A Practical Algorithm for
Structure Embedding

Charlie Murphy

Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds

Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds

Structures

* Finite relational structure (U, R):

Structures

* Finite relational structure (U, R):
e ‘U : finite universe of elements

Structures

* Finite relational structure (U, R):
e ‘U : finite universe of elements
e R : finite set of relations over elements of ‘U

Structures

* Finite relational structure (U, R):
e ‘U : finite universe of elements
e R : finite set of relations over elements of ‘U

e Examples:

Structures

* Finite relational structure (U, R):
e ‘U : finite universe of elements
e R : finite set of relations over elements of ‘U

e Examples:
* Graph = (V,edge)

Structures

* Finite relational structure (U, R):
e ‘U : finite universe of elements
e R : finite set of relations over elements of ‘U

e Examples:
* Graph = (V,edge)
* NFA = (S, {final,start} U {A,:a € X})

Structures

* Finite relational structure (U, R):
e ‘U : finite universe of elements
e R : finite set of relations over elements of ‘U

e Examples:
* Graph = (V,edge)
* NFA = (S, {final,start} U {A,:a € X})
* Database = (Values, {table, ..., table,})

Structures

¥ & ({1,2,3,4,5}, Start, Final, A, Ap)

Structures

& ¥ ({1,2,3,4,5}, Start, Final, A4, Ap)
where:
Start & {1}
Final & {4}
Ag = {(1,2),(1,5),(3,1),(4.5),(5,4)}

Ab = {<113>1 (114>; <2r1>) <4r4>1 (515}}

Structure Embedding

A = ({1,2,3,4}, p%, q%, 1Y)

{1}
- {(1,2),(1,3)}
= {(3,4)}

pQI
CI?I
TQI

OO
©

e & 118

q

O

Structure Embedding

A ({1,2,34},p% q% r¥) B« ({1,2,3,4},p% q% r?)

p¥ {1} p3 @ (13}
g% = {(1,2),(1,3)} g% = {(1,4),(1,5),(3,2)}
r¥ & {(3,4)}

r® & {(2,5),(5,2)}

5O SO0
© &

O30
@Q@

)

Structure Embedding

({1234} p¥, q¥, r¥)

SO o OO NN+
qa = {{1,2),(1,3)}

r¥ & {(3,4)}

B & ({1,2,3,4},p%, q°%, %)
p® & (1,3}

r def
SOSS OZ ORROSSOJIRH
| r r8 & £(25) (5,2))

Structure Embedding

= ({1,2,3,4}, p%, q%, %)

A q <::::> q r % %5{1}
qm = {(1,2),(1,3)}

r¥ & {(3,4)}

Eh(z) Eh(l) Eh(g) Eh(4)
I] | i d=<{1234}pﬂ3 58 %)

p® & {1,3}

T def
(OSSO S OFS OSSO =y
| r r8 & £(25) (5,2))

16

Structure Embedding

» Given U and B over a common vocabulary (Q, ar)

Structure Embedding

» Given U and B over a common vocabulary (Q, ar)
A homomorphismis a functionh: A - B

Structure Embedding

» Given U and B over a common vocabulary (Q, ar)
A homomorphismis a functionh: A - B

* Vq € Q.(ay, ...,aar(q)) € q¥ = (h(ay), ...,h(aar(q))) € q®

Structure Embedding

» Given U and B over a common vocabulary (Q, ar)
A homomorphismis a functionh: A - B

* Vq € Q.(ay, ...,aar(q)) € q¥ = (h(ay), ...,h(aar(q))) € q®

 An embedding is an injective homomorphism

Structure Embedding

» Given U and B over a common vocabulary (Q, ar)
A homomorphismis a functionh: A - B

* Vq € Q.(ay, ...,aar(q)) € q¥ = (h(ay), ...,h(aar(q))) € q®
 An embedding is an injective homomorphism

e Structure Embedding Problem:
* Given U and B determine if A embeds into B

Structure Embedding

» Given U and B over a common vocabulary (Q, ar)
A homomorphismis a functionh: A - B

* Vq € Q.(ay, ...,aar(q)) € q¥ = (h(ay), ...,h(aar(q))) € q®
 An embedding is an injective homomorphism

e Structure Embedding Problem:
* Given A and B determine if A embeds into BV
* NP-Complete

Contributions

e MatchEmbeds

e Structure Embedding Problem

Contributions

e MatchEmbeds

e Structure Embedding Problem
* NP Complete

Contributions

e MatchEmbeds

e Structure Embedding Problem
* NP Complete

e Occurs during verification of multi-threaded programs
* Many (1000’s) embedding queries are often required

Contributions

e MatchEmbeds

e Structure Embedding Problem
* NP Complete
e Occurs during verification of multi-threaded programs
* Many (1000’s) embedding queries are often required
e Mostly monadic predicates
* Most involve only a small number of threads

Contributions

e MatchEmbeds

e Structure Embedding Problem
* NP Complete
e Occurs during verification of multi-threaded programs
* Many (1000’s) embedding queries are often required
e Mostly monadic predicates
* Most involve only a small number of threads

* Backtracking search

Contributions

e MatchEmbeds

e Structure Embedding Problem
* NP Complete

e Occurs during verification of multi-threaded programs
* Many (1000’s) embedding queries are often required
e Mostly monadic predicates
* Most involve only a small number of threads

* Backtracking search
e Polytime for monadic case

Contributions

e MatchEmbeds

e Structure Embedding Problem
* NP Complete
e Occurs during verification of multi-threaded programs
* Many (1000’s) embedding queries are often required
e Mostly monadic predicates
* Most involve only a small number of threads
* Backtracking search
e Polytime for monadic case
* Practical for “real life” instances
* Solves difficult instances quickly

Overview
1. Structure Embedding
2. Use in Multi-threaded Verification

3. MatchEmbeds

Multi-threaded Program Verification

main count () :
count 0

1 1 N:
thread count

(count < N)

thread count(():
count = count+l

Multi-threaded Program Verification

main ticket():
s =t =20
(*)
thread ticket

thread ticket():
m
m = t++
(s < m); skip
//mutual exclusion
s++

Predicate Abstraction

* Represent program states by conjunction of predicates

Predicate Abstraction

* Represent program states by conjunction of predicates

Fib (a, b, n):
1 (n > 0)
2 tmp = a + b
3 a =>b
4 b = tmp
® n—-—

6 a

Predicate Abstraction

* Represent program states by conjunction of predicates

_ Predicate Abstraction
Fib(a, b, n):

