Given a bipartite graph G = (4, B, E).

An edge (a, b) € E is consistent with (a;, ..., aar(q)) € g% when
forall positions i where a = a; there is (bl, e bar(q)) € g3l s.t.
b = b; and forall positions j, (a;, b;) € E

~

/

\GUU
{q,7}
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Consistency

Consider edge (1,3):

90



Consistency

Consider edge (1,3):

Consistent with q(1,2)

2) EBA(22)EG

4q(3

91



Consistency

Consider edge (1,3):

* Consistent with g(1,2)
« 3q(3,2) EBA(2,2)EG

* Consistent with g(1,3)
« 3g(3,2) e BA(3,2)EG

92
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Maximum Consistent Sub-Graph

DO —e,

/Graph Consistency: \
Let A and B be structures over vocabulary (Q, ar).

. A bipartite graph G = (4, B, E) is consistent with @ € g% when
@ for all edges, e € E, e is consistent with «a.

G is consistent when for each ¢ € Q and a € g%, G is consistent

e,

r

with «.
OR%

a2
Z

q,7}



Maximum Consistent Sub—Graph

@

q

&)

r

0

© 0

p,q}

Q
/Mammum Consistent Sub-Graph:

Let A and B be structures over vocabulary (Q, ar).

Given a bipartite graph G = (4, B, E). The maximum consistent
sub-graphis G' = (A,B,E') s.t.

1.E'CE

2. G' is consistent

~

\\ij)r any G''s.t. 1and 2 hold, |G"'| < |G']
7
. o e,
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Goals:




Maximum Consistent Sub-Graph

Goals:
 Remove inconsistent edges




Maximum Consistent Sub-Graph
B
Goals:
’  Remove inconsistent edges
.4}
}
}

* Preserve embeddings

D, q}

/a{q, r}
{
v q}
@7} @)
{q,7}

q
{r
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Maximum Consistent Sub-Graph
B

O

Goals:
 Remove inconsistent edges

D, q}

{p, q} * Preserve embeddings
* Efficiently Computable O(E?)
{q.7} * Fixpoint Algorithm?
{q}
{p q}
a7} (0}
{r} Cas [Russel and Norvig. 2009]!
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Maximum Consistent Sub-Graph
B

’ Ml d:ef {<111)) (214>; (312}1 (415)}
v q} M, & {(1,1),(2,4),(3,5), (4, 2)}

/G M & {(1,3),(2,4),(3,2), (4,5)}
{q,7} M, = {(1,3),(2,4),(3,5),(4,2)}
| a{p, q}

{q}

{q,r}

q
{r

v q}
}
}
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Match Embeds

A B
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Match Embeds

fu, B

Compute Matching
Ml = {(1,1), (214>; (312}1 (4)5)}

103



Match Embeds

fu, B

Compute Conflict Set
Ml = {(1,1), (214>; (312}1 (415)}

Conflict(fy,) & {q(1,3))

104



I\/Iatch Embeds

Compute Conflict Set

_______ @ 0 G My ((1,1),(2,4), (3,2), (4,5))
{p, g}
/Confllct Set: \Rq(l,S)}
@ ------ Let A and B be structures over vocabulary (Q,ar) and f:A - B

a function.

G The conflict set of f is
\\\ | conflict(f) & {q(as, -, Gar(g)): q € Q. (@1, ) ary) € 4% {f (A1), o, f(Aar(q))) € 4%}

97 /
o o,

r}

105



Match Embeds

fu, B

Compute Conflict Set
Ml = {(1,1), (214>; (312}1 (415)}

Conflict(fy,) & {q(1,3))
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Match Embeds

fu, B

Compute Decisions
Ml = {<111>) (214>; (312}1 (415)}

Conflict(fy,) = {q(1,3)}
Decisions(M;) £ {(1,1),(3,2)}
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Match Embeds
A

A fu, B Compute Decisions

B
@ ....... @ 0 Q My = ((1,1),(2,4),(3,2), (4,5))
{

p,q}

! /Decision: o \RCI(LB)}

------ Let A and B be structures over vocabulary (Q, ar). (1,1), (3,2)}
Given a bipartite graph G = (4, B, E) and M a matching on G.

@ A decision is an edge {(a, b) € M s.t.

| 1. The degree of ain G is greater than 1
. 2. There is some conflict g(ay, ..., agr(g)) thatinvolves a (a = a;).

