
CLF: A Dependent Logical Framework for Concurrent Computations∗

Kevin Watkins
Carnegie Mellon University

kw@cs.cmu.edu

Iliano Cervesato
ITT Industries

iliano@itd.nrl.navy.mil

Frank Pfenning
Carnegie Mellon University

fp@cs.cmu.edu

David Walker
Princeton University

dpw@cs.princeton.edu

Abstract

We present CLF, a dependently typed logical framework
with several novel features supporting concurrent compu-
tations, in particular monads and synchronous linear con-
nectives. We illustrate its representation methodology of
concurrent computations as monadic expressions via the en-
coding of an asynchronous π-calculus with correspondence
assertions, including its dynamic semantics, safety criterion,
and a type system with latent effects due to Gordon and Jef-
frey. We also explain a new, general methodology for defin-
ing dependently-typed logical frameworks in the LF family.
The methodology involves defining the terms of the frame-
work directly in canonical form and greatly simplifies much
of the metatheory of these frameworks, which has been noto-
riously difficult in the past. We have used the methodology
to show that CLF has a number of key properties including
decidability of type checking.

1 Introduction

Logical frameworks are meta-languages that allow users to
represent deductive systems such as type systems, opera-
tional semantics, logics and proofs. A logical framework is
usually characterized by two distinct elements: the language
itself, be it a first-order logic or a type theory, and the rep-
resentation methodology that users employ to encode the
deductive systems of interest within the language.

When it comes to the design and analysis of program-
ming languages in particular, logical frameworks can serve
two related functions. On the one hand, when the goal is to
represent and reason about a pre-existing language, a log-
ical framework serves as a tool for encoding the abstract
syntax and static and dynamic semantics of the language in
question. Once these basic judgments have been faithfully
encoded in the framework, one can further characterize their
properties in the framework itself. For instance, a natural
next step in an analysis of a type-safe programming lan-
guage is to write down a predicate that specifies the safety
property for program executions.

On the other hand, when the goal is to develop a new lan-
guage or reconsider the semantics of an old one, the frame-
work itself may partly suggest a language definition or its
concise formulation. In other words, our understanding of
the features of a framework and its representation techniques
can help us engineer a precise and principled definition for
a language. Often, the presentation of a language definition
that comes from working within a logical framework in this
way is simpler and more uniform than it otherwise might
have been.

∗This research was sponsored in part by the NSF under grants
CCR-9988281, CCR-0208601, CCR-0238328, and CCR-0306313, and
by NRL under grant N00173-00-C-2086.

In order to serve these two functions well, a framework
must be simple and uniform, yet provide support for rep-
resenting common concepts in its application domain. For
instance, the logical framework LF [HHP93] is built around
the single notion of dependent functions. Dependent func-
tions capture two of the most pervasive concepts in program-
ming languages, the notions of hypothetical and parametric
judgments. Consequently, dependent functions alone make
LF an excellent framework for representing pure languages
and logics. Unfortunately, since all hypotheses in LF are
subject to weakening and contraction, representing impera-
tive program state is complex and cumbersome and unlikely
to inform programming language design. To provide support
for simple state changes, the framework LLF [CP02] aug-
ments LF with three connectives from linear logic, namely
−◦, & and >. The LLF representation methodology suggests
representing state as linear hypotheses, and state-changing
operations as linear functions.

This paper develops the dependently typed framework
CLF, which is a conservative extension of LF and LLF with
intrinsic support for the representation of concurrent lan-
guages. This support comes in the form of the additional
linear connectives !, ∃, ⊗ and 1. Each of these connectives
helps support simple and natural representations of concur-
rent computations. However, on their own, they are incom-
patible with the LF or LLF type theory. In fact, adding
even a single one of these connectives to LF immediately
destroys many crucial properties of framework and invali-
dates the central representation methodology! To solve this
problem, we have adapted an old idea from programming
language researchers to the world of logical frameworks: We
separate the well-behaved LLF fragment of our framework
from our new fragment by encapsulating the latter inside a
monad [Mog91].

The monadic expressions we introduce form the basis
for representing concurrent computations. Intuitively, these
monadic expressions are a sequence of computational steps
consuming some linear hypotheses and assuming others,
thereby changing the state. If one step introduces a hy-
pothesis that is consumed in a second step, then the second
step depends on the first one; otherwise steps are indepen-
dent. In order to move from a framework that represents
simple sequential state change to one that captures true con-
currency, the framework identifies any two monadic expres-
sions that differ only in the order of independent steps. Since
monadic expressions are first-class objects in the framework,
programmers can then use the framework itself to specify
properties of concurrent executions via predicates and rela-
tions over monadic expressions.

We illustrate the framework’s expressive power and rep-
resentation techniques through a sample encoding of an
asynchronous version of the π-calculus with correspondence
assertions, following Gordon and Jeffrey [GJ03]. The CLF
encoding of its dynamic semantics yields monadic expres-

sions that correspond exactly to its legal computations. De-
pendent types indexed by these expressions formalize the
correspondence property for execution, which is the relevant
safety criterion. We also formalize a type system with latent
effects akin to Gordon and Jeffrey’s. While not a significant
contribution to the theory of correspondence assertions, this
work nonetheless sheds some interesting light on it. For in-
stance, the operational semantics we give appears somewhat
simpler than the original specification given by Gordon and
Jeffrey because it avoids development of a relatively complex
process equivalence relation. We also avoid a labeled tran-
sition system, instead specifying the correspondence policy
directly as a predicate on program executions (a type fam-
ily indexed by monadic expressions in the framework). We
arrived at these definitions by experimenting with multiple
variations within the new framework.

We have had a similar experience on other examples we
have investigated as well. For instance, while encoding the
semantics of Concurrent ML we developed a new style of
presenting the operational semantics which is more modular
than the published specification [Rep99]. The Concurrent
ML example and a number of others may be found in an
extensive technical report on CLF [CPWW02].

Another significant technical contribution of this paper is
our methodology for defining dependently-typed languages
in the LF family. In particular, we define CLF and its type-
checking algorithm directly on the canonical forms of objects
in the framework. Our techniques greatly simplify the meta-
theory of dependently-typed languages, which has been ex-
tremely difficult even for much simpler dependent languages
such as LF alone. In this short paper, we outline this
methodology and present some of the most important meta-
theoretic results. A second technical report [WCPW02] con-
tains proofs of all the theorems we present.

In earlier work, we presented the propositional fragment
of CLF [WCPW04]. The current paper represents a substan-
tial leap forward as it integrates these earlier ideas within a
framework containing dependent and existential types and
indexed type families. More specifically, in the propositional
fragment, it is possible to encode the operational semantics
of Petri Nets, the simplest of concurrent languages, but de-
pendent and existential types are necessary for representing
the operational semantics of almost any other programming
language and any type system. Moreover, in the propo-
sitional fragment, monadic expressions cannot be manipu-
lated as objects, and therefore, it is not possible to analyze
the properties of concurrent computations. In this paper, we
show how to specify properties of concurrent computations,
such as the safety property for correspondence assertions,
by defining type families indexed by monadic expressions.
Finally, the meta-theory necessary to develop the proposi-
tional fragment of the logic is almost trivial when compared
with the meta-theory necessary to handle dependency. In
particular, the central difficulty in defining our framework
based on canonical forms is how to handle the elimination
form for dependent functions. This elimination form de-
mands substitution of one canonical object within another,
which, if done naively, will yield a non-canonical result. To
solve this problem, we present an algorithm that simulta-
neously substitutes and normalizes objects and terminates
even on terms that are not well-typed. This algorithm is
defined by nested induction on the structure of a type and
a term.

2 The unrestricted connectives

At CLF’s core is the type theory λΠ of the framework LF.
The theory consists of type constructors, which may have
dependent function kinds Πu :A. K and objects, which may
have dependent function types Πu :A. B. The type construc-
tors represent judgments concerning the syntax, the static
semantics and other features of language; the objects repre-
sent proofs that particular judgments are valid.

In order to be effective, a logical framework in this style
must possess an algorithm for checking that objects are well-
typed and consequently that particular judgements the user
has encoded are valid. In the past, proving the decidabil-
ity of algorithms for type-checking LF-style frameworks has
been a very complex task, and despite being experts in this
area, we would have found it extremely difficult to scale this
proof up sufficiently to handle a language like CLF. Fortu-
nately, we have found a novel technique for defining these
dependent frameworks that simplifies the task of proving
decidability tremendously.

The first step in our new methodology is to adopt a syn-
tax in which all objects are canonical (β-normal and η-long),
syntactically ruling out redices. The introduction and elim-
ination forms (from the point of view of logic) become sep-
arate syntactic classes. We call them atomic and normal
objects, respectively. Likewise, there are atomic and normal
types (type families, strictly speaking), and normal kinds.
These syntactic constructs and associated contexts are as
follows. (While we focus on the λΠ sublanguage, ellipses
indicate that there is more to come):

Normal kinds K ::= type | Πu :A. K

Atomic types P ::= a | P N

Normal types A ::= P | Πu :A1. A2 | . . .
Atomic objects R ::= c | u | R N | . . .
Normal objects N ::= R | λu. N | . . .

Unrestricted contexts Γ ::= · | Γ, u :A

Signatures Σ ::= · | Σ, a :K | Σ, c :A

The metavariable c stands for constants, while u stands
for variables. These take their types from a signature and a
(typing) context, respectively. The type family constants a
also take their kinds from the signature. As usual, we only
consider terms modulo the renaming of bound variables and
maintain that constants and variables are declared at most
once in a signature or context, respectively. We often write
A → B instead of Πu :A. B or A → K instead of Πu :A. K
when B or K, respectively, contains no free occurrence of u.
Also, it is clearer in some cases to write B ← A for A→ B.