1 (n > 0) (pc=3)A(Mm>0)A(tmp = 2a) A(a < b)
2 tmp = a + b

3 a = b

4 b = tmp

® n—-

6 a

Predicate Abstraction

* Represent program states by conjunction of predicates

_ Predicate Abstraction
Fib(a, b, n):

1 (n > 0) (pc=3)A(Mm>0)A(tmp = 2a) A(a < b)
2 tmp = a + b

3 a =Db

4 b = tmp What about multi-threaded programs?
9 n-—-

6 a

Predicate Abstraction

* Represent program states by structures

Predicate Abstraction

* Represent program states by structures

main ticket():
1 s =t =20
2 (™)
3 thread ticket
thread ticket():
m
m = t++
(s < m),; skip
//mutual exclusion
s++

O J o O b»

Predicate Abstraction

* Represent program states by structures

main ticket():
1 s =t =20
2 (™)
3 thread ticket
thread ticket():
m
m = t++
(s < m),; skip
//mutual exclusion
s++

O J o O b»

Relational vocabulary (Q, ar)

Q — {li'Slt’ Mlt;}
ar(l;) = ar(S,) = 1, ar(My,)

Predicate Abstraction

* Represent program states by structures

main_ ticket () : Relational vocabulary (Q, ar)

1 s =t =20 Q = {li,Sit, Myt }
2 (%) ar(l;) = ar(S;;) = L, ar(My) = 2
3 thread ticket

thread ticket():

4 m [,(j) & thread j is at location 4
5 m = t++ S51t(j) € s <m

6 (s < m); skip My (i,j) & m; <m

7 //mutual exclusion

8 s++

Predicate Abstraction

* Represent program states by structures

main_ ticket () : Relational vocabulary (Q, ar)

1 s =t =20 Q = {li,Sit, Myt }
2 (%) ar(l;) = ar(S;;) = L, ar(My) = 2
3 thread ticket

_ (D) AL (2) A7 (3) A S (2) A My (2,3)
thread ticket():

4 m [,(j) & thread j is at location 4
5 m = t++ S51t(j) € s <m

6 (s < m); skip My (i,j) & m; <m

7 //mutual exclusion

8 s++

Predicate Automata

* Automata used to verify safety of multi-threaded programs

Predicate Automata

* Automata used to verify safety of multi-threaded programs
* Structures represent program state

Predicate Automata

* Automata used to verify safety of multi-threaded programs
* Structures represent program state
¢ Program statements transition between structures

Predicate Automata

* Automata used to verify safety of multi-threaded programs
* Structures represent program state
¢ Program statements transition between structures
* Program safety is reduced to checking emptiness of a PA

Predicate Automata

* Automata used to verify safety of multi-threaded programs
* Structures represent program state
¢ Program statements transition between structures
* Program safety is reduced to checking emptiness of a PA

* Infinite state automata over infinite alphabet (2XN)

Emptiness Checking

* Determine if an accepting structure is reachable

Emptiness Checking

* Determine if an accepting structure is reachable
* Undecidable in general

Emptiness Checking

* Determine if an accepting structure is reachable

* Undecidable in general

 Decidable for monadic PA

* All predicates have arity < 1
* Predicates involving local variables of a single thread

Emptiness Checking

* Determine if an accepting structure is reachable

* Undecidable in general

* Decidable for monadic PA

* All predicates have arity < 1

* Predicates involving local variables of a single thread
* Only consider transitions along interesting ids

* Universe of the current structure and 1 fresh element

Emptiness Checking

* Determine if an accepting structure is reachable

* Undecidable in general

* Decidable for monadic PA
* All predicates have arity < 1
* Predicates involving local variables of a single thread
* Only consider transitions along interesting ids
e Universe of the current structure and 1 fresh element
* Use embeddings to prune search space (Downward Compatibility)
* Well structured transition system [Finkel and Schnoebelen. 2001]

Downward Compatibility

A wqo, ¥, is downward compatible with transition system, (S, —), if

V t; < sq and transition s; = s, then dt, s.t.t; > t, and t, < s,

Downward Compatibility

A wqo, ¥, is downward compatible with transition system, (S, —), if

V t; < sq and transition s; = s, then dt, s.t.t; > t, and t, < s,

For PA and embedding if a path from s; accepts then a path from t; will accept.

Overview

1. Structure Embedding

2. Use in Multi-threaded Verification

3. MatchEmbeds

Match Embeds

Joint work with Zak Kincaid

MatchEmbeds

* Bipartite Graphs
* Matchings

MatchEmbeds

* Bipartite Graphs
* Matchings

* Monadic Case
* Reduction to bipartite graph matching

MatchEmbeds

* Bipartite Graphs
* Matchings

* Monadic Case
* Reduction to bipartite graph matching

* Generalize bipartite graph matching strategy to general structures
* Construct bipartite graph
* Search matchings of graph for an embedding

Bipartite Graphs

* Bipartite Graphs, G = (U,V,E)
* U and V are disjoint
e E C UXV

59

Bipartite Graphs

* Bipartite Graphs, G = (U,V,E)
* U and V are disjoint
e E C UXV

 Matching, M € E
* At most one edge contains any vertex
VueU, |[{{u,v)eM} <1
cVveV, [{{uuv) eM} <1

60

Bipartite Graphs

* Bipartite Graphs, G = (U,V,E)
* U and V are disjoint
e £ C UXV

* Matching, M € E
* At most one edge contains any vertex
VueU, |[{{u,v)eM} <1
cVveV, [{{uuv) eM} <1

* Total Matching, M

M is a matching
* M covers U (|[M| = |U|)

61

Monadic Case

62

Monadic Case

A & ({1,2,3},q%,)
My sigLD = g}
r?l

63

Monadic Case

A

B

“ ({1,2,3}, q%,)

Mgy sigLD) E {g)
U et (2,3} sig(Y,2) & {r}

iq}

64

Monadic Case

A = ({1,2,3}, g%,)

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

iq}

65

Monadic Case

A = ({1,2,3}, g%,)

