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ABSTRACT

Motivation: Determining protein function is one of the most
important problems in the post-genomic era. For the typical
proteome, there are no functional annotations for one-third
or more of its proteins. Recent high-throughput experiments
have determined proteome-scale protein physical interaction
maps for several organisms. These physical interactions are
complemented by an abundance of data about other types
of functional relationships between proteins, including genetic
interactions, knowledge about co-expression and shared evo-
lutionary history. Taken together, these pairwise linkages can
be used to build whole-proteome protein interaction maps.
Results: We develop a network- ow based algorithm, Func-
tionalFlow, that exploits the underlying structure of protein
interaction maps in order to predict protein function. In cross-
validation testing on the yeast proteome, we show that Func-
tionalFlow has improved performance over previous methods
in predicting the function of proteins with few (or no) anno-
tated protein neighbors. By comparing several methods that
use protein interaction maps to predict protein function, we
demonstrate that FunctionalFlow performs well because it
takes advantage of both network topology and some measure
of locality. Finally, we show that performance can be improved
substantially as we consider multiple data sources and use
them to create weighted interaction networks.

Availability: http://compbio.cs.princeton.edu/function.
Contact: msingh@princeton.edu

INTRODUCTION

A major challenge in the post-genomic era is to deter-
mine protein function at the proteomic scale. Even the
best-studied model organisms contain a large number of pro-
teins whose functions are currently unknown. For example,
about one-third of the proteins in the baker’s yeast Sac-
charomyces cerevisiae remain uncharacterized. Traditionally,
computational methods to assign protein function have relied
largely on sequence homology. The recent emergence of
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high-throughput experimental datasets have led to a number
of alternative, non-homology based methods for functional
annotation. These methods have generally exploited the con-
cept of guilt by association, where proteins are functionally
linked through either experimental or computational means.

Large-scale experiments have linked proteins that physi-
cally interact (Ito et al., 2001; Uetz et al., 2000; Gavin et al.,
2002; Ho et al., 2002; Rain et al., 2001; Giot et al., 2003;
Li et al., 2004), that are synthetic lethals (Tong et al., 2001,
2004) and that are coexpressed (Edgar et al., 2002) or coregu-
lated (Lee et al., 2002; Harbison et al., 2004). In addition,
computational techniques linking pairs of proteins include
phylogenetic profiles (Gaasterland and Ragan, 1998; Pelle-
grini et al., 1999), gene clusters (Overbeek et al., 1999),
conserved gene neighbors (Dandekar et al., 1998) and gene
fusion analysis (Enright et al., 1999; Marcotte et al., 1999a).
Perhaps not surprisingly, integrating the information from
several sources provides the best method for linking prote-
ins functionally (Marcotte et al., 1999b; von Mering et al.,
2003a; Troyanskayaet al., 2003; Jansen etal., 2003; Lee et al.,
2004).

Taken together, these functional linkages form large protein
interaction networks, with nodes corresponding to proteins
and edges between any two proteins that are functionally lin-
ked with each other (Fig. 1). It has been postulated that
analysis of these protein interaction maps should provide hints
to higher-level organization of the cell, and help uncover pro-
tein functions and pathways (reviews, Alm and Arkin, 2003;
Ideker, 2004). We focus here on the problem of predicting
protein function by analyzing proteins as components within
protein interaction networks.

Several groups have attempted to partition interaction net-
works into functional modules that correspond to sets of
proteins that are part of the same cellular function or take
part in same protein complex. These functional modules, or
clusters, are useful for annotating uncharacterized proteins,
as the most common functional annotation within a cluster
can be transferred to uncharacterized proteins. Proteins in
experimentally and computationally determined interaction

' Oxford University Press 2005.



Nabieva et al

graphs have been grouped together based on shared interac-
tions (Brun et al., 2003; Schlitt et al., 2003; Strong et al.,
2003; von Mering et al., 2003b; Lee et al., 2004), the simila-
rity between shortest path vectors to all other proteins in the
network (Rives and Galitski, 2003) and shared membership
within highly connected components or cliques (Spirin and
Mirny, 2003).

The research described here is more closely related to the
recent attempts to classify proteins according to the functio-
nal annotations of their network neighbors; these methods do
not explicitly cluster proteins. Schwikowski et al. (2000) use
physical interaction data for baker’s yeast, and predict the bio-
logical process for each protein by considering its neighboring
interactions and taking the three most frequent annotations.
While such a simple majority vote approach, which we refer
to as Majority, has clear predictive value, it takes only limited
advantage of the underlying graph structure of the network.
For example, in the interaction network given in Figure 1,
Majority would assign functions to proteins d and f, but not to
protein e, even though our intuition might indicate that protein
e has the same function as proteins d and f; there are several
examples in the yeast proteome similar to this one (Schwi-
kowski et al., 2000). Naturally, one wishes to generalize this
principle to consider functional linkages beyond the imme-
diate neighbors in the interaction graph, both to provide a
systematic framework for analyzing the entirety of physical
interaction data for a given proteome and to make predictions
for proteins with no annotated interaction partners.