Typing for canonical forms is pleasantly simple. Each
atomic object (or type) has a unique type (or kind) in a
given context. Each normal object (or type) can be checked
for well-formedness, given its putative type (or kind). The
structure of a normal object is constrained by its type; it is
in this sense that they are canonical forms. The notation for
these judgments is as follows (the context ∆ may be ignored
prior to Section 3):

N is normal of type A Γ;∆ `Σ N ⇐ A

R is atomic of type A Γ;∆ `Σ R⇒ A

In each case, Γ, ∆, and Σ are known inputs to the judg-
ment and the arrow points in the direction information flows:

2

stop : pr. pstopq = stop
par : pr→ pr→ pr. pP | Qq = par pPq pQq

repeat : pr→ pr. prepeat Pq = repeat pPq
new : tp→ (nm→ pr)→ pr. pnew(x :τ); Pq = new pτq (λx. pPq)

choose : pr→ pr→ pr. pchoose P Qq = choose pPq pQq
out : nm→ nm→ pr. pout x〈y〉q = out x y
inp : nm→ tp→ (nm→ pr)→ pr. pinp x(y :τ); Pq = inp x pτq (λy. pPq)

begin : label→ pr→ pr. pbegin L; Pq = begin pLq pPq
end : label→ pr→ pr. pend L; Pq = end pLq pPq

Figure 1: CLF representation of π-calculus syntax

in the first judgment, the type A is an input that is used to
check a normal object; in the second judgment, the type A
is an output that is synthesized from an atomic object. Of-
ten Σ is omitted, as the signature is constant throughout
any typing derivation. All of the typing rules are syntax di-
rected: there are no structural rules or type conversion rules
that may be applied at arbitrary points in the derivation,
and the inputs necessary to decide each premise of a rule are
completely determined either by inputs to the conclusion or
by outputs of premises to the left. (In other words, we are
implicitly defining a primitive recursive decision procedure
for typing, not merely a potentially undecidable judgment.)
The rules for constants, variables, introduction of dependent
functions and equality illustrate these ideas:

Γ;∆ ` c⇒ Σ(c)
c

Γ;∆ ` x⇒ Γ(x)
x

Γ, u :A;∆ ` N ⇐ B

Γ;∆ ` λu. N ⇐ Πu :A. B
ΠI

Γ;∆ ` R⇒ P ′ P ′ = P

Γ;∆ ` R⇐ P
⇒⇐

The checking of a λ-abstraction λu. N at type Πu :A. B
reduces by ΠI to the checking of its body N in a context
extended by u:A. The checking of an atomic object R at
type P reduces by ⇒⇐ to the synthesis of a type P ′ for R
and the verification that P and P ′ are equal. For the λΠ

fragment, the equality P = P ′ is simply α-convertibility.
Since P is a metavariable ranging over atomic types, only
η-long forms will typecheck. Finally, the rules for constants
and variables allow their types to be synthesized directly
from the context or signature.

In order to complete the rules for typing λΠ, we need to
assign a type synthesis rule to the application R N of de-
pendent functions. Normally, one would expect a function R
having dependent type Πu :A. B, applied to an argument N
of type A, to synthesize the type [N/u]B, where [N/u] is
metasyntax for the ordinary capture-avoiding substitution
of N for u. In our syntax, the ordinary substitution cannot
even be defined, since variables u are atomic while N is nor-
mal, and there is no coercion from normal to atomic objects
(which would create β-redices).

Felty’s canonical LFaddresses this issue by introducing
an additional syntax for non-canonical terms, and defin-
ing the usual notion of β-reduction on this syntax. Then
the typing rule for application synthesizes the normal form
(which can be shown to be canonical) of the non-canonical
substitution [N/u]B. A difficulty with this approach is that
reduction is inextricably intertwined with typing, and so the
subject reduction property and strong normalization prop-
erty are quite tricky to establish. (Indeed, Felty does not do
so directly, instead appealing implicitly to subject reduction

and strong normalization with respect to the original type
system for LF and introducing another argument showing
her canonical type system to be equivalent. Of course, the
canonical type system is then dependent on a preexisting
type system for non-canonical terms, with its own tricky
metatheory, and cannot be defined ab initio.)

We improve on Felty’s approach by observing that the
process of reduction of a substitution [N/u]B to canonical
form can be defined by higher-order primitive recursion on
the type of the variable u. We denote this primitive recur-
sive functional inst aA(u. B, N), where A is the type of the
variable u, and call it instantiation. The primitive recursion
terminates regardless of whether the terms B and N are
well-typed. This makes it trivial that typing is decidable
(indeed, higher-order primitive recursive), and a “subject
reduction” theorem for instantiation can be established by
elementary inductive arguments.

With the new instantiation operator in hand, the elimi-
nation form for dependent functions has the following struc-
ture.

Γ;∆ ` R⇒ Πu :A. B Γ; · ` N ⇐ A

Γ; ∆ ` R N ⇒ inst aA(u. B, N)
ΠE

There are also well-formedness rules for kinds and types,
posing no additional difficulties—for details, consult Ap-
pendix A.

Although our presentation of λΠ differs from that of the
original LF paper, it can be shown to be equivalent in the
strong sense that the canonical form of any LF term is well-
typed in the canonical system, and any typing derivation in
the canonical system maps to an isomorphic derivation in
the original type system for LF.

We take care to ensure that as the λΠ fragment is ex-
tended to full CLF, it remains conservative over LF. Indeed,
the key principles for constructing representations in LF,
judgments as types and higher-order abstract syntax, still
apply.

2.1 An introduction to the asynchronous π-calculus with
correspondence assertions

To illustrate the various features of CLF, we will develop
a running example involving the asynchronous π-calculus
with embedded correspondence assertions [WL93]. As we
introduce elements of CLF we will show how to use them
by representing the syntax of the π-calculus constructs, a
type system for checking correspondences, based on work
by Gordon and Jeffrey [GJ03], a dynamic semantics for the
language and finally a specification of the correspondence
property (which must hold for an execution in the language
to be safe).

3

Correspondence assertions, originally developed by Woo
and Lam [WL93], allow some safety properties of concurrent
programs to be verified by marking significant points in a
program with assertions begin L or end L, where L is a label
carrying information about the state of the program. An
execution is safe if it satisfies the following correspondence
property : for each end L assertion reached in an execution,
a distinct begin L assertion (for the same L) must have been
reached in the past. By choosing carefully where to place
correspondence assertions, interesting safety properties can
be reduced to the correspondence property. Woo and Lam,
and Gordon and Jeffrey, have shown how to do this for a
variety of important correctness properties of cryptographic
protocols.

To illustrate the basic ideas, we will examine an ex-
tremely simple handshake protocol taken directly from Gor-
don and Jeffrey’s work. We wish to send a message reliably
from a process a to another process b. When b receives the
original message, it returns an acknowledgment to a. The
protocol is intended to ensure that if a receives an acknowl-
edgment message then b actually did receive the original
message. In the asynchronous π-calculus with correspon-
dence assertions, we specify the protocol as follows.

Send(a, b, c) = new(msg); new(ack);
(out c〈msg , ack〉
| inp ack(); end (a, b,msg); stop)

Rcv(a, b, c) = inp c(msg , ack); begin (a, b,msg); out ack〈〉

The standard π-calculus process constructors used here
are the parallel composition P | Q, the do-nothing process
stop, the name binding operator new(x); p (where a new
name x is bound for use in P), the asynchronous output
operator out c〈x1, . . . , xn〉, and the asynchronous input op-
erator inp c(x1, . . . , xn); P (where variables x1 through xn

are bound in P).
In the specification above, the sending process a gener-

ates a new message msg and a new acknowledgment chan-
nel ack . The sender uses the asynchronous output operator
to send them as a pair on the (already established) chan-
nel c, and waits for a response on ack . Once the sender
receives the acknowledgment, it executes an end assertion
with the label (a, b,msg). The semantics of the label is that
the sender a requires that the receiver b has already received
the input message msg .

The receiver cooperates with the sender by waiting for
pairs of message and acknowledgment channel on channel c.
After receiving on c, a begin assertion declares that the re-
ceiver b has received the input message. After this declara-
tion, the receiver sends an acknowledgment to the sender.
Safety requires that in all executions of senders in paral-
lel with receivers, end assertions have matching begin asser-
tions. If so, sender a can be sure that receiver b received the
message msg .

Now, consider combining a single sender in parallel with
a single receiver: new(c); (Send(a, b, c) | Rcv(a, b, c)). This
configuration is safe since in every possible execution, ev-
ery end (a, b,msg) assertion is preceded in that execution
by a distinct corresponding begin (a, b,msg) assertion. On
the other hand, placing multiple different senders in parallel
with a single copy of a receiver is unsafe:

new(c); (Send(a, b, c) | Send(a′, b, c) | Rcv(a, b, c))

This configuration is unsafe because there exists an ex-
ecution in which an end L assertion is executed but there

has been no prior matching begin L. More specifically, the
second sender a′ may create a message and send it to the
receiver. The receiver, thinking it is communicating with a,
receives the message, executes begin (a, b,msg), and returns
the acknowledgment. Finally, the second sender executes
end (a′, b,msg). In this protocol, since the identity of the
sender (either a or a′) is not included in the message, there
can be confusion over whom the receiver is communicating
with. While this example is very simple, Gordon and Jef-
frey have demonstrated that these assertions can be used to
identify flaws in more complex protocols as well [GJ03].

2.2 Representing syntax

The first component of our CLF representation of the
π-calculus is a representation of its syntax, following stan-
dard LF methodology. For simplicity, our π-calculus con-
tains monadic input and output processes rather than
polyadic ones, and the only data structures are names x, y, z.
We also removed the if-then-else construct of Gordon et al.
in favor of a non-deterministic choice operator.1

Two process forms that did not show up in the informal
example in Section 2.1 are the replicated process repeat P ,
which acts as an unbounded number of copies of P , and the
non-deterministic choice operator choose P Q. The syntax
refers to types τ of the static semantics, which will be dis-
cussed later. We do not specify any particular syntax for
assertion labels L, but it is assumed that they might men-
tion names bound by new or inp. As usual, bound names are
allowed to α-vary without explicit mention of α-conversion.
Channels are a special case of names.