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

iq,7}

B & ({1,2,3},q°%,r%)

q% déf {1'2,3} Slg(QI) 1) g {ql T'} {T'
7B def {1 3} sig(¥,2) = {q}
’ sig(YU,3) & {q,7}

e

r}

{q,7}

Monadic Case

A = ({1,2,3}, g%,)

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

B & ({1,2,3},q°%,r%)

q% ar £1,2,3} sig(U, 1) & {q,r}
B def sig(%,2) = {q}

T 1,3 , o

11,3} sig(U,3) = 1q,7}

Monadic Case

A = ({1,2,3}, g%,)

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

iq}

B & ({1,2,3},q°%,r%)

q% ar £1,2,3} sig(U, 1) & {q,r}
B def sig(%,2) = {q}

T 1,3 , o

11,3} sig(U,3) = 1q,7}

r}

r}

iq,7}

{q,7}

68

Monadic Case

A = ({1,2,3}, g%,)

g% & {1} sig(U, 1) = {q}
W def Sig(QI' 2) = {1"}
4 12,3} sig(YU,3) & {r}

I~

B & ({1,2,3},q°%,r%)

q% ar £1,2,3} sig(U, 1) & {q,r} {T}
7B def {1 3} sig(%,2) = {q}
' sig(¥,3) = {q,7}

r} {q,7}

onadic Case

A = ({1,2,3}, g%,)
g% = {1} sig(U, 1) = {q}
ri et f

sig(U,2) ¥ {r}
2,3} sig(Y,3) & {r}

B & ({1,2,3},q°%,r%)

def {1,3} Sig(QI' 2) = {q}

sig(¥,3) € {q,7}

qﬂ3 def {1'2,3} sig(AU, 1) € {q,T}
7,.23

A B

Maximum Matchings?

(1,2),
M; & {(2,1),}
(3,3)

19}

r} 3

o—o

{7"} {q) T'} [Hopcroft and Karp. 1973]!

70

onadic Case

g¥ & {1} Slg(QI 1) = {q}
A sig(W,2) = {r}
r 12,3} sig(YU,3) & {r}

B & ({1,2,3},q°%,r%)

qﬂ3 def {1'2,3} sig(AU, 1) € {q,T'}
ou 1a 9D (0
r 1;3 . def
11,3} sig(¥,3) & {q,r}

r}

B

iq,7}

{q,7}

Maximum Matchings?

(1,2),
| {(2 1)}
(3,3)

(1,2),
, {(2 3)}
(3,1)

[Hopcroft and Karp. 1973]!

71

Monadic Case

e Aand B

 Structures over common vocabulary
e Each relation has arity 1

Monadic Case

e Aand B

 Structures over common vocabulary
e Each relation has arity 1

e Signature Graph
* sig(W,a) ={q € Q:q(a) € U}

Monadic Case

e Aand B

 Structures over common vocabulary
e Each relation has arity 1

* Signature Graph
* sig(W,a) € {q € Q:3ay, ..., Aar(g)) € ¢°.i.a = a;

Monadic Case

e Aand B

 Structures over common vocabulary
e Each relation has arity 1

* Signature Graph

e sig(W,a) & {q € Q: El(al, ...,aar(q)) € g¥.3i.a = ai}
* Sig(A,B) € G(A,B,E)
« E & {{(a,b) € AXB:sig(U,a) S sig(B,b)}

Monadic Case

e Aand B

 Structures over common vocabulary
e Each relation has arity 1

* Signature Graph

 sig(W,a) = {q € Q:3(ay, ...,aar(q)) € q¥.3i.a = a;}
* Sig(A,B) € G(A,B,E)
« E & {{(a,b) € AXB:sig(U,a) S sig(B,b)}
* M C E is a total matching on A iff f;; is a structure embedding

Monadic Case

e Aand B

 Structures over common vocabulary
e Each relation has arity 1

* Signature Graph

 sig(W,a) = {q € Q:3(ay, ...,aar(q)) € q¥.3i.a = a;}
* Sig(A,B) € G(A,B,E)
« E & {{(a,b) € AXB:sig(U,a) S sig(B,b)}
* M C E is a total matching on A iff f;; is a structure embedding

e Structure embedding takes O (|A] IBI\/IAI + | B|) [Hopcroft and Karp. 1973]

Match Embeds

* Inspired by monadic reduction to bipartite graph matching

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching
3. Check for conflicts

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching
3. Check for conflicts
4. Decide on edges in matching and recurse

Genera\ Case

OROROXOL0
(O

General Case

}
r
q

v q}

~
r
q

86

General Case

M; = {(1,1),(2,4),(3,2),{4,5)}
M; = {(1,1),(2,4),(3,5),(4,2)}
Ms £ {(1,3),(2,4),(3,2),(4,5)}
M, = {(1,3),(2,4),(3,5),(4,2)}
Ms £ {(1,1),(2,3),(3,2),(4,5)}
Me £ {(1,1),(2,3),(3,5),(4,2)}
M; = {(1,3),(2,1),(3,2),{4,5)}
Mg = {(1,3),(2,1),43,5),{4,2)}

87

Consistency

Consider edge (1,3):

88

Consistency

@ 0

p,q}

B
’ Consider edge (1,3):
{

/Edge Consistency:
Let A and B be structures over vocabulary (Q, ar).

Given a bipartite graph G = (4, B, E).

An edge (a, b) € E is consistent with (a;, ..., aar(q)) € g% when
forall positions i where a = a; there is (bl, e bar(q)) € g3l s.t.
b = b; and forall positions j, (a;, b;) € E

~

/

\GUU
{q,7}

89

Consistency

Consider edge (1,3):

90

Consistency

Consider edge (1,3):

Consistent with q(1,2)

2) EBA(22)EG

4q(3

91

Consistency

Consider edge (1,3):

* Consistent with g(1,2)
« 3q(3,2) EBA(2,2)EG

* Consistent with g(1,3)
« 3g(3,2) e BA(3,2)EG

92

93

~
N
i
N
wy

= < &

on B

-IWE

[Q\|

~ o/

o ™M

gm*y

© n

v F =

[- n._n_“_.