Hishigaki et al. (2001) extend Majority by predicting a pro-
tein’s function by looking at all proteins within a particular
radius and finding over-represented functional annotations.
However, this approach, which we refer to as Neighborhood,
does not consider any aspect of network topology within the
local neighborhood. For example, Figure 2 shows two interac-
tion networks that are treated equivalently when considering a
radius of 2 and annotating protein a; however, in the first case,
there is a single link that connects protein a to the annotated
proteins, and in the second case, there are several independent
paths between a and the annotated proteins, and moreover, two
of these proteins are directly adjacent to a.

Two recent papers (Vazquez et al., 2003; Karaoz et al.,
2004) exploit the global topological structure of the interac-
tion network by annotating proteins so as to minimize the
number of times different annotations are associated with
neighboring proteins. Karaoz et al. (2004) additionally consi-
der the case where edges in physical interaction networks are
weighted using gene-expression data. We refer to this over-
all approach as GenMultiCut, as it is a generalization of the
well-studied multiway k-cut problem in computer science.
While GenMultiCut takes into account more global proper-
ties of interaction maps, it does not reward local proximity in
the graph. For example, if only two proteins have annotations
in a particular network, all other proteins will be labeled by
one of these annotations, regardless of the size of the network.

Fig. 1. A protein interaction graph. Nodes represent proteins and edges
represent interactions between proteins. For example, protein d interacts with
proteins a, b, c and e. Prateins a, b, ¢, g, h and ¢ (shown in black) are known
to take part in the same biologica process, and proteins d, ¢ and f are
unannotated.

Fig. 2. Two protein interaction graphs that are treated identically by Neigh-
borhood with radius 2 when annotating protein a. Dark colored nodes
correspond to proteins that are known to take part in the same process.

To overcome the weaknesses of previous methods, we intro-
duce an algorithm, FunctionalFlow, for annotating protein
function in interaction networks. FunctionalFlow uses the
idea of network flow, which is dual to the notion of graph
cut (e.g., see Cormen et al., 1990). Each protein of known
functional annotation is treated as a ‘source’ of ‘functional
flow’” which is then propagated to unannotated nodes, using the
edges in the interaction graph as a conduit. This propagation
is governed by simple local rules. By considering a formula-
tion based on flow, we can incorporate a distance effect. That
is, the effect of each annotated protein on any other protein
decreases with increasing distance between them. In addi-
tion, network connectivity is exploited, as each edge has a
‘capacity” and multiple paths between two proteins result pos-
sibly in more flow between them. After simulating the spread
of this functional flow for a fixed number of time steps (so
that flow from a source is restricted to a local neighborhood
around it) we obtain the “functional score’ for each protein.
This score corresponds to the amount of flow for that func-
tion the protein has received over the course of simulation.
In contrast to Majority, FunctionalFlow considers functional
annotations from proteins that are not immediate neighbors,
and thus can annotate proteins that have no neighbors with
known annotations. In contrast to Neighborhood, Functional-
Flow considers the underlying topology of the graph, and the
multiple edge-disjoint interaction paths between two proteins
give additional evidence for common function. Finally, in
contrast to GenMultiCut, FunctionalFlow takes into account
network locality.
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The locality effect in FunctionalFlow is similar in some
ways to the locally constrained diffusion kernel developed
by Tsuda and Noble (2004). However, the flow in the Func-
tionalFlow algorithm is limited by capacities on edges, and in
the context of our method, this prevents all the proteins that
have the same annotation but have largely overlapping paths
to protein a from exerting too much influence on a. Moreover,
Tsuda and Noble (2004) use the diffusion kernel with support
vector machines, whereas FunctionalFlow is not a learning
method and does not require any training data to be used.

We compare the performance of FunctionalFlow with Ma-
jority, Neighborhood and GenMultiCut. In the process, we
reformulate the computational problem given by the objective
function of Vazquez et al. (2003) and Karaoz et al. (2004) as
an integer linear program (ILP), and as opposed to the pre-
vious two studies, we find optimal (not heuristic) solutions to
the problem using ILP. Since we find optimal solutions, we
directly test the utility of the GenMultiCut objective function.
In addition, we show how to obtain multiple optimal solutions
using ILP, and show that this is one way to incorporate the idea
of distance implicitly within the GenMultiCut framework.
In cross-validation testing on the yeast physical interaction
network, we show that FunctionalFlow outperforms Neigh-
borhood and GenMultiCut, and has better performance than
Majority in predicting the function of proteins with few (or no)
annotated protein neighbors. We estimate that in the yeast pro-
teome, there are currently ~ 1200 such unannotated proteins
where FunctionalFlow would make improved predictions over
Majority. This number is 2400 for fruit fly, and the fraction
of such proteins should be much higher for less characterized
proteomes. Finally, we propose a simple weighting scheme
that captures the variation in reliability of the experimen-
tal data that form the basis of the interaction network, and
show that this scheme results in improved performance for all
methods.