P, Q ::= stop | (P | Q) | repeat P | new(x :τ); P

| choose P Q | out x〈y〉 | inp x(y :τ); P

| begin L; P | end L; P

The corresponding LF signature, shown on the left of
Figure 1, represents process syntax via CLF types pr (pro-
cesses), nm (names), tp (types), and label (assertion labels).
The representation function mapping processes to CLF ob-
jects, written p q, is shown at the right.

A few comments: The type nm of names does not contain
any closed terms; it classifies bound variables within a pro-
cess expression. The type tp is discussed in Section 3. As is
common in LF representations, we use higher-order abstract
syntax, which allows us to model π-calculus bound variables
using framework variables and to implement π-calculus sub-
stitution using the framework’s substitution.

The most important property of this representation is
adequacy : every process in the original language has its own
representative as a CLF object of type pr, and every object
in pr is such a representation. The canonical forms property
for CLF renders proofs of such properties trivial.

3 The asynchronous linear connectives

The next larger sublanguage contained in CLF is the type
theory λΠ−◦&>, the basis of Cervesato and Pfenning’s LLF
(Linear Logical Framework) [CP02]. λΠ−◦&> extends λΠ

1The if-then-else construct, or guarded process, requires the ability
to decide whether names are equal. Guards testing equality of names
are easy to represent; those testing disequality of names less so. This
difficulty in characterizing disequality of names is common to the
whole lineage of frameworks based on LF.

4

good : pr→ type.
consume : eff → type. % See Section 5
assume : eff → pr→ type. % See Section 5

gd stop : good stop ◦− >.
gd par : good (par P Q) ◦− good P ◦− good Q.

gd repeat : good (repeat P) ◦− > ← good P.
gd new : good (new τ (λx. P x)) ◦− (Πx :nm. has x τ → good (P x)).

gd choose : good (choose P Q) ◦− (good P & good Q).
gd out : good (out X Y)← has X (chan τ (λy. E y))← has Y τ ◦− consume (E Y).
gd inp : good (inp X τ (λy. P y))← has X (chan τ (λy. E y))

← (Πy :nm. has y τ → assume (E y) (P y)).
gd begin : good (begin L P) ◦− (effect L−◦ good P).

gd end : good (end L P) ◦− effect L ◦− good P.

Figure 2: Static semantics represented in CLF

with linear hypotheses and as many connectives of intuition-
istic linear logic as have invertible introductions (a property
intimately connected to the strong canonical forms prop-
erty). Such connectives have been called asynchronous by
Andreoli [And92]. Following this terminology, we refer to
the λΠ types together with the new connectives as the asyn-
chronous types. We do not consider linear dependent func-
tions like RLF’s [IP98] (even in full CLF).

The additional syntax is as follows:

Asynch. types A ::= . . . | A1 −◦A2 | A1 & A2 | > | . . .
Atomic objects R ::= . . . | x | R∧N | π1R | π2R | . . .
Normal objects N ::= . . . |

∧
λx. N | 〈N1, N2〉 | 〈〉 | . . .

Linear contexts ∆ ::= · | ∆, x∧:A

The linear function type A1 −◦A2 (sometimes also writ-
ten A2 ◦− A1) introduces linear hypotheses, which we col-
lect in a separate context ∆. We implicitly regard ∆ as an
unordered multiset, because unlike unrestricted hypotheses,
linear hypotheses cannot depend on one other. We consider
the two sorts of variable u and x to be in different syntactic
categories, but in practice we do not distinguish between
them. The typing rules for linear functions, and for the
additive product & and unit > as well, are type-theoretic
generalizations of the corresponding rules of linear logic:

Γ;∆ ` 〈〉 ⇐ > >I
Γ;∆, x∧:A ` N ⇐ B

Γ;∆ `
∧
λx. N ⇐ A−◦B

−◦I

Γ;∆1 ` R⇒ A−◦B Γ;∆2 ` N ⇐ A

Γ;∆1, ∆2 ` R∧N ⇒ B
−◦E

Γ;∆ ` N1 ⇐ A Γ; ∆ ` N2 ⇐ B

Γ;∆ ` 〈N1, N2〉 ⇐ A & B
&I

Γ;∆ ` R⇒ A & B

Γ;∆ ` π1R⇒ A
&E1

Γ;∆ ` R⇒ A & B

Γ;∆ ` π2R⇒ B
&E2

(There is no elimination rule for >.)
A major benefit of linear hypotheses is the ability to rep-

resent stateful systems [CP02] using the methodology associ-
ated with Cervesato and Pfenning’s LLF. In our π-calculus
example, we will be able to represent the static “state” of the
type and effect system for correspondence assertions as a set
of linear hypotheses in LLF style. The basic idea is to record
a multiset of begins already reached at the current program

point as linear hypotheses of the typing judgment.2 Then
each occurrence of begin L contributes a linear hypothesis of
type effect L for the checking of its continuation, and each
end L consumes such a hypothesis.

3.1 Representing a type and effect system

To illustrate the use of CLF’s linear connectives, we will
encode a variant of Gordon and Jeffrey’s type system with
latent effects [GJ03]. The goal of the static semantics is to
define a decidable sufficient condition ensuring that the cor-
respondence property is not violated in any possible execu-
tion of a program. (Recall that the correspondence property
requires that each end L in an execution be preceded by a
distinct begin L for the same label L.) To do this, the static
semantics associates an effect Λ (a multiset of labels) with
each program point, such that it is safe to execute end L for
each label L in the multiset. The typing rule for begin L; P
adds L to the effect for checking the continuation P , while
the typing rule for end L removes such an L. (Of course,
not all safe programs will necessarily have a valid typing.)

This typing discipline accounts for trivial instances of
correct programs in which an end is found directly within
the continuation of its matching begin. Of course, in actual
use, one is more interested in cases in which the end and its
matching begin occur in different processes executing con-
currently (as in the example of Section 2.1).

Gordon et al. introduce latent effects to treat many such
cases. The idea is that each value transmitted across a chan-
nel may carry with it a multiset e of latent effects, the effects
being debited from the process sending the value and credited
to the process receiving it. Since communication temporally
orders the sending and receiving processes, it is certain that
the begins introducing the debited effects in the sending pro-
cess will occur before any ends making use of the credited
effects in the receiving process.3

These considerations lead to a simple type syntax. Each
name in the static semantics has a type τ : either Name (e.g.,
a nonce) or Ch(x :τ)e, representing a channel transmitting

2Really these are affine hypotheses, since the invariant is that the
multiset be merely a lower bound: it is perfectly safe to “forget” that
a begin was reached at some point in the past. Careful use of the
additives > and & will allow us to simulate affine hypotheses with
linear ones.

3Of course, this implicitly relies on the unicast nature of com-
munication in the language. If multicast or broadcast were allowed,
more than one process could be credited, violating the non-duplicable
nature of effect hypotheses.

5

names of type τ and a latent effect e. Although we have
left the syntax of labels unspecified, in applications they
will often depend on names; thus, the occurrence of x in
Ch(x :τ)e is a binder for any free occurrences of x in e, and
it α-varies in the usual way. We write Λ for a multiset of
labels, and Λ1, Λ2 for a disjoint union of multisets.

τ ::= Name | Ch(x :τ)e

e = [Λ]

Θ ::= · | Θ, x :τ

Λ ::= · | Λ, L

In the framework, types τ are represented as objects with
CLF type tp. The representation of latent effects e is dis-
cussed in Section 5 below; for present purposes, assume that
effects will be represented as objects with type eff. A typing
context Θ will be represented by a collection of unrestricted
assumptions (has X T) in the CLF context and an effect
context Λ will be represented by a series of linear assump-
tions (effect L) in the CLF context. Neither the type family
has nor the type family effect contains any closed objects.

tp : type.
name : tp.
chan : tp→ (nm→ eff)→ tp.

has : nm→ tp→ type.
effect : label→ type.

We first present the static semantics of the language as
an inference system. Informally, the main typing judgment
Θ;Λ ` P asserts that the process P will safely execute in a
context given by names Θ and effect Λ, which we think of
as a sort of capability for executing end Ls.

Θ;Λ ` stop

Θ;Λ1 ` P Θ;Λ2 ` Q

Θ;Λ1, Λ2 ` P | Q

Θ; · ` P

Θ;Λ ` repeat P

Θ, x :τ ; Λ ` P

Θ;Λ ` new(x :τ); P

Θ;Λ ` P Θ;Λ ` Q

Θ;Λ ` choose P Q

(x :Ch(z :τ)[Λ1]) ∈ Θ (y :τ) ∈ Θ

Θ; [y/z]Λ1, Λ2 ` out x〈y〉

(x :Ch(y :τ)[Λ2]) ∈ Θ Θ, y :τ ; Λ1, Λ2 ` P

Θ;Λ1 ` inp x(y :τ); P

Θ;Λ, L ` P

Θ;Λ ` begin L; P

Θ;Λ ` P

Θ;Λ, L ` end L; P

The rules for new and inp carry the proviso that x or y,
respectively, not occur free in the conclusion of an instance
of each rule.

Next, in the framework, we represent the π-calculus typ-
ing judgment as a CLF type family good, shown in Figure 2.
The type A in Πu :A. B has been omitted where it is deter-
mined by context. We often omit outermost Π quantifiers
entirely; in such cases the corresponding arguments to the
constant in question are also omitted (implicit). We have
also η-contracted some subterms to conserve space; these
should be read as abbreviations for their η-long (canonical)
forms.

Since not every declared effect must actually occur (that
is, effects are affine and implicitly admit a weakening princi-
ple), we must use the additive unit> to consume any leftover
effects at the leaves of a derivation (instances of the gd stop
rule) and where the effect set is reset to empty (instances of
the gd repeat rule).