V o

T O

= S e

e =

o

@) °
~ ~— ~
(wy ~ ~
Q wy (wyy
— —))

B

{r}

Consistency

Maximum Consistent Sub-Graph

Maximum Consistent Sub-Graph

DO —e,

/Graph Consistency: \
Let A and B be structures over vocabulary (Q, ar).

. A bipartite graph G = (4, B, E) is consistent with @ € g% when
@ for all edges, e € E, e is consistent with «a.

G is consistent when for each ¢ € Q and a € g%, G is consistent

e,

r

with «.
OR%

a2
Z

q,7}

Maximum Consistent Sub—Graph

@

q

&)

r

0

© 0

p,q}

Q
/Mammum Consistent Sub-Graph:

Let A and B be structures over vocabulary (Q, ar).

Given a bipartite graph G = (4, B, E). The maximum consistent
sub-graphis G' = (A,B,E') s.t.

1.E'CE

2. G' is consistent

~

\\ij)r any G''s.t. 1and 2 hold, |G"'| < |G']
7
. o e,

Maximum Consistent Sub-Graph

Goals:

Maximum Consistent Sub-Graph

Goals:
 Remove inconsistent edges

Maximum Consistent Sub-Graph
B
Goals:
’ Remove inconsistent edges
.4}
}
}

* Preserve embeddings

D, q}

/a{q, r}
{
v q}
@7} @)
{q,7}

q
{r

99

Maximum Consistent Sub-Graph
B

O

Goals:
 Remove inconsistent edges

D, q}

{p, q} * Preserve embeddings
* Efficiently Computable O(E?)
{q.7} * Fixpoint Algorithm?
{q}
{p q}
a7} (0}
{r} Cas [Russel and Norvig. 2009]!

100

Maximum Consistent Sub-Graph
B

’ Ml d:ef {<111)) (214>; (312}1 (415)}
v q} M, & {(1,1),(2,4),(3,5), (4, 2)}

/G M & {(1,3),(2,4),(3,2), (4,5)}
{q,7} M, = {(1,3),(2,4),(3,5),(4,2)}
| a{p, q}

{q}

{q,r}

q
{r

v q}
}
}

101

Match Embeds

A B

102

Match Embeds

fu, B

Compute Matching
Ml = {(1,1), (214>; (312}1 (4)5)}

103

Match Embeds

fu, B

Compute Conflict Set
Ml = {(1,1), (214>; (312}1 (415)}

Conflict(fy,) & {q(1,3))

104

I\/Iatch Embeds

Compute Conflict Set

_______ @ 0 G My ((1,1),(2,4), (3,2), (4,5))
{p, g}
/Confllct Set: \Rq(l,S)}
@ ------ Let A and B be structures over vocabulary (Q,ar) and f:A - B

a function.

G The conflict set of f is
\\\ | conflict(f) & {q(as, -, Gar(g)): q € Q. (@1,) ary) € 4% {f (A1), o, f(Aar(q))) € 4%}

97 /
o o,

r}

105

Match Embeds

fu, B

Compute Conflict Set
Ml = {(1,1), (214>; (312}1 (415)}

Conflict(fy,) & {q(1,3))

106

Match Embeds

fu, B

Compute Decisions
Ml = {<111>) (214>; (312}1 (415)}

Conflict(fy,) = {q(1,3)}
Decisions(M;) £ {(1,1),(3,2)}

107

Match Embeds
A

A fu, B Compute Decisions

B
@ @ 0 Q My = ((1,1),(2,4),(3,2), (4,5))
{

p,q}

! /Decision: o \RCI(LB)}

------ Let A and B be structures over vocabulary (Q, ar). (1,1), (3,2)}
Given a bipartite graph G = (4, B, E) and M a matching on G.

@ A decision is an edge {(a, b) € M s.t.

| 1. The degree of ain G is greater than 1
. 2. There is some conflict g(ay, ..., agr(g)) thatinvolves a (a = a;).

E o

108

Match Embeds

fu, B

Compute Decisions
Ml = {<111>) (214>; (312}1 (415)}

Conflict(fy,) = {q(1,3)}
Decisions(M;) £ {(1,1),(3,2)}

109

Match Embeds

]

Decide [3 +— 2

B

D, q}

~
~
oy

v q}

{q}

{q,7}

110

Match Embeds

A B

Decide |3 — 2]
Remove (3,5)

111

Match Embeds

A B A

D © @

v q}

Decide |3 — 2]
* Remove (3,5),(2,2), (4,2)

112

Match Embeds

Decide |3 — 2]
* Remove (3,5),(2,2), (4,2)
* Compute consistent sub-graph

B
Q
—

~

—
ﬁ

—

Q
—

~ ~ ~ ~
=
Q9
-

-
ﬁ
——

113

Match Embeds

3 +— 2]

Backtrack |

114

Match Embeds

Backtrack [3 — 2]
Blame (3,2)

115

Match Embeds

B

v q}

{q,7}

e{p, q}

{q}

{q,7}

Backtrack |3 — 2]
Blame (3,2)
Compute consistent sub-graph

116

Match Embeds
A

A fu, B

Compute Matching
MZ = {(1;1>; (214)1 (3)5)) (412>}

117

Match Embeds
A

A fu, B

Compute Conflict Set
MZ = {(1;1>; (214)1 (3)5)) (412>}

Conflict(fy,) = 0

118

Match Embeds
A

A fu, B

Compute Conflict Set
MZ = {(1;1>; (214)1 (3)5)) (412>}

Conflict(fy,) = 0

fu, is an Embedding

119

Match Embeds Algorithm

Function embeds(()
G « filter(G)

Match Embeds Algorithm

Function embeds(()
G < filter(G)
M <« maximum_matching(G)

Match Embeds Algorithm

Function embeds(()
G < filter(G)
M < maximum_matching(G)
if |[M| # |G.A| then
return false
end

Match Embeds Algorithm

Function embeds(()

G < filter(G)

M < maximum_matching(G)

if |[M| # |G.A| then
return false

end

if f3; is an embedding then
return true

end

Match Embeds Algorithm

Function embeds(()

G < filter(G)

M < maximum_matching(G)

if |[M| # |G.A| then
return false

end

if f3; is an embedding then
return true

end

Select a decision {a,b) € M

Match Embeds Algorithm

Function embeds(()

G < filter(G)