Overall, we demonstrate that network analysis algorithms
such as FunctionalFlow provide an effective new line of
attack in determining protein function. Moreover, we show
empirically that network analysis algorithms for function
prediction obtain the best performance when incorporating
overall network topology, network distance and edges weigh-
ted by a reliability parameter estimated from multiple data
sources. The FunctionalFlow method we introduce incor-
porates these features and outperforms previously published
methods. While all of our cross-validation testing has been on
baker’s yeast, FunctionalFlow is likely to be especially useful
in characterizing less-studied proteomes.

MATERIALS AND METHODS

Physical interaction network

We construct the protein-protein physical interaction network
using the protein interaction dataset compiled by GRID (Breit-
kreutz et al., 2003). The resulting network is a simple

undirected graph G = (V, E), where there is a vertex or node
v € V for each protein, and an edge between nodes u and
v if the corresponding proteins are known to interact physi-
cally (as determined by one or more experiments). Initially,
we consider a graph with unit-weighted edges, and then con-
sider weighting the edges by our ‘confidence’ in the edge (see
below). The weight of the edge between « and v is denoted by
wy,. FOr all reported results, we consider only the proteins
making up the largest connected component of the physical
interaction map (4495 proteins and 12531 physical interaction
links).

Functional annotations

Several controlled vocabulary systems exist for describing
biological function, including Munich Information Center for
Protein Sequences (MIPS) (Mewes et al., 2002) and the Gene
Ontology (GO) project (Ashburner et al., 2000). We use the
MIPS functional hierarchy, and consider the 72 MIPS biolo-
gical processes that comprise the second level of hierarchy. Of
the 4495 proteins in the largest connected component of the
yeast physical interaction map, 2946 have MIPS biological
process annotations. We also experimented with GO anno-
tations; the overall conclusions made in this paper are not
affected.

Weighting functional linkages

It is well known that the reliability of different data sources
vary, even if they are based on the same underlying techno-
logy ( von Mering et al., 2002; Deng et al., 2003; Sprinzak
et al., 2003). In the context of network-based algorithms, it is
possible to weight edges so as to model the reliability of each
interaction. For physical interactions, this reliability is in turn
based on the experimental sources that contribute to our know-
ledge about the existence of the interaction. To determine these
values, we separate all experimental sources of physical inter-
action data into several groups, placing each high-throughput
data set into a separate group (five groups corresponding to
each of Ito et al., 2001, 2000; Fromont-Racine et al., 1997;
Uetz et al., 2000; Gavin et al., 2002; and Ho et al., 2002), and
allocating one group for the family of all specific experiments.
For each group of experiments, we compute what fraction of
its interactions connect proteins with a known shared func-
tion. We assume that the reliabilities of different sources are
independent, and thus conclude by estimating the reliability
of an interaction to be the noisy-or of the unreliability of the
underlying data sources. That s, if ; is the reliability of expe-
rimental group ¢, we compute the reliability of the edge by
1 —II;(1 — r;), where the product is taken over all experi-
ments 7 where this interaction is found. This treats each r; as a
probability and assumes independence; this approach is very
similar to the one taken by von Mering et al. (2003a).

We also consider augmenting the interaction network by
considering genetic interactions from GRID (Breitkreutz
etal., 2003). Almost all of these interactions are synthetic let-
hals, and the weighting scheme can be immediately extended
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to this network by treating the new types of interactions as an
additional experimental source. Thus, our weighting scheme
gives us a way of integrating data of different types in addition
to integrating different sources of data of one type.

Cross-validation testing and evaluation

We test the performance using n-fold cross-validation, i.e.
the yeast proteome is divided into n groups, and each group,
in turn, is separated from the original dataset and used for
testing. The goal of each method is to predict the annotations
of the proteins in the test set using the functional annota-
tions of the remaining proteins. We performed experiments
with 2-, 3-, 5- and 10-fold cross-validation. All our cross-
validation testing gives qualitatively similar results. We report
our findings using a 2-fold cross-validation, as baker’s yeast
is the most extensively studied organism, and 2-fold cross-
validation better represents what one may expect to see in
other organisms.

We evaluate the performance of the algorithms by conside-
ring, for each protein in the test set, whether the top scoring
prediction above some threshold is a known functional anno-
tation (true positive, TP) or not (false positive, FP). In the
case of multiple predictions, the TP vs. FP status is tricky. For
example, we may choose to count a prediction for a protein
as a TP if at least one of the predictions made for it is correct,
and as an FP otherwise. However, a method that predicts every
protein to participate in every function would only have TPs
in this framework. Alternatively, we could count a protein as
a TP if every prediction made for it is correct. This, however,
would count as FPs those proteins that get many correct pre-
dictions and only one incorrect one. We, therefore, settle for a
compromise approach, in which we count a protein’s predic-
tion as a TP if more than half of the predictions made for it are
correct and as an FP, otherwise. All results will be reported
using this interpretation of TP and FP, and we use a variant
of receiver operating characteristic (ROC) curves, where we
plot the number of TPs as a function of the number of FPs as
we vary the scoring threshold.