The task of assume and consume is to introduce and con-
sume linear hypotheses for the whole multiset of effects con-
tained in a latent effect. Latent effects are consumed by out,
which has no continuation, and produced by inp, which does.
Accordingly, assume takes the continuation as an argument,
and invokes good to check it once the multiset of effects has
been introduced into the linear context. The representations
of assume and consume are shown in Section 5.

It can be shown that this representation is adequate: a
process P is well-typed in the original system just when
there is an object of type good P in CLF.

4 The lax modality and synchronous connectives

Thus far we have seen the connectives CLF inherits from
earlier frameworks. It is time now to introduce the syntax
for concurrent computations that is the raison d’être of the
framework. The principal challenge lies in the need to re-
tain conservativity over λΠ−◦&>: because the structure of a
concurrent computation will not necessarily be determined
by its type, there is the danger that the strong canonical
forms property that λΠ−◦&> enjoys could be lost.4

Fortunately, the term language of judgmental lax
logic [PD01] provides a ready-made solution. In addition
to the normal judgment N ⇐ A, which may be thought
of as expressing the truth of A, it has a second judgment
E ← A, where E is a new syntactic class of expressions. In
computational terms, the new judgment distinguishes effect-
ful computations from the effect-free values of the original
judgment N ⇐ A. (Here we think of the inherent non-
determinism of concurrent computations as an effect.)

Since “possibly effectful” is weaker than “effect-free,”
there is an inclusion of the normal objects N into the expres-
sions E. There is no reverse inclusion; instead, the notion
of “possibly effectful” is internalized by a new monadic type
constructor {·}, so called because it satisfies the axioms of
a monad.

Next, what synchronous types S should be available? In
other words, what kinds of result can a computation have?
We treat three related phenomena: fresh name generation,
the creation of new unrestricted hypotheses, and the creation
of multiple related linear hypotheses. Each of these corre-
sponds to a synchronous connective of intuitionistic linear
logic, in Andreoli’s terminology [And92].

Concerning fresh name generation, a plausible idea might
be to model a computation generating a name x of type A by
an existential type: ∃u :A. B. However, we must be careful:
the elimination rule for ∃ would destroy the strong canoni-
cal forms property enjoyed by λΠ−◦&>. Fortunately, for our
purposes such an elimination rule is needed only in the lax
(monadic) judgment, since ∃ is only to be used in computa-
tions. The creation of multiple related linear hypotheses is
modeled by a multiplicative conjunction ⊗ and unit 1, and

4See our technical report [WCPW02] for more discussion of this
subtle point. Also, though it is not treated here, the planned logic
programming interpretation of CLF relies on the uniform proofs prop-
erty, which is connected to the strong canonical forms property.

6

the creation of new unrestricted hypotheses is modeled by
the unrestricted modality !.

These ideas lead to the following (final) syntax for CLF.

We represent this type theory symbolically as λΠ−◦&>{∃⊗1!}.

Asynchronous types A ::= . . . | {S}
Normal objects N ::= . . . | {E}
Expressions E ::= let {p} = R in E |M
Synchronous types S ::= A | ∃u :A. S | S1 ⊗ S2 | 1 | !A
Monadic objects M ::= N | [N, M] |M1 ⊗M2 | 1 | !N

As for typing these new constructs, first we consider the
lax judgment and the rules pertaining to the monadic type
constructor.

E is an expression of type S Γ;∆ `Σ E ← S

Γ;∆ ` E ← S

Γ;∆ ` {E} ⇐ {S} {}I

Γ;∆1 ` R⇒ {S0} Γ; ∆2, p
∧:S0 ` E ← S

Γ;∆1, ∆2 ` (let {p} = R in E)← S
{}E

Concurrent computations are represented by sequences
of let bindings, each of which corresponds to an individ-
ual computation step yielding a result of synchronous type.
Since all of the elimination rules for synchronous types are
invertible (a defining property of synchronous connectives),
we can establish canonical forms by requiring such elimina-
tions to occur as early as possible, and in a definite order.
This leads to a pattern syntax for synchronous types, and
the elimination of such types becomes pattern expansion, as
follows:

Patterns p ::= x | [u, p] | p1 ⊗ p2 | 1 | !u
Pattern contexts Ψ ::= · | p∧:S, Ψ

Pattern expansion Γ;∆; Ψ `Σ E ← S

The pattern expansion judgment decomposes the variables
in each pattern p in Ψ into the appropriate contexts Γ or ∆:

Γ;∆;Ψ ` E ← S

Γ;∆; 1∧:1, Ψ ` E ← S
1L

Γ, u :A;∆;Ψ ` E ← S

Γ;∆; !u∧: !A, Ψ ` E ← S
!L

Γ, u :A; ∆; p∧:S0, Ψ ` E ← S

Γ;∆; [u, p]∧:∃x :A. S0, Ψ ` E ← S
∃L

Γ;∆; p1
∧:S1, p2

∧:S2, Ψ ` E ← S

Γ;∆; p1 ⊗ p2
∧:S1 ⊗ S2, Ψ ` E ← S

⊗L

Γ;∆, x∧:A; Ψ ` E ← S

Γ;∆; x∧:A, Ψ ` E ← S
AL

Γ; ∆ ` E ← S

Γ;∆; · ` E ← S
←←

At the kernel of each computation, following any let
bindings representing the computation steps, there is a fi-
nal result of type S. The terms representing such results
are called monadic objects. The introduction rules for these
objects lie in a new non-lax judgment:

M is a monadic object of type S Γ;∆ `Σ M ⇐ S

Γ; · ` 1⇐ 1
1I

Γ; · ` N ⇐ A

Γ; · ` !N ⇐ !A
!I

Γ; · ` N ⇐ A Γ;∆ `M ⇐ inst sA(u. S, N)

Γ; ∆ ` [N, M]⇐ ∃u :A. S
∃I

Γ; ∆1 `M1 ⇐ S1 Γ;∆2 `M2 ⇐ S2

Γ; ∆1, ∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I

Γ; ∆ ` N ⇐ A

Γ; ∆ ` N ← A
⇐←

Let us recall the notation inst aA(u. B, N) of Section 2 for
the canonical type resulting from a substitution of a canon-
ical object N into a canonical type B. For λΠ−◦&> this def-
inition is analogous to the ordinary notion of β-reduction.
Having extended the type theory with the monadic type,
we must extend the definition of inst a as well. There is not
room to present the inductive definition here;5 however, the
result will be as though the objects were substituted in the
ordinary way, and then the reductions

(let {p1} = {let {p2} = R in E1} in E2)

7→ (let {p2} = R in let {p1} = {E1} in E2) ;

let {p} = {M} in E 7→ [M/p]E ,

together with β-reductions, applied as often as necessary to
reach a canonical form.

To return to the original question, has conservativity
over λΠ−◦&> been retained? Specifically, does the strong
canonical forms property still hold for λΠ−◦&>{∃⊗1!}? Yes,
because the elimination rules for ∃, ⊗, 1 and ! are restricted
to the lax judgment.

4.1 Representing dynamic semantics

Continuing with our running example concerning the
π-calculus, we now present the operational semantics. Each
state of the operational semantics is a pair (Θ; Γ) where
Θ records the names that have been generated and Γ con-
tains all the processes which are currently executing. An
executing process is available at a given multiplicity, which
we write 1 or ω, indicating that a process is available once,
or arbitrarily many times, respectively.

Γ ::= · | Γ, P 1 | Γ, P ω

In order to streamline the presentation of the transition
rules, we rely on the meta-notation Γ ⊕ P . This denotes
states of the form Γ′, P 1, Γ′′ where Γ = Γ′, Γ′′, or of the
form Γ′, P ω, Γ′′ where Γ = Γ′, P ω, Γ′′. With this in mind,
the transition rules can be written as follows.

(Θ; Γ⊕ stop) −→ (Θ; Γ)

(Θ; Γ⊕ (P | Q)) −→ (Θ; Γ, P 1, Q1)

(Θ; Γ⊕ (repeat P)) −→ (Θ; Γ, P ω)

(Θ; Γ⊕ (new(x :τ); P)) −→ (Θ, x :τ ; Γ, P 1)

(Θ; Γ⊕ (choose P Q)) −→ (Θ; Γ, P 1)

(Θ; Γ⊕ (choose P Q)) −→ (Θ; Γ, Q1)

(Θ; Γ⊕ (out x〈y〉)⊕ (inp x(z :τ); P))

−→ (Θ; Γ, [y/z]P 1)

(Θ; Γ⊕ (begin L; P)) −→ (Θ; Γ, P 1)

(Θ; Γ⊕ (end L; P)) −→ (Θ; Γ, P 1)

5See our technical report for exhaustive details [WCPW02].

7

The rule for new carries the proviso that x not be in the
domain of Θ.

Computations (Θ, Γ) −→ (Θ′, Γ′) are represented
by CLF expressions

x1 :nm, . . . , xn :nm, r1 : run P1, . . . , ri : run Pi;

ri+1
∧:run Pi+1, . . . , rn

∧:run Pn ` E ← >

in a context having unrestricted hypotheses of type nm for
each generated name, unrestricted hypotheses r1 . . . ri of
type run P for each process P ω that is executing and avail-
able at multiplicity ω, and linear hypotheses ri+1 . . . rn of
type run P for each process P 1 that is available at multi-
plicity 1. Here run : pr → type is a new type constructor.
The computation overall is required to have the additive
unit type >, meaning that computation can stop at any
time, with any leftover resources (linear hypotheses) con-
sumed by 〈〉, the introduction form for >.

Then the dynamic semantics of each of the “structural”
process constructors stop, par, repeat, and new can be rep-
resented by a corresponding synchronous CLF connective:

ev stop : run stop−◦ {1}.
ev par : run (par P Q)−◦ {run P ⊗ run Q}.

ev repeat : run (repeat P)−◦ {!run P}.
ev new : run (new τ (λu. P u))−◦ {∃u :nm. run (P u)}.