M < maximum_matching(G)

if |[M| # |G.A| then
return false

end

if f); is an embedding then
return true

end

Select a decision {(a,b) € M

if embeds(G\{(u,v) € E:u = axor v = b}) then
return true

Match Embeds Algorithm

Function embeds(()

G < filter(G)

M < maximum_matching(G)

if |[M| # |G.A| then
return false

end

if f); is an embedding then
return true

end

Select a decision {(a,b) € M

if embeds(G\{(u,v) € E:u = axor v = b}) then
return true

else
return embeds(G\{{a, b)})

end

Match Embeds

* Inspired by monadic reduction to bipartite graph matching

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching
3. Check for conflicts

Match Embeds

* Inspired by monadic reduction to bipartite graph matching
* If f37 is a structure embedding then M C E is a matching covering A

* Backtracking search algorithm over total matchings
1. Remove inconsistent edges from graph
2. Compute maximum matching
3. Check for conflicts
4. Decide on edges in matching and recurse

Match Embeds for Program verification

* Practical procedure for deciding structure embedding problem

Match Embeds for Program verification

* Practical procedure for deciding structure embedding problem
* For Predicate Automata prune unnecessary branches:

Match Embeds for Program verification

* Practical procedure for deciding structure embedding problem
* For Predicate Automata prune unnecessary branches:

* Need to search for some already explored t; to prune s;.

Multi-Source Single-Target Embeddings

 Check if B embeds a structure within a set of structures
e 3 € Str. A embeds into B

Multi-Source Single-Target Embeddings

 Check if B embeds a structure within a set of structures
e 3 € Str. A embeds into B

* Key idea: no need to check all structures

Multi-Source Single-Target Embeddings

 Check if B embeds a structure within a set of structures
e 3 € Str. A embeds into B

* Key idea: no need to check all structures
 Store structures in a k-d tree

Multi-Source Single-Target Embeddings

 Check if B embeds a structure within a set of structures
e 3 € Str. A embeds into B

* Key idea: no need to check all structures
 Store structures in a k-d tree

* Map each U to v(Y) € N

Multi-Source Single-Target Embeddings

 Check if B embeds a structure within a set of structures
e 3 € Str. A embeds into B

* Key idea: no need to check all structures
 Store structures in a k-d tree

* Map each U to v(Y) € N
* If A embeds into B then v(A) < v(B)

Multi-Source Single-Target Embeddings

 Check if B embeds a structure within a set of structures
e 3 € Str. A embeds into B

* Key idea: no need to check all structures
 Store structures in a k-d tree

* Map each U to v(Y) € N
* If A embeds into B then v(A) < v(B)

* Use range queries on k-d tree and test returned structures

Multi-Source Single-Target Embeddings

* Let structures be over vocabulary (Q, ar)

v Maps structures to ZlQl vectors
cvW);=19q¢8#0 (qi(..) EW

Multi-Source Single-Target Embeddings

* Let structures be over vocabulary (Q, ar)

v Maps structures to ZlQl vectors
cvW);=19q¢8#0 (qi(..) EW

If A embeds into B
U(Ql)i =1 = U(%)i =1
() < v(B)

Multi-Source Single-Target Embeddings

* Let structures be over vocabulary (Q, ar) k-d Tree Structure
« v maps structures to 29l vectors @
cv@i=19q #0 (q(..) €W

If le%rgl?e:di izoﬁ%)i _, @ @
O @ @ G

v(A) < v(B)

Multi-Source Single-Target Embeddings

* Range Query: A = (g, (1), q2(2)) k-d Tree Structure

1. Check root @
2. Check left tree
3. Atlevel i check right tree if q?il + @

Multi-Source Single-Target Embeddings

* Range Query: A = (g, (1), q2(2)) k-d Tree Structure

1. Check root 0
2. Check left tree
3. Atlevel i check right tree if q?il + @

Multi-Source Single-Target Embeddings

* Range Query: A = (g, (1), q2(2)) k-d Tree Structure

1. Check root 0
2. Check left tree
3. Atlevel i check right tree if q?il + @

Multi-Source Single-Target Embeddings

* Range Query: A = (g, (1), q2(2)) k-d Tree Structure

1. Check root 0
2. Check left tree
3. Atlevel i check right tree if q?il + @

Multi-Source Single-Target Embeddings

* Range Query: A = (g, (1), q2(2)) k-d Tree Structure
1. Check root
2. Check left tree

3. Atlevel i check right tree if q?il + @

Experiments

e |Is Match embeds Practical?

Experiments

* |s Match embeds Practical?
* Does it improve performance of Proof Spaces?

Experiments

* |s Match embeds Practical?
* Does it improve performance of Proof Spaces?
e Does the k-d structure improve Proof Spaces?

Experiments

* |s Match embeds Practical?
* Does it improve performance of Proof Spaces?
e Does the k-d structure improve Proof Spaces?

 Compared to Constraint Satisfaction Problem Solvers:
e Gecode - atop competitor in MiniZinc (CSP Competition)
e HaifaCSP - 15t prize in 2017 MiniZinc competition
* OrTool’'s - Google’s Optimization/CSP solver

Constraint Satisfaction Problem

Given structures A = (4, q4, ..., q,) and B = (B, pq, .., Dm)

Constraint Satisfaction Problem

Given structures A = (4,94, ..., qy) and B = (B, pq, ..., Prm)
For each a € A:
create variable X, with domain {b € B:sig(2,a) € sig(*B,b)}

Constraint Satisfaction Problem

Given structures A = (4,94, ..., qy) and B = (B, pq, ..., Prm)
For each a € A:
create variable X, with domain {b € B:sig(2,a) € sig(*B,b)}

Foreach{(a,a’) € AXAs.t.a # a': (all-different)
create constraint X, # X/

Constraint Satisfaction Problem

Given structures A = (4,94, ..., qy) and B = (B, pq, ..., Prm)
For each a € A:
create variable X, with domain {b € B:sig(2,a) € sig(*B,b)}

Foreach{(a,a’) € AXAs.t.a # a': (all-different)
create constraint X, # X/

A,
i -

For each g; € ¥ and each (al, . aar(qi)) € q

create constraint <Xa1, vy X > S qéB

’““lar(qy)

Experiment Count Threads

main () :
count = 0
for 1 = 1 to N:
fork thread
assert (count <N)

thread () :
count = count+l

Time (s)

600

500

400

300

200

100

B8 MatchEmbeds + Tree
oo MatchEmbeds + List
+—#& Gecode + Tree

¢4 Gecode + Llist

e—e Haifa + Tree
o—e Haifa + List

v-¥ OrTools + Tree
< < OrTools + List

o

10 20 30

40 50
Number of Threads

60

70 80

159

90

Experiment Secret Sharing

main () :
from = 0
while (%)
local secret = *
assume (secret > 0)
for 1 = 1 to N:
Lo = secret
fork thread
while (to > 0):
if (from > 0):
assert (from ==

skip
secret)

thread () :
local m = to
to = 0
from = m

Time (s)

600

500

400

300

200

100

T

1111

T

!