ALGORITHMS

Majority

We consider all neighboring proteins and sum up the number
of times each annotation occurs for each protein as described
in Schwikowski et al. (2000). In the case of weighted interac-
tion graphs, we simply extend the method by taking a weighted
sum instead. For each protein, the score of a particular function
is the corresponding sum.

Neighborhood

For each protein, we consider all other proteins within a radius
r as described in Hishigaki et al. (2001), and then for each
function, we use a y >-test to determine if it is over-represented.
For each protein, the score of a particular function is given by
the value of the x2-test. Neighborhoods of radius 1, 2 and 3

are considered. This method does not extend naturally to the
case of weighted interaction graphs.

GenMultiCut

Two groups of researchers have suggested that functional
annotations on interaction networks should be made in order
to minimize the number of times different annotations are
associated with neighboring proteins (Vazquez et al., 2003;
Karaoz et al., 2004). Vazquez et al. (2003) use simulated
annealing to attempt to minimize this objective function and
aggregate results from multiple runs, whereas Karaoz et al.
(2004) use a deterministic approximation, and consider the
case where edges are weighted using gene expression infor-
mation. As mentioned earlier, the formulation in these two
studies is similar to the minimum multiway k-cut problem. In
multiway k-cut, the task is to partition a graph in such a way
that each of & terminal nodes belongs to a different subset of
the partition and so that the (weighted) number of edges that
are “‘cut’ in the process is minimized. In the more general ver-
sion of the multiway k-cut problem considered here, the goal
is to assign a unique function to all the unannotated nodes so
as to minimize the sum of the costs of the edges joining nodes
with no function in common.

Our implementation of GenMultiCut Alhough minimum
multiway k-cut is NP-hard (Dahlhaus et al., 1994), we have
found that the particular instances of minimum multiway cut
arising here can, in practice, be solved exactly when stated as
an ILP. We introduce a node variable x, , for each protein u
and function a. This variable will be set to 1 if protein w is pre-
dicted to have function a. If a protein « has known functional
annotations, variable z,, ,, is fixed as 1 for its known annota-
tions a and as O for all other annotations. We also introduce
an edge variable ., , , for each function a and each pair of
adjacent proteins « and v. This variable is set to 1 if both
proteins « and v are annotated with function a. Minimizing
the weighted number of neighboring proteins with different
annotations is the same as maximizing the number with the
same annotation, and so we have the following ILP:

maximize Z(U,U)GE%FUNC Tyw,aWa v
subject to
Y oaTua =1 if annot(u) =0
Ty, =1 if @ € annot(u)
Zy,q =0 if a & annot(u), annot(w) #

< for (u,v) € Eand a € FUNC
Tu,v,a < Ty,a for (U7’U) € Fand a € FUNC
Tuw,a, Tu,a € {0,1} forall u, vand a.

Tuwa < Tua

Here, annot(u) is the set of known annotations for protein
u, and FUNC = U, annot(u) is the set of all functional annota-
tions. The first constraint specifies that exactly one functional
annotation is made for any protein. The second and third cons-
traints ensure that if protein v is annotated with function «,
Ty,q 1S Set as a constant to 1, and if protein « is annotated but
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notwith function a, x,, ,, is setas a constant to 0. The third and
fourth constraints ensure that a particular function is picked
for an edge only if it is also chosen for the corresponding
proteins.

Considering multiple GenMultiCut optimal solutions An
important consideration in this framework is the existence
of multiple optimal solutions. For example, the network in
Figure 3 has seven minimum cuts of value 1, and while the
GenMultiCut criterion does not favor any one cut over the
other, if we find all optimal cuts for this graph, we observe
that x5 is in fact annotated with £ more often than with F5 in
the assignments made by these cuts. Thus, a sense of distance
to annotated nodes is in fact present in the set of all optimal
solutions.

The simulated annealing method of Vazquez et al. (2003)
implicitly utilizes this information about multiple solutions.
Vazquez et al. (2003) ran simulated annealing 100 times, and
predicted for each protein the function that is assigned to it
most often. If each run does indeed converge to an optimal
solution, considering multiple runs amounts to sampling from
the space of optimal solutions.

We deliberately attempt to sample from the space of opti-
mal solutions. We explore two approaches for ensuring that
multiple solutions are obtained by the solver. In the solution-
exclusion approach, we add constraints to the ILP that require
that each consecutive solution is different from any previous
solution in the value it assigns to at least 5% of the node varia-
bles z, . For the weighted yeast physical interaction graph,
the first 50 solutions obtained with this restriction are all opti-
mal. Note that in this approach, each successive solution takes
longer to find. In the random weight perturbation approach,
we introduce uniform self-weights w,, , for each protein « and
function a. These self-weights are then perturbed by adding
a very small offset to each, drawn at random from the uni-
form distribution on (-0.00001, 0.00001). We now modify the
objective function in the ILP given above to maximize

§ Tu,v,aWu,v + §

(u,v)EE,aeFUNC u€V,aeFUNC

Ty q Wy, q -

The perturbation in weights is too small to change the solution
to the underlying problem, but it does cause the solver to
choose a different optimal solution each time. Both methods
perform very similarly in the accuracy of predictions made.
For the reported results, we use the latter method for obtaining
multiple solutions.