The remaining constructors are interpreted according to
their semantics:

ev choose1 : run (choose P1 P2)−◦ {run P1}.
ev choose2 : run (choose P1 P2)−◦ {run P2}.

ev sync : run (out X Y)−◦ run (inp X τ (λy. P y))
−◦{run (P Y)}.

ev begin : ΠL : label. run (begin L P)−◦ {run P}.
ev end : ΠL : label. run (end L P)−◦ {run P}.

We depart from the usual practice of leaving outermost Π
quantifiers implicit for reasons that will become clear in Sec-
tion 6.

One interesting feature of the CLF encoding is that
many of the structural equivalences of presentations of the
π-calculus based on a notion of structural congruence appear
automatically (shallowly) as consequences of the principles
of exchange, weakening (since > is present) and so on satis-
fied by CLF hypotheses.

5 Equality modeling concurrency

In Section 2 the definitional equality of λΠ was given
as α-equivalence. Since an invariant of our formulation
of λΠ is that all well-formed objects are βη-canonical,
βη-equivalences need not be considered. The invariant ex-
tends to CLF’s type theory λΠ−◦&>{∃⊗1!}, and indeed, one
can show that α-equivalence is a reasonable notion of equal-
ity on the larger type theory. However, supposing r has type
run (par (begin L1 P1) (begin L2 P2)), the expressions

let {r1 ⊗ r2} = ev par∧r in

let {r′1} = ev begin L1
∧r1 in let {r′2} = ev begin L2

∧r2 in 〈〉

let {r1 ⊗ r2} = ev par∧r in

let {r′2} = ev begin L2
∧r2 in let {r′1} = ev begin L1

∧r1 in 〈〉

of the operational semantics given in Section 4 would not
then be α-equivalent.

In applications, it is more natural to think of the abstract
structure of a concurrent computation, so that computations
that differ only in the order of occurrence of independent
events are identified. We want to consider equality modulo
concurrency equations of the form

(let {p1} = R1 in let {p2} = R2 in E) = (let {p2} =
R2 in let {p1} = R1 in E)

provided that the bindings of variables free in R1 or R2 are
not thereby altered (which amounts to the independence of
the two computation steps).

There is a notion of equality satisfying all properly
formed (with respect to variable binding) occurrences of
the equation above, and admitting all the congruences one
would expect, as well as the axioms of an equivalence re-
lation.6 We adopt this notion as the definitional equality
of CLF. In particular, for full λΠ−◦&>{∃⊗1!} the rule ⇒⇐
of Section 2 is considered to refer to this new equality judg-
ment.

The concurrent equality of CLF comes into its fullest
power when we consider types indexed by monadic expres-
sions, which can be used to model judgments over monadic
expressions modulo concurrent equality. As a first (sim-
ple) example, we can use CLF’s concurrent equality to
model the multiset of labels that constitutes an effect in
the static semantics of Section 3. Each label multiset
[L1, . . . , Ln] will be represented by an expression {let {1} =
latent x L1 in . . . let {1} = latent x Ln in 1}. Here
latent : token → label → {1} is a primitive computation
step generating no results. The parameter x of type token is
used to ensure that these “computation steps” do not appear
in executions of the dynamic semantics (excect within types
mentioned in such executions). The parameter is otherwise
ignored. The equality on this representation then naturally
models equality of multisets.

The implementation of assume and consume then goes as
follows:

token : type.
eff = token→ {1} : type.

latent : token→ label→ {1}.
consume : eff → type.
assume : eff → pr→ type.

con eps : consume (λx. {1}) ◦− >.
con join : consume (λx. {let {1} = latent x L in

let {1} = E x in 1}
◦− effect L ◦− consume E.

ass eps : assume (λx. {1}) P ◦− good P.
ass join : assume (λx. {let {1} = latent x L in

let {1} = E x in 1}
◦− (effect L−◦ assume E P).

A deeper example is shown in the next section, in which
monadic expressions indexing judgments are used to model
concurrent computations, rather than mere syntax. There,
concurrent computations as index objects are used to define
the correspondence property for an execution, allowing the
safety of a process to be characterized.

6See our technical report [WCPW02] for the decidably presented,
syntax-directed definition of this equality.

8

corr : {>} → type.

corr finish : corr {>}.
corr stop : corr {let {1} = ev stop∧R in let { } = E in 〈〉} ← corr E.
corr par : corr {let {r1 ⊗ r2} = ev par∧R in let { } = E∧r1

∧r2 in 〈〉} ← (Πr1. Πr2. corr (E∧r1
∧r2)).

corr repeat : corr {let {!r} = ev repeat∧R in let { } = E r in 〈〉} ← (Πr. corr (E r)).
corr new : corr {let {[x, r]} = ev new∧R in let { } = E x∧r in 〈〉} ← (Πx. Πr. corr (E x∧r)).

corr choosei : corr {let {r} = ev choosei
∧R in let { } = E∧r in 〈〉} ← (Πr. corr (E r)).

corr sync : corr {let {r} = ev sync∧R1
∧R2 in let { } = E∧r in 〈〉} ← (Πr. corr (E∧r)).

corr begin : corr {let {r} = ev begin L∧R in let { } = E∧r in 〈〉}
← (Πr. effect L−◦ corr (E∧r)).

corr end : corr {let {r} = ev end L∧R in let { } = E∧r in 〈〉}
◦−effectL← (Πr. corr (E∧r)).

Figure 3: Rules for the weak correspondence property

6 Concurrent computations indexing a type

Recall that an execution of a process is said to satisfy the
correspondence property if every execution of end L is pre-
ceded by a distinct matching execution of begin L for the
same label L. This property appears to make explicit ref-
erence to the sequencing of operations (and would thus not
appear to be stable under the reordering of computation
steps, as given by CLF’s concurrency equations). However,
the property may be reduced to an equivalent one that does
respect concurrency equations, in the following way.

If an execution violates the correspondence property,
then there is a serialization in which some end L0 occurs
without a matching distinct begin L0. (We choose the first
such end L0 in the temporal order determined by the serial-
ization.) The occurrence of this unmatched end L0 slices the
serialization into two parts: the execution steps coming be-
fore the “bad” end L0 step (and including it), and the ones
coming after it. But since we define the operational seman-
tics such that execution can stop at any time, the “before”
slice is itself an execution. (In essence, a serialization of
an execution can be truncated at any intermediate state,
yielding a shorter execution.)

But this truncated execution (ending with the “bad” oc-
currence of end L0) not only violates the correspondence
property, it also violates a weaker requirement: namely,
that the number of occurrences of begin L be greater than
or equal to the number of occurrences of end L, for each
label L. (Otherwise, we would have been able to find a
matching begin L0.)

This latter, weaker correspondence property makes no
reference to the temporal order of computation steps, so it
is a good candidate for formalization in CLF. We can then
characterize safe processes as those for which all execution
objects admitted by the operational semantics of Section 4
satisfy the weak correspondence property.

The weak correspondence property is represented in CLF
by a type family corr indexed by computations (which, re-
call, have CLF type {>}). The rules characterizing this
judgment are shown in Figure 3. The basic idea is similar
to that employed by the static semantics of Section 3. An
execution containing begin L is checked by adding a linear
hypothesis of effect L to the context, and checking the re-
mainder of the execution. An execution containing end L is
accepted only if there is a linear hypothesis effect L avail-
able, in which case it is consumed, and checking proceeds
over the rest of the execution. The other computation steps
have no effect on the current multiset of linear hypotheses.

The preceding description should make it clear that corr
is an adequate representation of the weak correspondence
property (the proof being a simple induction over compu-
tations). The safety of a process is then indirectly charac-
terized as the ability to generate, for each execution E of
the process admitted by the operational semantics, a proof
of the weak correspondence property for that execution (an
object of type corr E).

7 Meta-theory

This section sketches the meta-theory of the canonical for-
mulation of CLF. Additional details may be found in our
technical report [WCPW02].

7.1 Identity and substitution properties

As discussed in Section 2, the CLF framework syntactically
restricts the form of objects so that they will always be
canonical. This is a good design choice in the logical frame-
works context, but it carries with it the obligation to ensure
that the underlying logic (via the Curry-Howard isomor-
phism, if you like) is sensible. In particular, the principles
of identity and substitution must hold.

Identity. Unrestricted case: For any Γ and A,
Γ, u :A; · ` N ⇐ A for some N . Linear case: For
any Γ and A, Γ; x∧:A ` N ⇐ A for some N .

Substitution. Unrestricted case: if Γ; · ` N0 ⇐
A and Γ, u :A;∆ ` N ⇐ C then Γ;∆ ` N ′ ⇐ C′

for some N ′, where C′ is an appropriate substitu-
tion instance of C. Linear case: if Γ;∆1 ` N0 ⇐
A and Γ;∆2, x

∧:A ` N ⇐ C then Γ; ∆1, ∆2 `
N ′ ⇐ C for some N ′.

In the standard reduction-oriented treatment of proofs,
these are fairly trivial, because variables and general terms
are in the same syntactic category. Substitution simply syn-
tactically replaces the target variable with the substituend—
possibly creating redices. Here, redices are not syntactially
allowed, and variables are syntactically atomic while gen-
eral terms are syntactically normal, so it is not possible to
directly replace a variable with a substituend. By the same
token, a variable of higher type cannot stand by itself as
a canonical object—canonical objects of higher type must
be introduction forms—so the identity principle cannot be
witnessed by a bare variable.