(o]
(o]

A 4

A 4

MatchEmbeds + Tree
MatchEmbeds + List 9
Gecode + Tree o
Gecode + Llist
Haifa + Tree
Haifa + List
OrTools + Tree
OrTools + List

10 20 30 40
Number of Threads

50

60

160

70

Experiments

* |s Match embeds Practical?
* Does it improve performance of Proof Spaces?
e Does the k-d structure improve Proof Spaces?

Experiments

* |s Match embeds Practical?
* Does it improve performance of Proof Spaces?
e Does the k-d structure improve Proof Spaces?

e Can MatchEmbeds solve difficult problem instances?

Experiments

* |s Match embeds Practical?
* Does it improve performance of Proof Spaces?
e Does the k-d structure improve Proof Spaces?

e Can MatchEmbeds solve difficult problem instances?

 Compared to Constraint Satisfaction Problem Solvers:
 Gecode - atop competitor in MiniZinc (CSP Competition)
* HaifaCSP - 15t prize in 2017 MiniZinc competition
* OrTool’'s - Google’s Optimization/CSP solver

Experiment Random Graphs

* PA emptiness checks lead to “easy” embedding instances

Experiment Random Graphs

* PA emptiness checks lead to “easy” embedding instances
* Generate random “difficult” instances

Experiment Random Graphs

* PA emptiness checks lead to “easy” embedding instances

* Generate random “difficult” instances
* Generate vocabulary with 2-10 monadic predicates and 1 edge predicate

Experiment Random Graphs

* PA emptiness checks lead to “easy” embedding instances

* Generate random “difficult” instances
* Generate vocabulary with 2-10 monadic predicates and 1 edge predicate
* Generate source A

Experiment Random Graphs

* PA emptiness checks lead to “easy” embedding instances

* Generate random “difficult” instances
* Generate vocabulary with 2-10 monadic predicates and 1 edge predicate
* Generate source A
* |A| €[10,50] universe size
* p €[0.1,0.25] probability of universe element to appear in monadic predicate
* e € (0,0.1] probability of edge between elements

Experiment Random Graphs

* PA emptiness checks lead to “easy” embedding instances

* Generate random “difficult” instances
* Generate vocabulary with 2-10 monadic predicates and 1 edge predicate

* Generate source A
* |A| €[10,50] universe size
* p €[0.1,0.25] probability of universe element to appear in monadic predicate
* e € (0,0.1] probability of edge between elements
* Generate target B
* |B| € [|Al], 2]Al]
* p' € [p 2p]
« e’ € [e 4e]

Experiment Random Graphs

100 - ; '
* Generate 100 instances == MatchEmbeds +— OrTools
oo Gecode ¢+—+¢ HaifaCSP | o
* 48 positive embeddings ol
e 47 negative embeddings
* 5 unsolved embeddings ol
g
i 40 +
20 +
0 L Y

0 20 40 60 80 100
Instances Solved

170

Experiment Random Monadic Structures

100 : - -
=—a MatchEmbeds +—+ QOrTools

* Generate 100 instances |
.. . oo Gecode +—¢ HaifaCSP
* 56 positive embeddings
e 44 negative embeddings

Time (s)

40 60 80 100
Instances Solved

171

Experiment Random Monadic Structures

100 : - -
=—a MatchEmbeds +—+ QOrTools

* Generate 100 instances |
.. . oo Gecode +—¢ HaifaCSP
* 56 positive embeddings
e 44 negative embeddings

* Match Embeds & HaifaCSP!

* Polytime monadic instances

Time (s)

, . i ‘ 40 60 80 100
[Reglna 1994] Instances Solved

172

Related Works

* Régin’s Algorithm:

Related Works

* Régin’s Algorithm:

* Constraint of difference (filtering algorithm):

Related Works

* Régin’s Algorithm:
* Constraint of difference (filtering algorithm):
1. Remove filtered edges

2. Compute Maximum Matching
3. Remove any edges not belonging to maximum matching

Related Works

* Régin’s Algorithm:
* Constraint of difference (filtering algorithm):
1. Remove filtered edges

2. Compute Maximum Matching
3. Remove any edges not belonging to maximum matching

* Sub-graph Isomorphism:

Related Works

* Régin’s Algorithm:
* Constraint of difference (filtering algorithm):
1. Remove filtered edges

2. Compute Maximum Matching
3. Remove any edges not belonging to maximum matching

* Sub-graph Isomorphism:

* Specialization of structure embedding

Related Works

* Régin’s Algorithm:
* Constraint of difference (filtering algorithm):
1. Remove filtered edges

2. Compute Maximum Matching
3. Remove any edges not belonging to maximum matching

* Sub-graph Isomorphism:
* Specialization of structure embedding
* Focus: find all such 1somorphisms

Related Works

* Régin’s Algorithm:
* Constraint of difference (filtering algorithm):
1. Remove filtered edges

2. Compute Maximum Matching
3. Remove any edges not belonging to maximum matching

* Sub-graph Isomorphism:
* Specialization of structure embedding
* Focus: find all such 1somorphisms

* Exploit local structure rather than global structure
* None known to take advantage of all difference constraint

Summary

e MatchEmbeds:

e Structure Embedding Problem
* Practical (1-2 orders of magnitude faster than existing solutions)
* Polytime for monadic instances

Summary

e MatchEmbeds:

e Structure Embedding Problem
* Practical (1-2 orders of magnitude faster than existing solutions)
* Polytime for monadic instances

* Improves Proof Spaces
* Verify programs with 70 threads vs 20-30 threads

Summary

e MatchEmbeds:

e Structure Embedding Problem
* Practical (1-2 orders of magnitude faster than existing solutions)
* Polytime for monadic instances

* Improves Proof Spaces
* Verify programs with 70 threads vs 20-30 threads
e k-d structure (multi-source embeddings)
* Avoids unnecessary embeddings

* Further Improves Proof Spaces
* Verify programs with 20+ more threads.