E o
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Match Embeds

fu, B

Compute Decisions
Ml = {<111>) (214>; (312}1 (415)}

Conflict(fy,) = {q(1,3)}
Decisions(M;) £ {(1,1),(3,2)}
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Match Embeds

]

Decide [3 +— 2

B

D, q}

~
~
oy

v q}

{q}

{q,7}
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Match Embeds

A B

Decide |3 — 2]
Remove (3,5)
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Match Embeds

A B A

D © @

v q}

Decide |3 — 2]
* Remove (3,5),(2,2), (4,2)
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Match Embeds

Decide |3 — 2]
* Remove (3,5),(2,2), (4,2)
* Compute consistent sub-graph

B
Q
—

~

—
ﬁ

—

Q
—

~ ~ ~ ~
=
Q9
-

-
ﬁ
——

113



Match Embeds

3 +— 2]

Backtrack |
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Match Embeds

Backtrack [3 — 2]
Blame (3,2)
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Match Embeds

B

v q}

{q,7}

e{p, q}

{q}

{q,7}

Backtrack |3 — 2]
Blame (3,2)
Compute consistent sub-graph
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Match Embeds
A

A fu, B

Compute Matching
MZ = {(1;1>; (214)1 (3)5)) (412>}
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Match Embeds
A

A fu, B

Compute Conflict Set
MZ = {(1;1>; (214)1 (3)5)) (412>}

Conflict(fy,) = 0
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Match Embeds
A

A fu, B

Compute Conflict Set
MZ = {(1;1>; (214)1 (3)5)) (412>}

Conflict(fy,) = 0

fu, is an Embedding
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Match Embeds Algorithm

Function embeds(()

G < filter(G)

M < maximum_matching(G)

if |[M| # |G.A| then
return false

end

if f); is an embedding then
return true

end

Select a decision {(a,b) € M

if embeds(G\{(u,v) € E:u = axor v = b}) then
return true

else
return embeds(G\{{a, b)})

end
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Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching
3. Check for conflicts
4. Decide on edges in matching and recurse
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Match Embeds for Program verification

* Practical procedure for deciding structure embedding problem
* For Predicate Automata prune unnecessary branches:

* Need to search for some already explored t; to prune s;.
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Multi-Source Single-Target Embeddings

 Check if B embeds a structure within a set of structures
e 3 € Str. A embeds into B

* Key idea: no need to check all structures
 Store structures in a k-d tree

* Map each U to v(Y) € N
* If A embeds into B then v(A) < v(B)

* Use range queries on k-d tree and test returned structures
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Multi-Source Single-Target Embeddings

* Let structures be over vocabulary (Q, ar)

v Maps structures to ZlQl vectors
cvW);=19q¢8#0 (qi(..) EW

If A embeds into B
U(Ql)i =1 = U(%)i =1
() < v(B)



Multi-Source Single-Target Embeddings

* Let structures be over vocabulary (Q, ar) k-d Tree Structure
« v maps structures to 29l vectors @
cv@i=19q #0 (q(..) €W

If le%rgl?e:di izoﬁ%)i _, @ @
O @ @ G

v(A) < v(B)
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Multi-Source Single-Target Embeddings

* Range Query: A = (g, (1), q2(2)) k-d Tree Structure
1. Check root
2. Check left tree

3. Atlevel i check right tree if q?il + @
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Constraint Satisfaction Problem

Given structures A = (4,94, ..., qy) and B = (B, pq, ..., Prm)
For each a € A:
create variable X, with domain {b € B:sig(2,a) € sig(*B,b)}

Foreach{(a,a’) € AXAs.t.a # a': (all-different)
create constraint X, # X/

A,
i -

For each g; € ¥ and each (al, . aar(qi)) € q

create constraint <Xa1, vy X > S qéB

’““lar(qy)



Experiment Count Threads

main () :
count = 0
for 1 = 1 to N:
fork thread
assert (count <N)

thread () :
count = count+l

Time (s)
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100

B8 MatchEmbeds + Tree
oo MatchEmbeds + List
+—#& Gecode + Tree

¢4 Gecode + Llist

e—e Haifa + Tree
o—e Haifa + List

v-¥ OrTools + Tree
< < OrTools + List

o
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Experiment Secret Sharing

main () :
from = 0
while (%)
local secret = *
assume (secret > 0)
for 1 = 1 to N:
Lo = secret
fork thread
while (to > 0):
if (from > 0):
assert (from ==

skip
secret)

thread () :
local m = to
to = 0
from = m

Time (s)

600

500

400

300

200

100

T

1111

T

!

(o]
(o]

A 4

A 4

MatchEmbeds + Tree
MatchEmbeds + List 9
Gecode + Tree o
Gecode + Llist
Haifa + Tree
Haifa + List
OrTools + Tree
OrTools + List

10 20 30 40
Number of Threads

50

60

160

70
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e Can MatchEmbeds solve difficult problem instances?