9

Instead, the meta-theory of CLF relies on algorithms
that compute witnesses to the identity and substitution prin-
ciples. These are, respectively, the expansion algorithm and
the instantiation algorithm.7

Principle Substitution Identity
Algorithm Instantiation Expansion
Supersedes β-normalization η-normalization
Notation inst nA(x. N, N0) ≡ N expandA(R) ≡ N

Think of the instantiation operator inst nA(x. N, N0) as
an algorithm for computing the canonical form of the re-
sult of instantiating the variable x in the object N with
the object N0. The instantiation operator is indexed by
the type A of the substituend N0. If A is a base type, we
have inst nA(x. N, N0) = [N0/x]N ; that is, instantiation re-
duces to ordinary syntactic substitution. At higher type
more complex situations arise.

Dually, we think of the expansion operator expandA(R)
as computing the canonical form of the atomic object R of
putative type A. This is analogous to η-expansion, except
that the term R and its expansion inhabit different syntactic
categories if A is a higher type.

These algorithms must be (and are) effectively presented,
because the typing judgment of the full dependent type the-
ory appeals to instantiation, and effective typing is central
to the logical framework concept. The use of the instantia-
tion algorithm in dependent typing has a further important
ramification: the instantiation algorithm must be effective
on ill-typed terms. Otherwise, there is a circularity between
instantiation and typing, leading to a very complex meta-
theory.8 Since the substitution principle does not hold for
ill-typed terms, we allow the witnessing instantiation algo-
rithm to report failure or yield garbage on ill-typed input;
e.g., inst nA(x. x x, λx. x x) ≡ fail. Garbage in, garbage out,
but at least we get our garbage out in finite time!

7.2 Instantiation

Space constraints preclude the incorporation of all the cases
of the definitions of these operators. Full details are avail-
able, of course, in our technical report [WCPW02].

We begin by examining the cases for the LF fragment
of instantiation, shown in Figure 4. The recurrence defin-
ing instantiation is based on the observation, exploited in
cut elimination proofs on the logical side [Pfe00], but not so
well known on the type theoretic side, that the canonical re-
sult of substituting one canonical term into another can be
defined by induction on the type of the term being substi-
tuted. Accordingly, the instantiation operators are defined
as a family parameterized over the type of the object being
substituted. In the notation inst cA(x. X, N) this type A
appears as a subscript. Here c is replaced by a mnemonic
for the particular syntactic category to which the instanti-
ation operator applies. The variable x is to be considered
bound within the term X (of whatever category) being sub-
stituted into. The operators defined in this section should
be thought of as applying to equivalence classes of concrete
terms modulo α-equivalence on bound variables.

7Here and in the reminder we use x generically for either a linear
or unrestricted variable.

8This circularity, which the present treatment of CLF avoids,
is analogous to the difficulties encountered in the early reduction-
oriented treatments of LF, where typing refers to equality, which is
decided by normalization, but normalization is only effective for well-
typed terms.

Together with the instantiation operators, and defined
by mutual recursion with them, is a reduction operator
reduceA(x. R, N) that computes the canonical object result-
ing from the instantiation of x with N in the case that the
head variable head(R) of the atomic object R is x. Thus,
roughly speaking, it corresponds to the idea of weak head
reduction for systems with β-reduction. The instantiation
operator inst rA(x. R, N), by contrast, is only defined if the
head of R is not x. Another distinguishing feature is that
reduction on an atomic object yields a normal object, while
instantiation on an atomic object yields an atomic object.

Finally, there is a type reduction operator treduceA(x. R)
that computes the putative type of R given that the head
of R is x and the type of x is A. 9 Type reduction is used
in side conditions that ensure that the recurrence defining
instantiation is well-founded.

The recurrence defining these operators is based on a
structural induction. There is an outer induction on the
type subscripting the operators, and an inner simultane-
ous induction on the two arguments. Noting first that if
treduceA(x. R) is defined, it is a subterm of A, the fact that
the recurrence relations respect this induction order can be
verified almost by inspection. The only slightly subtle case
is the equation for reduceA(x. R N, N0), which is the only
case in which the subscripting type changes. Here the side
condition treduceA(x. R) ≡ Πx :B. C ensures that B must
be a strict subterm of A for the reduction to be defined. An
instantiation such as inst nA(x. x x, λx. x x) is guaranteed
to fail the side condition after only finitely many expansions
of the recurrence.

Another way in which an instance of the instantiation
operators might fail to be defined would be if the recursive
instantiation inst rA(x. R, N0) in the same equation failed to
result in a manifest lambda abstraction λy. N ′. In fact, this
could only happen if the term N0 failed to have the ascribed
type A. 10 So instantiation always terminates, regardless of
whether its arguments are well typed, but it is not defined in
all cases. After the meta-theory is further developed, it can
be shown that instantiation is always defined on well-typed
terms when the types match in the appropriate way.

The cases of instantiation involving the monad, shown
in Figure 5, are not without interest. These lean heavily
on prior work on proof term assignments for modal log-
ics [PD01].

In order to extend instantiation to the full CLF lan-
guage, with its pattern-oriented destructor for the monadic
type, it is necessary to introduce matching operators
match cS(p. E, X), where X is either an expression or a
monadic object. The matching operator computes the re-
sult of instantiating E according to the substitution on the
variables of p generated by matching p against X. (The
variables in p should be considered bound in E.) In the
case that X is a monadic object M0, this is straightforward:
the syntax of monadic objects corresponds precisely to that
of patterns. But in the case that X is a let binding, an
interesting issue arises:

match eS(p. let {p1} = R1 in E1, let {p2} = R2 in E2) ≡ ?

The key is found in Pfenning and Davies’ non-standard
substitutions for the proof terms of the modal logics of possi-
bility and laxity [PD01]. These analyze the structure of the

9Actually, to be more precise, the type of R will be a substitution
instance of treduceA(x. R). The instantiation operators do not keep
track of dependencies within the type subscript.

10Or a substitution instance of A.

10

treduceA(x. R) ≡ B [Type reduction]

treduceA(x. x) ≡ A

treduceA(x. R N) ≡ C if treduceA(x. R) ≡ Πx :B. C

reduceA(x. R, N0) ≡ N ′ [Reduction]

reduceA(x. x, N0) ≡ N0

reduceA(x. R N, N0) ≡ inst nB(y. N ′, inst nA(x. N, N0))

if treduceA(x. R) ≡ Πx :B. C and reduceA(x. R, N0) ≡ λy. N ′

inst rA(x. R, N0) ≡ R′ [Atomic object instantiation]

inst rA(x. c, N0) ≡ c

inst rA(x. y, N0) ≡ y if y is not x

inst rA(x. R N, N0) ≡ (inst rA(x. R, N0)) (inst nA(x. N, N0))

inst nA(x. N, N0) ≡ N ′ [Normal object instantiation]

inst nA(x. λy. N, N0) ≡ λy. inst nA(x. N, N0) if y /∈ FV(N0)

inst nA(x. R, N0) ≡ inst rA(x. R, N0) if head(R) is not x

inst nA(x. R, N0) ≡ reduceA(x. R, N0) if treduceA(x. R) ≡ a

Figure 4: Instantiation, LF fragment

object being substituted, not, as in the usual case, the term
being substituted into. The effect is similar to a commuting
conversion:

match eS(p. let {p1} = R1 in E1, let {p2} = R2 in E2) ≡
(let {p2} = R2 in match eS(p. let {p1} = R1 in E1, E2))

It is interesting that both non-standard substitution and
pattern matching—the latter not present in Pfenning and
Davies’ system—rely in this way on an analysis of the ob-
ject being substituted rather than the term being substi-
tuted into. In a sense, this commonality is what makes
the harmonious interaction between CLF’s modality and its
synchronous types possible.

The induction order mentioned above leads immediately
to the following theorem.

Theorem 1 (Definability of instantiation) The recur-
rence for the reduction, instantiation, and matching oper-
ators uniquely determines the least partial functions (up to
α-equivalence) solving them.

Proof: The proof is by an outer structural induction on
the type subscript, and an inner simultaneous structural in-
duction on the two arguments. �

7.3 Expansion

The definition of expansion is shown in Figure 6. In some
cases, new bound variables are introduced on the right-hand
side of an equation. Any new variables in an instance of such
an equation are required to be distinct from one another and
from any other variables in the equation instance.

Again there is a definability theorem based on the induc-
tion order implicit in the equations.

Theorem 2 (Definability of expansion) 1. If
pexpandS(p1) and pexpandS(p2) are both defined
then p1 and p2 are the same up to variable renaming.

2. Given S, there is a pattern p, fresh with respect to any
given set of variables, such that pexpandS(p) is defined.

3. The recurrence for expansion uniquely determines it as
a total function up to α-equivalence.

Proof: The first part is by induction on S. The second and
third parts are by induction on the type subscript, using the
first part to ensure that the result of expand{S}(R) is unique
up to α-equivalence. �

7.4 Further results

The following proposition is proved in the technical re-
port [WCPW02]. The identity and substitution principles
follow immediately.

Proposition 3 (Identity and substitution principles)
The following rules are admissible.