References

[1] Kincaid, Z. Podelski, A., Farzan, A. Proof Spaces for Unbounded Parallelism. POPL, pgs. 407-420 (2015).

[2] Finkel, A. Schnoebelen, Ph. Well Structured Transition Systems Everywhere. Theoretical Computer Science
Vol 256:1, pgs. 63-92 (2001).

[3] Hopcroft, J., Karp, R. An n°? Algorithm for Maximum Matchings in Bipartite Graphs. SIAM Journal of
Computing, Vol. 2, No. 5 : pgs. 225-231 (1973).

[4] Régin, J.C.: A4 filtering Algorithm for Constraints of Difference in CSPs. In: AAAL pgs. 362-367 (1994)
[5] Russell, S.J., Norvig, P. Artificial Intelligence - a Modern Approach, 3rd Edition. Prentice Hall series in
Artificial Intelligence, Prentice Hall (2009)

Extra Slides

Proof Spaces

[Kincaid et. al. 2015]

Multi-Threaded Program Verification

* Unbounded number of threads

Multi-Threaded Program Verification

* Unbounded number of threads
* Webservers, databases, computations over N threads

Multi-Threaded Program Verification

e Unbounded number of threads
* Webservers, databases, computations over N threads
* Uses single template T executed by each thread

™=TITI-IT

i

N times

Multi-Threaded Program Verification

e Unbounded number of threads
* Webservers, databases, computations over N threads
* Uses single template T executed by each thread

™=TITI-IT

i

N times

yes
: no

Property

Multi-Threaded Program Verification

e Unbounded number of threads
* Webservers, databases, computations over N threads
* Uses single template T executed by each thread

™=TITI-IT

i

N times

yes
% :no

Property > diverge

Multi-threaded Program Verification

* Key ldeas:

Multi-threaded Program Verification

* Key ldeas:

 Multi-threaded verification is hard

Multi-threaded Program Verification

* Key ldeas:
 Multi-threaded verification is hard

* Verify individual traces
* Reuse sequential verification

Multi-threaded Program Verification

* Key ldeas:
 Multi-threaded verification is hard

* Verify individual traces
* Reuse sequential verification

Program P is correct < all traces of P are correct

Multi-threaded Program Verification

* Key ldeas:
 Multi-threaded verification is hard

* Verify individual traces
* Reuse sequential verification

Program P is correct < all traces of P are correct

* Focus:
P=TN=TI|ITI-IIT

_—y

N times

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

196

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

197

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

e

198

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

199

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

200

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

§

§

Error Traces

201

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

¢

§

Error Traces

202

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

§
§

Error Traces

:

203

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

§
§

Error Traces

¢

204

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

Program is Safe

§

¢

Error Traces

¢

205

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

§

Error Traces

206

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

§

Error Traces

207

Multi-threaded Program Verification

Infeasible Traces Feasible Traces

208

Proof Spaces

* A proof space is a valid set of Hoare triples

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing

{P(al, ey aar(P))} C:t {Q(bl, ey bar(Q))} {Q(bl, e bar(Q))} C':s {R(Cl, ey Car(R))}

{P(al, ...,aar(P))} C:t;C':s {R(cl, . car(R))}

(seq)

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry

m: N — N is a permutation {P(al, ...,aar(p))} C:t {Q(bl, ...,bar(R))}
{P(m(ar), .., (@arpy))} C: () {Q((by), o, T(Par(g)))}

(symm)

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry, conjunction

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry, conjunction

{P(ay, ..., agrp))} C:t{Q(by, oo, bar0))} {R(C1 s Carr))} C:t {S(dy, o) dar(s))}

(conj)
{P(al, e) aar(P)) ANR(cq, ..., Car(R))} C:t {Q(blr e) bar(Q)) ANS(dy4, ..., dar(S)}

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry, conjunction
* Generated from a finite “basis” of Hoare triples

Proof Spaces

* A proof space is a valid set of Hoare triples
* Closed under sequencing, symmetry, conjunction
* Generated from a finite “basis” of Hoare triples

If a proof space, H, exists such that for every error trace, 7,
{pre} 7 {false} € H

then the program is safe.

Proof Checking

* For any Proof Space, H,
e {t: {pre} t{false} € H}is recognized by a Predicate Automata, A(H)

Proof Checking

* For any Proof Space, H,
e {t: {pre} t{false} € H}is recognized by a Predicate Automata, A(H)

* For any Program, P,
* The set of error traces of P is recognized by a PA,

Proof Checking

* For any Proof Space, H,
e {t: {pre} t{false} € H}is recognized by a Predicate Automata, A(H)

* For any Program, P,
* The set of error traces of P is recognized by a PA,

* PA languages are closed under intersection and complement

Proof Checking

* For any Proof Space, H,
e {t: {pre} t{false} € H}is recognized by a Predicate Automata, A(H)

* For any Program, P,
* The set of error traces of P is recognized by a PA,

* PA languages are closed under intersection and complement

Proof space inclusion then reduces to PA emptiness:

V1 € Error Trace.{pre} T {false} € H
&

NAH) =@

Predicate Automata

* Relational vocabulary (Q, ar)

Q= {pqhar(p) =2,ar(q) =1

Predicate Automata

* Relational vocabulary (Q, ar)

Q= {p,qtar(p) =2,ar(q) =1

p(L1)Aq(2) Aq(3)

Configurations

223

Predicate Automata

* Relational vocabulary (Q, ar)

Q= {p,qtar(p) =2,ar(q) =1

{r(1,1),q(2),9(3)}

Configurations

224

Predicate Automata

225

Predicate Automata

p(1,1) Aq(1)

226

Predicate Automata

p(L,1) Aq(1)

227

Predicate Automata

p(1,1) Aq(1)

p(2,1) Aq(1)

q(1) Aq(2)

p(1,1) Ap(2,1) Aq(1)