We let the score for assigning a function to a protein be the
number of times this function is assigned to the protein among
the solutions that we found as in Vazquez et al. (2003). We
ran the ILP 50 times, and thus, there are 51 possible scores (0-
50) for any function for any protein. One solution to the ILP
problem on the yeast interaction network with annotations for
50% of the proteins cleared can be obtained by AMPL (Fourer

@-O-O-O-O-0O-0-@~

X1 Xo X3 X4 X5 Xg X7 Xg

Fig. 3. Proteins 1 and g are annotated with functions F; and F5, respec-
tively. There are seven waysto annotate proteins so that thereisonly one edge
that connects proteins with different annotations. However, proteins further
away from protein z; arelesslikely to have function F; than those closer to
1. GenMultiCut does not take into account such distance effects.

et al., 2002) and CPLEX (ILOG CPLEX, 2000) in ~ 5 min
when running on a public UNIX machine.

Functional Flow

The functional flow algorithm generalizes the principle of
‘guilt by association’ to groups of proteins that may or may not
interact with each other physically. We achieve this by treating
each protein of known functional annotation as a ‘source’ of
“functional flow’ for that function. After simulating the spread
over time of this functional flow through the neighborhoods
surrounding the sources, we obtain the ‘functional score’ for
each protein in the neighborhood; this score corresponds to the
amount of “flow’ that the protein has received for that function,
over the course of the simulation. The functional flow-based
model allows us to incorporate a distance effect, i.e. the effect
of each annotated protein on any other protein depends on
the distance separating these two proteins. Running this pro-
cess for each biological function in turn, we obtain, for each
protein, the score for each function (the score may be 0 if
the “flow’ for a function did not reach that protein during the
simulation). Thereupon, for any protein, we take the functi-
ons for which the highest score was obtained as its predicted
functions.

More specifically, for each function in turn, we simulate
the spread of functional flow by an iterative algorithm using
discrete time steps. We associate with each node (protein) a
‘reservoir’ which represents the amount of flow that the node
can pass on to its neighbors at the next iteration, and with each
edge, a capacity constraint that dictates the amount of flow that
can pass through the edge during one iteration. The capacity
of an edge is taken to be its weight. Each iteration of the algo-
rithm updates the reservoirs using simple local rules: a node
pushes the flow residing in its reservoir to its neighbors pro-
portionally to the capacities of the respective edges and subject
to further constraints that the amount of flow pushed through
an edge during an iteration does not exceed the capacity of the
edge, and that flow only spreads ‘downbhill’ (i.e. from proteins
with more filled reservoirs to nodes with less filled reservairs).
Finally, at each iteration, an ‘infinite” amount of flow is pum-
ped into the source protein nodes; thus, the sources always
have enough flow in their reservoir to fill the capacity of their
outgoing edges.

The functional score is the amount of flow that has entered a
protein’s reservoir in the course of all iterations. Since the flow
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is ‘pumped’ into the sources at each step, the amount of flow
a node receives from each source is greater for nodes that are
closer to that source than for nodes that are farther away from
it. Thus, a source’s immediate neighbor in the graph receives
d iterations worth of flow from the source, while a node that
is two links away from the source receives d — 1 iterations
worth of flow. Similarly, the number of iterations for which
the algorithm is run determines the maximum shortest-path
distance that can separate a recipient node from a source in
order for the flow to propagate from the source to the recipient.
In the context of protein interaction, a relatively small number
of iterations is sufficient. We choose d = 6, which is half the
diameter of the yeast physical interaction network.

More formally, for each protein w in the interaction network,
we define a variable R{ (u) that corresponds to the amount in
the reservoir for function a that node « has at time ¢. For each
edge (u,v) in the interaction network, we define variables
9% (u,v) and g¢ (v, u) that represent the flow of function « at
time ¢ from protein  to protein v, and from protein v to protein
u. We will run the algorithm for d time steps or iterations. At
time 0, we only have reservoirs of function a at annotated
nodes:

if v is annotated with a
otherwise

Riw) = { o

At each subsequent time step, we recompute the reservoir
of each protein by considering the amount of flow that has
entered the node and the amount that has left:

Ri(w) = Ri_y(u) + > (g¢(v,u) = g (u,v))

vi(u,v)EE

Initially, at time 0, there is no flow on the edges, and
9§ (u, v) = 0. At each subsequent time step, we have the flow
proceeding downhill and satisfying the capacity constraints:

0,
gg(ua ’U) = Wy, v

min (wu,v, ﬁ) , otherwise.
(u,y)EE WY

Finally, the functional score for node « and function a over
d iterations is calculated as the total amount of flow that has
entered the node:

d
oy =3 > giwu)
t=1v:(u,v)EE
RESULTS AND DISCUSSION

Comparison of four basic methods on the
unweighted physical interaction map

We compare the performance of Majority, Neighborhood,
GenMultiCut and FunctionalFlow on the unweighted yeast

if R_;(u) < R,‘ngv

physical interaction map, using a 2-fold cross-validation.
Figure 4 plots as a function of FP the number of TPs each
method predicts (i.e. these graphs are obtained by varying the
scoring threshold for each of the methods). The Functional-
Flow algorithm identifies more TPs over the entire range of
FPs than either GenMultiCut or Neighborhood using radius
1, 2 or 3. FunctionalFlow performs better than Majority when
proteins are not directly interacting with at least three proteins
of the same function; this is evident from Figure 4 since the
score for Majority counts up the the most frequent neighboring
annotation (e.g. the rightmost point for Majority corresponds
to proteins whose highest functional scores are one). Thus,
FunctionalFlow is the method of choice when considering
proteins that do not interact with many annotated proteins.
Even in well-characterized proteomes, such as baker’s yeast,
there are ~ 1200 proteins that have fewer than three annotated
neighbors.

The Neighborhood algorithm performs comparably with
either radius 1 or 2. However, radius 1 (i.e. considering just
direct interactions) has better overall performance than radius
3, demonstrating that Neighborhood’s strategy of ignoring
topology is not optimal. Moreover, comparing Majority with
Neighborhood using radius 1 demonstrates that the x2-test
is not as effective in scoring as just summing up the num-
ber of times a particular annotation occurs in the neighboring
proteins.

Since the score for GenMultiCut comes from multiple solu-
tions to the underlying optimization problem, each point in
Figure 4 for GenMultiCut corresponds to the proteins that
are annotated with a particular function the same number of
times. For example, the leftmost point for GenMultiCut corre-
sponds to proteins where the top scoring functional prediction
is found in each of the 50 solutions found. If we were to find
just one optimal GenMultiCut solution, its performance in
terms of TPs and FPs is comparable to the rightmost point for
GenMultiCut (data not shown). Thus, multiple solutions for
GenMultiCut are necessary to identify its most confident pre-
igtions, and as pointed out earlier, these multiple solutions
apture some notion of locality in the graph.

Vazquez et al. (2003) report in their paper improved per-
formance for GenMultiCut over Majority for proteins with
degree > 1. Their measure of success is the fraction of times
the top prediction for each protein is correct. Although they
do not specify how they deal with multiple top predictions, we
note that this measure corresponds to computing TPs and FPs
for the rightmost points in Figure 4 for each of the methods.
Assuming that the top predictions for each protein are trea-
ted separately, and that failure to make a prediction for a
protein corresponds to an incorrect prediction, the top pre-
dictions for proteins with degree > 1 are correct 0.267 of

1 Itisnot precisely therightmost point in Figure 4 since this point aggregates
solutions from multiple runs.
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Fig. 4. ROC analysis of Majority, Neighborhood, GenMultiCut and FunctionalFlow on the yeast unweighted physical interaction map.

the time for Majority. These values are 0.246 for Neighbor-
hood with radius 1, 0.239 for Neighborhood with radius 2,
0.297 for GenMultiCut and 0.311 for FunctionalFlow. Alt-
hough we believe ROC curve analysis gives a more complete
picture of performance, FunctionalFlow performs better than
the other methods using this measure. Moreover, we tested
the performance of all methods clearing a smaller fraction
of the annotated proteins. In a 10-fold cross-validation (i.e.
where only 10% of the yeast annotations are cleared), Gen-
MultiCut has a slight advantage (25 proteins out of ~ 2500)
over FunctionalFlow in the very low-confidence region; all
other observations are qualitatively the same as for 2-fold
cross-validation.

Reliability and data integration

To evaluate our approach for modeling physical interaction
reliability as edge weights, we test the performance of Func-
tionalFlow using three ways of assigning physical interaction
weights. First, we assign each edge a unit weight; this cor-
responds to the unweighted physical interaction map used
above. Second, we assign each experimental source a reliabi-
lity score of 0.5; this rewards interactions that are found by
more than one experiment. Finally, we assign each experimen-
tal source the predictive value (estimated in cross-validation)
as described in the Materials and Methods section; here, edges
obtained from multiple, more reliable experiments are given
higher weights. Figure 5 shows that rewarding multiple expe-
rimental evidence is beneficial, but that the main advantage
comes from taking into account the actual reliability values
for the different experiments.

Figure 6 shows how Majority, GenMultiCut and Functio-
nalFlow perform on the yeast physical interaction map, where
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Fig. 5. The FunctionalFlow algorithm on (1) the unweighted physical inter-
action map, (2) the physical interaction map with edges weighted using equal
religbilities for each experiment and (3) the physica interaction map with
edges weighted by reliabilities estimated individually for each experiment.

edges are weighted by individual experimental reliability. The
baseline performance of Majority on the unweighted phy-
sical interaction graph is also shown. There is substantial
improvement in predictions using all three methods when
incorporating edges weighted by reliability.