Γ; ∆ ` R⇒ A

Γ; ∆ ` expandA(R)⇐ A

Γ; · ` N0 ⇐ A Γ, x :A;∆ ` N ⇐ C

Γ; ∆ ` inst nA(x. N, N0)⇐ inst aA(x. N, C)

Γ; ∆1 ` N0 ⇐ A Γ; ∆2, x
∧:A ` N ⇐ C

Γ; ∆1, ∆2 ` inst nA(x. N, N0)⇐ C

Lemmas concerning the algebraic laws satisfied by ex-
pansion and instantiation (roughly analogous to confluence

11

inst nA(x. N, N0) ≡ N ′ [Normal object instantiation, extended]

inst nA(x. {E}, N0) ≡ {inst eA(x. E, N0)}

inst mA(x. M, N0) ≡M ′ [Monadic object instantiation]

inst mA(x. M1 ⊗M2, N0) ≡ inst mA(x. M1, N0)⊗ inst mA(x. M2, N0)

inst mA(x. 1, N0) ≡ 1

inst mA(x. !N, N0) ≡ !(inst nA(x. N, N0))

inst mA(x. [N, M], N0) ≡ [inst nA(x. N, N0), inst mA(x. M, N0)]

inst mA(x. N, N0) ≡ inst nA(x. N, N0)

inst eA(x. E, N0) ≡ E′ [Expression instantiation]

inst eA(x. let {p} = R in E, N0) ≡ (let {p} = inst rA(x. R, N0) in inst eA(x. E, N0))

if head(R) is not x,

and FV(p) ∩ FV(N0) is empty

inst eA(x. let {p} = R in E, N0) ≡ match eS(p. inst eA(x. E, N0), E
′)

if treduceA(x. R) ≡ {S}, reduceA(x. R, N0) ≡ {E′},
and FV(p) ∩ FV(N0) is empty

inst eA(x. M, N0) ≡ inst mA(x. M, N0)

match mS(p. E, M0) ≡ E′ [Match monadic object]

match mS1⊗S2(p1 ⊗ p2. E, M1 ⊗M2) ≡ match mS2(p2. match mS1(p1. E, M1), M2)

if FV(p2) ∩ FV(M1) is empty

match m1(1. E, 1) ≡ E

match m!A(!x. E, !N) ≡ inst eA(x. E, N)

match m∃x :A.S([x, p]. E, [N, M]) ≡ match mS(p. inst eA(x. E, N), M)

match mA(x. E, N) ≡ inst eA(x. E, N)

match eS(p. E, E0) ≡ E′ [Match expression]

match eS(p. E, let {p0} = R0 in E0) ≡ let {p0} = R0 in match eS(p. E, E0)

if FV(p0) ∩ FV(E) and FV(p) ∩ FV(E0) are empty

match eS(p. E, M0) ≡ match mS(p. E, M0)

Figure 5: Instantiation, extended

12

expandA(R) ≡ N [Expansion]

expanda(R) ≡ R

expandA−◦B(R) ≡
∧
λx. expandB(R∧(expandA(x))) if x /∈ FV(R)

expandΠx :A.B(R) ≡ λx. expandB(R (expandA(x))) if x /∈ FV(R)

expandA&B(R) ≡ 〈expandA(π1R), expandB(π2R)〉
expandT (R) ≡ 〈〉
expand{S}(R) ≡ (let {p} = R in pexpandS(p))

pexpandS(p) ≡M [Pattern expansion]

pexpandS1⊗S2
(p1 ⊗ p2) ≡ pexpandS1

(p1)⊗ pexpandS2
(p2)

pexpand1(1) ≡ 1

pexpand!A(!x) ≡ !(expandA(x))

pexpand∃x :A.S([x, p]) ≡ [expandA(x), pexpandS(p)]

pexpandA(x) ≡ expandA(x)

Figure 6: Expansion

results) and concerning the interaction of equality and in-
stantiation are required. Other notable theorems (some of
which are required in order to prove the result above) in-
clude the following.

Theorem 4 (Decidability of instantiation and expansion)
It is decidable whether any instance of the instantiation
and expansion operators is defined, and if so, it can be
effectively computed.

Proof: For instantiation, this is proved by a simultaneous
structural induction on the substituend, the term substi-
tuted into, and the putative type of the substituend. For
expansion, the induction is over the structure of the type.

�

The inference rules for typing are structured in a syntax-
directed manner, leading to a very simple proof of decidabil-
ity. This is a substantial technical improvement over prior
presentations of even the LF sublanguage alone.

Theorem 5 (Decidability of typing) It is decidable
whether any instance of the typing judgments is derivable.

Proof: By structural induction on the subject of the judg-
ments. This result requires the decidability of concurrent
equality, for which see [WCPW02]. �

The interaction of equality and substitution is particu-
larly important, since CLF’s equality is where concurrency
enters. Thus, the following theorems describe, in essence,
how concurrent computations modeled in our framework
compose.

Theorem 6 Concurrent equality N1 = N2 is an equiva-
lence relation.

Proof: Reflexivity, symmetry, and transitivity can each be
proved by structural inductions (with appropriate lemmas,
also proved by structural induction) [WCPW02]. �

Theorem 7 If N = N ′ and N0 = N ′
0 then

inst nA(x. N, N0) = inst nA(x. N ′, N ′
0),

assuming one side or the other is defined.

Proof: The proof appeals to composition laws for instan-
tiation and a number of other technical lemmas. The in-
ductive proofs of these lemmas and the main theorem fol-
low the same induction order as for the decidability re-
sult [WCPW02]. �

Theorem 8 If R = R′ then expandA(R) = expandA(R′).

Proof: This follows by structural induction on A. �

8 Related work

Right from its inception, linear logic [Gir87] has been advo-
cated as a logic with an intrinsic notion of state and con-
currency. In the literature, many connections between con-
current calculi and linear logic have been observed. Due to
space constraints we cannot survey this relatively large liter-
ature here. In a logical framework, we remove ourselves by
one degree from the actual semantics; we represent rather
than embed calculi. Thereby, CLF provides another point
of view on many of the prior investigations.

Most closely related to our work is Miller’s logical frame-
work Forum [Mil94], which is based on a sequent calculus for
classical linear logic and focusing proofs [And92]. As shown
by Miller and elaborated by Chirimar [Chi95], Forum can
also represent concurrency. Our work extends Forum in sev-
eral directions. Most importantly, it is a type theory based
on natural deduction and therefore offers an internal notion
of proof object that is not available in Forum. Among other
things, this means we can explicitly represent relations on
deductions and therefore on concurrent computations.

There have been several formalizations of versions of
the π-calculus in a variety of reasoning systems, such as
HOL [Mel95], Coq [Hir97, HMS01], Isabelle/HOL [RHB01]

13

or Linc [MT03, Tiu04]. A distinguishing feature of our sam-
ple encoding in this paper is the simultaneous use of higher-
order abstract syntax, linearity, modality, and the intrinsic
notion of concurrent computations which is exploited in the
specification of the safety property. Also, we are not aware
of a formal treatment of correspondence assertions or depen-
dent effect typing for the π-calculus. On the other hand, at
present we cannot formally reason about properties of our
encodings yet, which is achieved to varying degrees in the
case studies above.

Systems based on rewriting logic, such as Maude [Mes02],
also natively support concurrent specifications (and have
been used to model Petri nets, CCS, the π-calculus, etc).
Moreover, Maude is able to model true concurrency of an ob-
ject language via the concurrency that is intrinsic in rewrit-
ing of non-overlapping or properly nested independent re-
dexes. One clear difference between systems is that Maude
lacks operators comparable to CLF’s dependent types and
therefore intrinsic notions of substitution.

As already mentioned above, CLF is a conservative
extension of LLF with the asynchronous connectives ⊗,
1, !, and ∃, encapsulated in a monad. The idea of
monadic encapsulation goes back to Moggi’s monadic meta-
language [Mog91] and is used heavily in functional program-
ming. Our formulation follows the judgmental presentation
of Pfenning and Davies [PD01] that completely avoids the
need for commuting conversions, but treats neither linear-
ity nor the existence of normal forms. This permits us to
reintroduce some equations to model true concurrency in a
completely orthogonal fashion.

9 Conclusions

The goal of this work has been to extend the elegant and log-
ically motivated representation strategies for syntax, judg-
ments, and state available in LF and LLF to the concurrent
world. We have shown how the availability of a notation for
concurrent executions, admitting a proper truly concurrent
equality, enables powerful strategies for specifying proper-
ties of such executions. A crucial element is the use of the
monadic type, ensuring that the extension to CLF is con-
servative in a strong sense.

Ultimately, it should become as simple and natural to
manipulate the objects representing concurrent executions
as it is to manipulate LF objects. If higher-order ab-
stract syntax means never having to code up α-conversion
or capture-avoiding substitution ever again, we hope that in
the same way, the techniques explored here can make it un-
necessary to code up multiset equality or concurrent equal-
ity ever again, so that intellectual effort can be focused on
reasoning about deeper properties of concurrent systems.

In order to realize this, it will be necessary to extend
CLF in all the many ways that LF has been fleshed out
over the years by many researchers. There should be an
implementation of the natural logic programming seman-
tics for concurrent signatures, including non-deterministic,
exploratory executions as well as exhaustive search of the
state space. A decidable and acceptably efficient notion of
unification (possibly with constraints, as in Twelf [PS99])
must be identified. We need strategies for writing down
meta-theorems formally and checking them mechanically;
for instance, we should be able to prove a soundness result
for the π-calculus static semantics of Section 3. The suc-
cess of analogous developments for LF leading to the Twelf

implementation is a hopeful sign, but much work remains.

References

[And92] Jean-Marc Andreoli. Logic programming with
focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):197–347, 1992.

[Chi95] Jawahar Lal Chirimar. Proof Theoretic Ap-
proach to Specification Languages. PhD thesis,
University of Pennsylvania, May 1995.

[CP02] Iliano Cervesato and Frank Pfenning. A lin-
ear logical framework. Information & Compu-
tation, 179(1):19–75, November 2002.

[CPWW02] Iliano Cervesato, Frank Pfenning, David
Walker, and Kevin Watkins. A concurrent
logical framework II: Examples and applica-
tions. Technical Report CMU-CS-02-102, De-
partment of Computer Science, Carnegie Mel-
lon University, 2002. Revised May 2003.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Com-
puter Science, 50:1–102, 1987.

[GJ03] Andrew D. Gordon and Alan Jeffrey. Typ-
ing correspondence assertions for communica-
tion protocols. Theoretical Computer Science,
300(1–3):379–409, May 2003.

[HHP93] Robert Harper, Furio Honsell, and Gordon
Plotkin. A framework for defining logics. Jour-
nal of the Association for Computing Machin-
ery, 40(1):143–184, January 1993.