228

Predicate Automata

* Infinite State Automata over Infinite Alphabet (X XN)
*A= <Qi ar, Z' 6' (pstart' F>

Predicate Automata

* Infinite State Automata over Infinite Alphabet (X XN)
*A= <Qi ar, Z' 6' (pstart' F>

* (Q, ar) : Relational vocabulary

* Q@ : Finite set of predicate symbols
e ar: Q— N

Predicate Automata

* Infinite State Automata over Infinite Alphabet (X XN)
*A= <Qi ar, Z' 6' (pstart' F>

* (Q, ar) : Relational vocabulary

* (@ : Finite set of predicate symbols
e ar: Q> N
e X : Finite set of letters

Predicate Automata

* Infinite State Automata over Infinite Alphabet (X XN)
*A= <Qi ar, Z' 6' (pstart' F>

* (Q, ar) : Relational vocabulary
* @ : Finite set of predicate symbols
e ar: Q- N
* X : Finite set of letters
* .0t € F(Q,ar): Initial formula (with no free variables)

Predicate Automata

* Infinite State Automata over Infinite Alphabet (X XN)
*A= <Qi ar, Z' 6' (pstart' F>

* (Q, ar) : Relational vocabulary
* @ : Finite set of predicate symbols
e ar: Q- N
* X : Finite set of letters
* .0t € F(Q,ar): Initial formula (with no free variables)

e F € Q: Set of accepting predicate symbols.

Predicate Automata

* Infinite State Automata over Infinite Alphabet (X XN)
*A= <Qi ar, Z' 6' (pstart' F>

* (Q, ar) : Relational vocabulary
* @ : Finite set of predicate symbols

e ar: Q> N
e X : Finite set of letters
* Qiare € F(Q, ar): Initial formula (with no free variables)
e F € Q: Set of accepting predicate symbols.

*§:Q XX - F(Q,ar) the only free variables of §(q, o) are the free
variables of g and o

Emptiness Algorithm

Closed « @
N<@®

E<0Q

wl < dnf (Qseart)

while wl # [] do
C < hea %Wl)
wl « tail(wl)
if =3C' € Closed s.t.C' < C then
foreachi € supp(C) U {1 + maxsupp(c)} do
foreacho € Zdo
foreach C's.t.C —» C'and C' ¢ N do
N «N U {C;}_l_
E<EU{C — C'}
if C is accepting then
| return a word w labeling a path in the graph (N, E’) from C to a root
else
wl «wl++ [C']
Closed « Closed U {C}
return Empty

Configurations and Coverings

* A Configuration, C, Accepts iff {q|q(i0, I iar(q)) € C} CF
K
« CZ5CiffC'is a cube of (in DNF)

6(q,0)[ip » k,iy » iy, iar(q) = iar(q)]
Q(ilr""iar(q))ec

IfC < (7,

If C'is acceptmg then C must be accepting

0" T thenak, ¢ 5CandC < C
Therefore, if C’' can reach an accepting state then so must C

Covering Relation (<)

¢ =19(1,2),q(1,3),r(2)}

Covering Relation (<)

C =1{q(1,2),q(1,3),7(2)}
supp(C) = {1,2,3}

Covering Relation (<)

C =1{q(1,2),q(1,3),7(2)} C'={q(8,7),q(8,6),7(7),7(6)}
supp(C) = {1,2,3}

Covering Relation (<)

C =1{q(1,2),q(1,3),7(2)} C'=1{q(8,7),q(8,6),7(7),7(6)}
supp(C) = {1,2,3} supp(C") = {6,7,8}

Covering Relation (<)

C =1{q(1,2),q(1,3),7(2)} C'=1{q(8,7),q(8,6),7(7),7(6)}
supp(C) = {1,2,3} supp(C") = {6,7,8}

C<C(C

Covering Relation ()
C =1{q(1,2),q(1,3),7(2)} C'=1{q(8,7),q(8,6),7(7),7(6)}
supp(C) = {1,2,3} supp(C") = {6,7,8}
C<C

T={1-82-63H7..}

Covering Relation ()
C ={q(8,6),q(8,7),r(6)} < C" ={q(8,7),q(8,6),1r(7),r(6)}
supp(C) = {1,2,3} supp(C") = {6,7,8}
C<C

T={1-82-63H7..}

Covering Relation ()
C =1{q(8,7),q(8,6),r(7)} < C ={q(8,7),q(8,6),7(7),1(6)}
supp(C) = {1,2,3} supp(C") = {6,7,8}
C<C

1={1-82~637.} w={1-82-73m6..)

Covering Relation (<)

C ={q(0),r(1)}

Covering Relation (<)

C = {q(0),7(1)}
supp(C) =1{0,1}

Covering Relation (<)

C ={q(0),r(1)} C'={q(2),7(2)}
supp(C) = {0,1}

Covering Relation (<)

C = {q(0), (1)} C' ={q(2),7(2)}
supp(€) = {0,1} supp(C') = {2}

Covering Relation (<)

C = {q(0), (1)} C' ={q(2),7(2)}
supp(€) = {0,1} supp(C') = {2}

C«C

Covering Relation ()
€ = {q(0), r(1)) C' = {q(2),7(2))
supp(€) = {0,1} supp(C') = {2}
C%C

T must be a permutation (injective)

Covering Relation (<)

* For configurations C and C’, C covers C’ (C < C’)

Covering Relation (<)

* For configurations C and C’, C covers C’ (C < C’)
dmr: N> N,Vq €0,

q(iv, - far() € € = q(m(ir), - 7(iar(g)) € C

Covering Relation (<)

* For configurations C and C’, C covers C’ (C < C’)
dmr: N> N,Vq €0,

q(iv, - far() € € = q(m(ir), - 7(iar(g)) € C
Alternatively,

{q (ﬂ(il):""n(iar(q))) ‘q(i1'°°°'iar(q)) cclcc

Covering Relation (<)

* For configurations C and C’, C covers C’ (C < C’)
dmr: N> N,Vq €0,

q(iv, - far() € € = q(m(ir), - 7(iar(g)) € C
Alternatively,

{q (ﬂ(il):""n(iar(q))) ‘q(i1'°°°'iar(q)) cclcc

* Downward Compatibility with PA%?

[Kincaid et. al. 2015]! [Finkel and Schnoebelen. 200112