We further explored whether the network analysis algo-
rithms would perform well when other types of experimental
information are added. As a proof of principle, we explore
the effect of adding genetic linkages to the graph. Relia-
bilities for genetic interactions are estimated as described
earlier, and incorporated into the edge weights. Figure 7 shows
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Fig. 7. Comparison of functiona predictions of Functional Flow when con-
sidering (1) the physical interaction map weighted by experimental source
reliability and (2) the integrated physical and genetic interaction map.

the performance of FunctionalFlow on the weighted physical
interaction network and the weighted physical and genetic
interaction network. As is evident, adding genetic interaction
data significantly improves prediction quality. Majority and
GenMultiCut show similar improvements (data not shown).

CONCLUSIONS

We have shown that our network analysis algorithm Function-
alFlow provides an effective means for predicting protein
function from protein interaction maps. Our algorithm utili-
zes indirect network interactions, network topology, network
distances and edges weighted by reliability estimated from
multiple data sources. However, we have also shown that the
simplest methods, such as Majority, perform well if there are

enough direct neighbors with known function. In the present
work, simple independence assumptions are made for esti-
mating the reliability of interactions. Although these work
reasonably well, it may be even more beneficial to use a more
sophisticated approach for weight assignment and perform
more complete data integration. Finally, although we have
applied our method to baker’s yeast, FunctionalFlow is likely
to be especially useful when analyzing largely uncharacteri-
zed proteomes where computational methods are used to infer
protein interaction maps.

ACKNOWLEDGMENTS

M. S. thanks the NSF for PECASE grant MCB-0093399,
DARPA for grant MDA972-00-1-0031 and NIH for grant
PO1-CA-041086. B. C. thanks the NSF for grant CCR-
998817, DARPA for ARO grant DAAH04-96-1-0181 and the
NEC Research Institute. The authors thank the members of
the Singh group, especially Carl Kingsford, for many helpful
discussions.

REFERENCES

Alm, E. and Arkin, A. P. (2003). Biological networks. Curr. Opin.
Sruct. Biol., 13:193-202.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H.,
Cherry, J. M., et al. (2000). Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat. Genet., 25:25—
29.

Breitkreutz, B. J., Stark, C., and Tyers, M. (2003). The GRID: The
General Repository for Interaction Datasets. GenomeBial., 4:R23.

Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guénoche, A., and
Jacq, B. (2003). Functional classification of proteins for the predic-
tion of cellular function from a protein-protein interaction network.
Genome Biol., 5:R6.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990).
Introduction to Algorithms. MIT Press/McGraw-Hill.

Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour, P. D.,
and Yannakakis, M. (1994). The complexity of multiway cuts.
S AM J. on Computing, 23:864-894.

Dandekar, T., Snel, B., Huynen, M., and Bork, P. (1998). Conserva-
tion of gene order: a fingerprint of proteins that physically interact.
Trends Biochem. Sci., 23:324-328.

Deng, M., Sun, F., and Chen, T. (2003). Assessment of the reliability
of protein-protein interactions and protein function prediction. In
Pac. Symp. Biocompuit., pages 140-151.

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expres-
sion Omnibus: NCBI gene expression and hybridization array data
repository. Nucleic Acids. Res., 30:207-210.

Enright, A. J., lliopoulos, 1., Kyrpides, N. C., and Ouzounis, C. A.
(1999). Protein interaction maps for complete genomes based on
gene fusion events. Nature, 402:86-90.

Fourer, R., Gay, D. M., and Kernighan, B. W. (2002) AMPL: A
Modeling Languagefor Mathematical Programming. Brooks/Cole
Publishing Company, Pacific Grove, CA

Fromont-Racine, M., Rain, J. C., and Legrain, P. (1997). Toward a
functional analysis of the yeast genome through exhaustive two-
hybrid screens. Nat. Genet., 16:277-282.




Protein function via analysis of interaction maps

Gaasterland, T. and Ragan, M. A. (1998). Constructing multigenome
views of whole microbial genomes. Microb. Comp. Genomics,
3:177-192.

Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M.,
Bauer, A., et al. (2002). Functional organization of the yeast
proteome by systematic analysis of protein complexes. Nature,
415:141-147.

Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B.,
Li, Y., et al. (2003). A protein interaction map of Drosophila
melanogaster. Science, 302:1727-1736.

Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac,
K.D., Danford, T. W., et al. (2004). Transcriptional regulatory
code of a eukaryotic genome. Nature, 431:99-104.

Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., and Takagi, T.
(2001). Assessment of prediction accuracy of protein function
from protein-protein interaction data. Yeast, 18:523-531.

Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams,
S. L., et al. (2002). Systematic identification of protein comple-
xes in Saccharomyces cerevisiae by mass spectrometry. Nature,
415:180-183.

Ideker, T. (2004). A systems approach to discovering signaling and
regulatory pathways-or, how to digest large interaction networks
into relevant pieces. Adv. Exp. Med. Bial., 547:21-30.

ILOG  CPLEX  (2000). ILOG CPLEX 7.1
http://www.ilog.com/products/cplex/.

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y.
(2001). A comprehensive two-hybrid analysis to explore the yeast
protein interactome. Proc. Natl. Acad. Sci. USA, 98:4569-4574.

Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa,
M., et al. (2000). Toward a protein-protein interaction map of
the budding yeast: A comprehensive system to examine two-
hybrid interactions in all possible combinations between the yeast
proteins. Proc. Natl. Acad. Sci. USA, 97:1143-1147.

Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung,
S., et al. (2003). A Bayesian networks approach for predicting
protein-protein interactions from genomic data. Science, 302:449-
453.

Karaoz, U., Murali, T. M., Letovsky, S., Zheng, Y., Ding, C., Cantor,
C. R., and Kasif, S. (2004). Whole-genome annotation by using
evidence integration in functional-linkage networks. Proc. Natl.
Acad. Sci. USA, 101:2888-2893.

Lee, I, Date, S. V., Adai, A. T., and Marcotte, E. M. (2004).
A probabilistic functional network of yeast genes. Science,
306:1555-1558.

Lee, T. I, Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z.,
Gerber, G. K., et al. (2002). Transcriptional regulatory networks
in Saccharomyces cerevisiae. Science, 298:799-804.

Li, S., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M.,
et al. (2004). A map of the interactome network of the metazoan
C. elegans. <ience, 303:540-543.

Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O.,
and Eisenberg, D. (1999a). Detecting protein function and protein-
protein interactions from genome sequences. Science, 285:751—
753.

Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O., and
Eisenberg, D. (1999b). A combined algorithm for genome-wide
prediction of protein function. Nature, 402:83-86.

Mewes, H. W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer,
K., Mokrejs, et. al. (2002). MIPS: a database for genomes and
protein sequences. Nucleic Acids Res., 30:31-34.

Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G. D., and Maltsev,
N. (1999). The use of gene clusters to infer functional coupling.
Proc. Natl. Acad. Sci. USA, 96:2896-2901.

Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., and
Yeates, T. O. (1999). Assigning protein functions by comparative
genome analysis: protein phylogenetic profiles. Proc. Natl. Acad.
Sci. USA, 96:4285-4288.

Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C.,
Simon, S., et al. (2001). The protein-protein interaction map of
Helicobacter pylori. Nature, 409:211-215.

Rives, A. W. and Galitski, T. (2003). Modular organization of cellular
networks. Proc. Natl. Acad. ci. USA, 100:1128-1133.

Schlitt, T., Palin, K., Rung, J., Dietmann, S., Lappe, M., Ukkonen,
E., and Brazma, A. (2003). From gene networks to gene function.
Genome Res., 13:2568-2576.

Schwikowski, B., Uetz, P., and Fields, S. (2000). A network of
protein-protein interactions in yeast. Nat. Biotechnol., 18:1257-
1261.

Spirin, V. and Mirny, L. A. (2003). Protein complexes and functio-
nal modules in molecular networks. Proc. Natl. Acad. Sci. USA,,
100:12123-12128.

Sprinzak, E., Sattath, S., and Margalit, H. (2003). How reliable
are experimental protein-protein interaction data? J. Mol. Bial.,
327:919-923.

Strong, M., Graeber, T. G., Beeby, M., Pellegrini, M., Thompson,
M. J., Yeates, T. O., and Eisenberg, D. (2003). Visualization and
interpretation of protein networks in Mycobacterium tuberculosis
based on hierarchial clustering of genome-wide functional linkage
maps. Nucleic Acids Res, 31:7099-7109.

Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D.,
Page, N., et al. (2001). Systematic genetic analysis with ordered
arrays of yeast deletion mutants. Science, 294:2364-2368.

Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin,
X., et al. (2004). Global mapping of the yeast genetic interaction
network. Science, 303:808-813.

Troyanskaya, O. G., Dolinski, K., Owen, A. B., Altman, R. B,
and Botstein, D. (2003). A Bayesian framework for combi-
ning heterogeneous data sources for gene function prediction
(in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. USA,
100:8348-8353.

Tsuda, K. and Noble, W. S. (2004). Learning kernels from biolo-
gical networks by maximizing entropy. Bioinformatics, 20 Suppl
1:1326-1333.

Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S.,
Knight, J. R., et al. (2000). A comprehensive analysis of
protein-protein interactions in Saccharomyces cerevisiae. Nature,
403:623-627.

Vazquez, A., Flammini, A., Maritan, A., and Vespignani, A. (2003).
Global protein function prediction from protein-protein interaction
networks. Nat. Biotechnol., 21:697-700.

von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and
Snel, B. (2003a). STRING: a database of predicted functional
associations between proteins. Nucleic Acids Res., 31:258-261.




Nabieva et al

von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., von Mering, C., Zdobnov, E. M., Tsoka, S., Ciccarelli, F. D., Pereira-

Fields, S., and Bork, P. (2002). Comparative assessment of large- Leal, J. B., Ouzounis, C. A., and Bork, P. (2003b). Genome
scale data sets of protein-protein interactions. Nature, 417:399— evolution reveals biochemical networks and functional modules.
403. Proc. Natl. Acad. Sci. USA, 100:15428-15433.

10