 Compared to Constraint Satisfaction Problem Solvers:
 Gecode - atop competitor in MiniZinc (CSP Competition)
* HaifaCSP - 15t prize in 2017 MiniZinc competition
* OrTool’'s - Google’s Optimization/CSP solver
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Experiment Random Graphs

* PA emptiness checks lead to “easy” embedding instances

* Generate random “difficult” instances
* Generate vocabulary with 2-10 monadic predicates and 1 edge predicate

* Generate source A
* |A| €[10,50] universe size
* p €[0.1,0.25] probability of universe element to appear in monadic predicate
* e € (0,0.1] probability of edge between elements
* Generate target B
* |B| € [|Al], 2]Al]
* p' € [p 2p]
« e’ € [e 4e]



Experiment Random Graphs

100 - ; '
* Generate 100 instances == MatchEmbeds  +— OrTools
oo Gecode ¢+—+¢ HaifaCSP | o
* 48 positive embeddings ol
e 47 negative embeddings
* 5 unsolved embeddings ol
g
i 40 +
20 +
0 L Y

0 20 40 60 80 100
Instances Solved
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Experiment Random Monadic Structures

100 : - -
=—a MatchEmbeds +—+ QOrTools

* Generate 100 instances |
.. . oo Gecode +—¢ HaifaCSP
* 56 positive embeddings
e 44 negative embeddings

Time (s)

40 60 80 100
Instances Solved
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Experiment Random Monadic Structures

100 : - -
=—a MatchEmbeds +—+ QOrTools

* Generate 100 instances |
.. . oo Gecode +—¢ HaifaCSP
* 56 positive embeddings
e 44 negative embeddings

* Match Embeds & HaifaCSP!

* Polytime monadic instances

Time (s)

, . i ‘ 40 60 80 100
[Reglna 1994] Instances Solved
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Related Works

* Régin’s Algorithm:
* Constraint of difference (filtering algorithm):
1. Remove filtered edges

2. Compute Maximum Matching
3. Remove any edges not belonging to maximum matching

* Sub-graph Isomorphism:
* Specialization of structure embedding
* Focus: find all such 1somorphisms

* Exploit local structure rather than global structure
* None known to take advantage of all difference constraint
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Summary

e MatchEmbeds:

e Structure Embedding Problem
* Practical (1-2 orders of magnitude faster than existing solutions)
* Polytime for monadic instances

* Improves Proof Spaces
* Verify programs with 70 threads vs 20-30 threads
e k-d structure (multi-source embeddings)
* Avoids unnecessary embeddings

* Further Improves Proof Spaces
* Verify programs with 20+ more threads.
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e Unbounded number of threads
* Webservers, databases, computations over N threads
* Uses single template T executed by each thread

™=TITI-IT

i

N times

yes
% :no

Property > diverge
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Multi-threaded Program Verification

* Key ldeas:
 Multi-threaded verification is hard

* Verify individual traces
* Reuse sequential verification

Program P is correct < all traces of P are correct

* Focus:
P=TN=TI|ITI-IIT

_—y

N times
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Multi-threaded Program Verification

Infeasible Traces Feasible Traces

Program is Safe

§

¢

Error Traces

¢
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* A proof space is a valid set of Hoare triples
* Closed under sequencing

{P(al, ey aar(P))} C:t {Q(bl, ey bar(Q))} {Q(bl, e bar(Q))} C':s {R(Cl, ey Car(R))}
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* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry

m: N — N is a permutation {P(al, ...,aar(p))} C:t {Q(bl, ...,bar(R))}
{P(m(ar), .., (@arpy))} C: () {Q((by), o, T(Par(g)))}
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Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry, conjunction

{P(ay, ..., agrp))} C:t{Q(by, oo, bar0))}  {R(C1 s Carr))} C:t {S(dy, o) dar(s))}

(conj)
{P(al, e ) aar(P)) ANR(cq, ..., Car(R))} C:t {Q(blr e ) bar(Q)) ANS(dy4, ..., dar(S)}
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Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry, conjunction
* Generated from a finite “basis” of Hoare triples

If a proof space, H, exists such that for every error trace, 7,
{pre} 7 {false} € H

then the program is safe.
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Proof Checking

* For any Proof Space, H,
e {t: {pre} t{false} € H}is recognized by a Predicate Automata, A(H)

* For any Program, P,
* The set of error traces of P is recognized by a PA,

* PA languages are closed under intersection and complement

Proof space inclusion then reduces to PA emptiness:

V1 € Error Trace.{pre} T {false} € H
&

NAH) =@



Predicate Automata

* Relational vocabulary (Q, ar)

Q= {pqhar(p) =2,ar(q) =1



Predicate Automata

* Relational vocabulary (Q, ar)

Q= {p,qtar(p) =2,ar(q) =1

p(L1)Aq(2) Aq(3)

Configurations

223



Predicate Automata

* Relational vocabulary (Q, ar)

Q= {p,qtar(p) =2,ar(q) =1

{r(1,1),q(2),9(3)}

Configurations
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Predicate Automata

p(1,1) Aq(1)
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Predicate Automata

p(L,1) Aq(1)
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Predicate Automata

p(1,1) Aq(1)

p(2,1) Aq(1)

q(1) Aq(2)

p(1,1) Ap(2,1) Aq(1)

228
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Predicate Automata

* Infinite State Automata over Infinite Alphabet (X XN)
*A= <Qi ar, Z' 6' (pstart' F>

* (Q, ar) : Relational vocabulary
* @ : Finite set of predicate symbols

e ar: Q> N
e X : Finite set of letters
* Qiare € F(Q, ar): Initial formula (with no free variables)
e F € Q: Set of accepting predicate symbols.

*§:Q XX - F(Q,ar) the only free variables of §(q, o) are the free
variables of g and o



Emptiness Algorithm

Closed « @
N<@®

E<0Q

wl < dnf (Qseart)

while wl # [] do
C < hea %Wl)
wl « tail(wl)
if =3C' € Closed s.t.C' < C then
foreachi € supp(C) U {1 + maxsupp(c)} do
foreacho € Zdo
foreach C's.t.C —» C'and C' ¢ N do
N «N U {C;}_l_
E<EU{C — C'}
if C is accepting then
| return a word w labeling a path in the graph (N, E’) from C to a root
else
wl «wl++ [C']
Closed « Closed U {C}
return Empty



Configurations and Coverings

* A Configuration, C, Accepts iff {q|q(i0, I iar(q)) € C} CF
K
« CZ5CiffC'is a cube of (in DNF)

6(q,0)[ip » k,iy » iy, iar(q) = iar(q)]
Q(ilr""iar(q))ec

IfC < (7,

If C'is acceptmg then C must be accepting

0" T thenak, ¢ 5CandC < C
Therefore, if C’' can reach an accepting state then so must C
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Covering Relation ()
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Covering Relation ()
C ={q(8,6),q(8,7),r(6)} < C" ={q(8,7),q(8,6),1r(7),r(6)}
supp(C) = {1,2,3} supp(C") = {6,7,8}
C<C

T={1-82-63H7..}



Covering Relation ()
C =1{q(8,7),q(8,6),r(7)} < C ={q(8,7),q(8,6),7(7),1(6)}
supp(C) = {1,2,3} supp(C") = {6,7,8}
C<C

1={1-82~637.} w={1-82-73m6..)



Covering Relation (<)

C ={q(0),r(1)}



Covering Relation (<)

C = {q(0),7(1)}
supp(C) =1{0,1}



Covering Relation (<)

C ={q(0),r(1)} C'={q(2),7(2)}
supp(C) = {0,1}



Covering Relation (<)

C = {q(0), (1)} C' ={q(2),7(2)}
supp(€) = {0,1} supp(C') = {2}



Covering Relation (<)

C = {q(0), (1)} C' ={q(2),7(2)}
supp(€) = {0,1} supp(C') = {2}

C«C



Covering Relation ()
€ = {q(0), r(1)) C' = {q(2),7(2))
supp(€) = {0,1} supp(C') = {2}
C%C

T must be a permutation (injective)
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* For configurations C and C’, C covers C’ (C < C’)



Covering Relation (<)

* For configurations C and C’, C covers C’ (C < C’)
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* For configurations C and C’, C covers C’ (C < C’)
dmr: N> N,Vq €0,

q(iv, - far() € € = q(m(ir), - 7(iar(g)) € C
Alternatively,

{q (ﬂ(il):""n(iar(q))) ‘q(i1'°°°'iar(q)) cclcc



Covering Relation (<)

* For configurations C and C’, C covers C’ (C < C’)
dmr: N> N,Vq €0,

q(iv, - far() € € = q(m(ir), - 7(iar(g)) € C
Alternatively,

{q (ﬂ(il):""n(iar(q))) ‘q(i1'°°°'iar(q)) cclcc

* Downward Compatibility with PA%?

[Kincaid et. al. 2015]! [Finkel and Schnoebelen. 200112