[Hir97] Daniel Hirschkoff. A full formalisation of pi-
calculus theory in the Calculus of Construc-
tions. In E. Gunter and A.P. Felty, editors,
Proceedings of the 10th International Confer-
ence on Theorem Proving in Higher-Order Log-
ics (TPHOLs’97), pages 153–169, Murray Hill,
New Jersey, USA, August 1997. Springer Ver-
lag LNCS 1275.

[HMS01] Furio Honsell, Marino Miculan, and Ivan
Scagnetto. Pi-calculus in (co)inductive type
theories. Theoretical Computer Science,
253(2):239–285, 2001.

[IP98] Samin Ishtiaq and David Pym. A relevant anal-
ysis of natural deduction. Journal of Logic and
Computation, 8(6):809–838, 1998.

[Mel95] Tom Melham. A mechanized theory of the pi-
calculus in HOL. Nordic Journal of Computing,
1(1):50–76, 1995.

[Mes02] José Meseguer. Software specification and veri-
fication in rewriting logic. Lecture notes for the
Marktoberdorf International Summer School,
Germany, August 2002.

[Mil94] Dale Miller. A multiple-conclusion meta-logic.
In S. Abramsky, editor, Ninth Annual Sympo-
sium on Logic in Computer Science, pages 272–
281, Paris, France, July 1994. IEEE Computer
Society Press.

14

[Mog91] Eugenio Moggi. Notions of computation
and monads. Information and Computation,
93(1):55–92, 1991.

[MT03] Dale Miller and Alwen Tiu. A proof theory
for generic judgments. In P. Kolaitis, editor,
Proceedings of the 18th Annual Symposium on
Logic in Computer Science (LICS’03), pages
118–127, Ottawa, Canada, June 2003. IEEE
Computer Society Press.

[PD01] Frank Pfenning and Rowan Davies. A judgmen-
tal reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540,
2001. Notes to an invited talk at the Workshop
on Intuitionistic Modal Logics and Applications
(IMLA’99), Trento, Italy, July 1999.

[Pfe00] Frank Pfenning. Structural cut elimination
I. intuitionistic and classical logic. Informa-
tion and Computation, 157(1/2):84–141, March
2000.

[PS99] Frank Pfenning and Carsten Schürmann. Sys-
tem description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger,
editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-
16), pages 202–206, Trento, Italy, July 1999.
Springer-Verlag LNAI 1632.

[Rep99] John H. Reppy. Concurrent Programming in
ML. Cambridge University Press, 1999.

[RHB01] Christine Röckl, Daniel Hirschkoff, and Stefan
Berghofer. Higher-order abstract syntax with
induction in Isabelle/HOL: Formalizing the pi-
calculus and mechanizing the theory of con-
texts. In F. Honsell and M. Miculan, editors,
Proceedings of the 4th International Conference
on Foundations of Software Science and Com-
putation Structures (FOSSACS’01), pages 364–
378, Genova, Italy, April 2001. Springer Verlag
LNCS 2030.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning
about Logical Specifications. PhD thesis, Penn-
sylvania State University, May 2004.

[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfen-
ning, and David Walker. A concurrent logical
framework I: Judgments and properties. Tech-
nical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University,
2002. Revised May 2003.

[WCPW04] Kevin Watkins, Iliano Cervesato, Frank Pfen-
ning, and David Walker. A concurrent logi-
cal framework: The propositional fragment. In
Types for Proofs and Programs. Springer-Verlag
LNCS, 2004. Selected papers from the Third In-
ternational Workshop Torino, Italy, April 2003.
To appear.

[WL93] Thomas Y.C. Woo and Simon S. Lam. A
semantic model for authentication protocols.
In IEEE Computer Society Symposium on Re-
search in Security and Privacy, pages 178–194,
Oakland, CA, May 1993.

15

A CLF type theory summarized

See the technical report [WCPW02] for further details.

Syntax.

K, L ::= type | Πu :A. K

A, B, C ::= A−◦B | Πu :A. B | A & B

| > | {S} | P
P ::= a | P N

S ::= ∃u :A. S | S1 ⊗ S2 | 1 | !A | A

Γ ::= · | Γ, u :A

∆ ::= · | ∆, x∧:A

Σ ::= · | Σ, a :K | Σ, c :A

N ::=
∧
λx. N | λu. N | 〈N1, N2〉
| 〈〉 | {E} | R

R ::= c | u | x | R∧N | R N | π1R | π2R

E ::= let {p} = R in E |M
M ::= [N, M] |M1 ⊗M2 | 1 | !N | N

p ::= [u, p] | p1 ⊗ p2 | 1 | !u | x

Ψ ::= p∧:S, Ψ | ·

Typing.

Γ `Σ K ⇐ kind

Γ `Σ A⇐ type

Γ `Σ P ⇒ K

Γ `Σ S ⇐ type

Γ;∆ `Σ N ⇐ A

Γ; ∆ `Σ R⇒ A

Γ;∆ `Σ E ← S

Γ;∆;Ψ `Σ E ← S

Γ;∆ `Σ M ⇐ S

` Σ ok

`Σ Γ ok

Γ `Σ ∆ ok

Γ `Σ Ψ ok

inst kA(u. K, N) = K′

inst aA(u. B, N) = B′

inst sA(u. S, N) = S′

` · ok

` Σ ok · `Σ K ⇐ kind

` Σ, a :K ok

` Σ ok · `Σ A⇐ type

` Σ, c :A ok

`Σ · ok

`Σ Γ ok Γ `Σ A⇐ type

`Σ Γ, u :A ok

Γ `Σ · ok

Γ `Σ ∆ ok Γ `Σ A⇐ type

Γ `Σ ∆, x∧:A ok

Γ `Σ · ok

Γ `Σ S ⇐ type Γ `Σ Ψ ok

Γ `Σ p∧:S, Ψ ok

Henceforth, it will be assumed that all judgments are considered relative to a particular fixed signature Σ, and the signature
indexing each of the other typing judgments will be suppressed.

Γ ` type⇐ kind
typeKF

Γ ` A⇐ type Γ, u :A ` K ⇐ kind

Γ ` Πu :A. K ⇐ kind
ΠKF

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A−◦B ⇐ type
−◦F

Γ ` A⇐ type Γ, u :A ` B ⇐ type

Γ ` Πu :A. B ⇐ type
ΠF

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A & B ⇐ type
&F

Γ ` > ⇐ type
>F

Γ ` S ⇐ type

Γ ` {S} ⇐ type
{}F

Γ ` P ⇒ type

Γ ` P ⇐ type
⇒type⇐

Γ ` a⇒ Σ(a)
a

Γ ` P ⇒ Πu :A. K Γ; · ` N ⇐ A

Γ ` P N ⇒ inst kA(u. K, N)
ΠKE

16

Γ ` S1 ⇐ type Γ ` S2 ⇐ type

Γ ` S1 ⊗ S2 ⇐ type
⊗F

Γ ` 1⇐ type
1F

Γ ` A⇐ type Γ, u :A ` S ⇐ type

Γ ` ∃u :A. S ⇐ type
∃F

Γ ` A⇐ type

Γ ` !A⇐ type
!F

Γ;∆, x∧:A ` N ⇐ B

Γ;∆ `
∧
λx. N ⇐ A−◦B

−◦I Γ, u :A; ∆ ` N ⇐ B

Γ; ∆ ` λu. N ⇐ Πu :A. B
ΠI

Γ;∆ ` N1 ⇐ A Γ; ∆ ` N2 ⇐ B

Γ;∆ ` 〈N1, N2〉 ⇐ A & B
&I

Γ; ∆ ` 〈〉 ⇐ > >I

Γ;∆ ` E ← S

Γ;∆ ` {E} ⇐ {S} {}I
Γ;∆ ` R⇒ P ′ P ′ ≡ P

Γ; ∆ ` R⇐ P
⇒⇐

Γ; · ` c⇒ Σ(c)
c

Γ; · ` u⇒ Γ(u)
u

Γ; x∧:A ` x⇒ A
x

Γ;∆1 ` R⇒ A−◦B Γ;∆2 ` N ⇐ A

Γ;∆1, ∆2 ` R∧N ⇒ B
−◦E Γ;∆ ` R⇒ A & B

Γ; ∆ ` π1R⇒ A
&E1

Γ;∆ ` R⇒ Πu :A. B Γ; · ` N ⇐ A

Γ;∆ ` R N ⇒ inst aA(u. B, N)
ΠE

Γ;∆ ` R⇒ A & B

Γ; ∆ ` π2R⇒ B
&E2

Γ;∆1 ` R⇒ {S0} Γ;∆2; p
∧:S0 ` E ← S

Γ;∆1, ∆2 ` (let {p} = R in E)← S
{}E

Γ;∆ `M ⇐ S

Γ; ∆ `M ← S
⇐←

Γ;∆; p1
∧:S1, p2

∧:S2, Ψ ` E ← S

Γ;∆; p1 ⊗ p2
∧:S1 ⊗ S2, Ψ ` E ← S

⊗L
Γ; ∆;Ψ ` E ← S

Γ; ∆; 1∧:1, Ψ ` E ← S
1L

Γ, u :A;∆; p∧:S0, Ψ ` E ← S

Γ;∆; [u, p]∧:∃u :A. S0, Ψ ` E ← S
∃L

Γ, u :A;∆;Ψ ` E ← S

Γ; ∆; !u∧: !A, Ψ ` E ← S
!L

Γ;∆ ` E ← S

Γ;∆; · ` E ← S
←←

Γ; ∆, x∧:A; Ψ ` E ← S

Γ; ∆; x∧:A, Ψ ` E ← S
AL

Γ;∆1 `M1 ⇐ S1 Γ; ∆2 `M2 ⇐ S2

Γ;∆1, ∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I

Γ; · ` 1⇐ 1
1I

Γ; · ` N ⇐ A Γ;∆ `M ⇐ inst sA(u. S, N)

Γ;∆ ` [N, M]⇐ ∃u :A. S
∃I

Γ; · ` N ⇐ A

Γ; · ` !N ⇐ !A
!I

17

