
Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/6/17 2:09 PM

ASSIGNMENT 6 TIPS AND TRICKS

‣ digital audio review

‣ guitar string data type

‣ ring buffer data type

‣ guitar hero client

Kevin Wayne

http://princeton.edu/~cos126

http://princeton.edu/~cos126

Goals

・Physically-modeled sound: compute sound waveform using a mathematical model of a musical instrument.

2

bowing a violin string
(Helmholtz motion)

striking a drum
(2D wave)

plucking a guitar string
(1D wave)

Goals

・Physically-modeled sound: compute sound waveform using a mathematical model of a musical instrument.

・Object-oriented programming: more practice with objects.

・Performance: efficient data structure crucial for application.

3

ASSIGNMENT 6 TIPS AND TRICKS

‣ digital audio review

‣ guitar string data type

‣ ring buffer data type

‣ guitar hero client

http://princeton.edu/~cos126

Sound

Waveform. Real-valued function between –1 and +1.

 
 
 
 
 
 
 
 
 
 
 
 
 
Pure tone. Periodic sinusoidal waveform.

5

concert A (440 Hz)

a(t) = sin (2π · t · 440) , 0 � t � T

time

+1

-1

T = 1/40 second

Digital sound

Digital representation. Sample at equally-spaced points.

6

Sampling a sine wave at various rates (1/40 sec.)

44100 samples/second, 1102 samples

22050 samples/second, 551 samples

11025 samples/second, 275 samples

5512 samples/second, 137 samples
5,512 samples per second (138 samples)

time

+1

-1

T = 1/40 second

Digital sound

Digital representation. Sample at equally-spaced points.

7

Sampling a sine wave at various rates (1/40 sec.)

44100 samples/second, 1102 samples

22050 samples/second, 551 samples

11025 samples/second, 275 samples

5512 samples/second, 137 samples

11,025 samples per second (276 samples)

time

+1

-1

T = 1/40 second

Digital sound

Digital representation. Sample at equally-spaced points.

8

Sampling a sine wave at various rates (1/40 sec.)

44100 samples/second, 1102 samples

22050 samples/second, 551 samples

11025 samples/second, 275 samples

5512 samples/second, 137 samples

22,050 samples per second (552 samples)

time

+1

-1

T = 1/40 second

Digital sound

Digital representation. Sample at equally-spaced points.

9

44,100 samples per second (1,103 samples)

time

+1

-1

T = 1/40 second

Sampling a sine wave at various rates (1/40 sec.)

44100 samples/second, 1102 samples

22050 samples/second, 551 samples

11025 samples/second, 275 samples

5512 samples/second, 137 samples

Digital sound

Digital representation. Sample at equally-spaced points.

10

a[i] = sin

�
2π · i · 440
44100

�
, i = 0, 1, 2, . . . , 44100 · T

44,100 samples per second (1,103 samples)

for (int i = 0; i <= 44100 * T; i++) {

 double x = Math.sin(2.0 * Math.PI * i * 440.0 / 44100);

 StdAudio.play(x);

}

time

+1

-1

T = 1/40 second

Sampling a sine wave at various rates (1/40 sec.)

44100 samples/second, 1102 samples

22050 samples/second, 551 samples

11025 samples/second, 275 samples

5512 samples/second, 137 samples

Digital sound

Digital representation. Sample at equally-spaced points.

 
 
 
 
 
 
 
 
 
Teenager ringtone / torture.

11

44,100 samples per second (1,103 samples)

for (int i = 0; i <= 44100 * T; i++) {

 double x = Math.sin(2.0 * Math.PI * i * 17000.0 / 44100);

 StdAudio.play(x);

}

time

+1

-1

T = 1/40 second

Sampling a sine wave at various rates (1/40 sec.)

44100 samples/second, 1102 samples

22050 samples/second, 551 samples

11025 samples/second, 275 samples

5512 samples/second, 137 samples

Real-time audio library

Standard audio. Simple library to play sound in Java.

・User sends samples to standard audio.

・Standard audio sends them to sound card at 44,100 Hz.

12

public class StdAudio

public static int SAMPLE_RATE 44,100 (CD-quality audio)

public static void play(double x) write one sample to sound card

public static void play(double[] x) write array of samples to sound card

public static double[] read(String filename) read audio samples from wav file

public static void save(...) save audio samples to wav file

ASSIGNMENT 6 TIPS AND TRICKS

‣ digital audio review

‣ guitar string data type

‣ ring buffer data type

‣ guitar hero client

http://princeton.edu/~cos126

Transverse wave demo

14

Longitudinal wave demo

15

Modeling the guitar string

Physical guitar string.

・Length of string determines fundamental frequency.†

・Once plucked, string vibrates.

・Amplitude decreases as energy dissipates into sound and heat.

 
 
 
 
 
Digital model. Sequence of n displacements, where n = ⎡44,100 / frequency⎤.

16

time

n

Math.ceil()

Modeling the plucking of a guitar string

Plucking a guitar string. Excitation can contain energy at any frequency.

 
 
 
 
 
 
 
 
 
White noise. Set each of n displacements uniform at random in (−½, ½).

17

time

n

Simulating the vibrating guitar string: Karplus–Strong

Karplus.

・Play the first sample.

・Peek at first two samples (and remove first).

・Append the average of those two samples,  
scaled by an energy dissipation factor of 0.996.

 
 
 
 
 
 
 
 
 
 
Strong. Sampling the transversal wave on a string instrument.

18

.4.2 .5 .3 –.2before .4 .3 .0 –.1 –.3
.

 .996 × ½ (.2 + .4)

.2988.2 .4 .5 .3 –.2 .4 .3 .0 –.1 –.3after

.2

Guitar string API

19

public class GuitarString

public GuitarString(double freq) creates a guitar string of given frequency

public GuitarString(double[] init) for unit testing

public int length() returns the length of this guitar string

public void pluck() plucks this guitar string

public void tic() advances the simulation one time step

public double sample() returns the current sample

GuitarString concertA = new GuitarString(440.0);
concertA.pluck();
while (true) {
 StdAudio.play(concertA.sample());
 concertA.tic();
}

Guitar string implementation

Q. How to represent?

A. Need data structure that can remove value from front and add to back.

 
 
 
 
 
 
 
 
 
Core operations needed.

・Construct: create a data structure (capable of holding n items).

・Enqueue: add value.

・Dequeue: remove least recently added value.

・Peek: look at least recently added value.

20

.4.2 .5 .3 –.2before .4 .3 .0 –.1 –.3
.

 .996 × ½ (.2 + .4)

.2988.2 .4 .5 .3 –.2 .4 .3 .0 –.1 –.3after

.2

special case of a queue (Section 4.3)

ASSIGNMENT 6 TIPS AND TRICKS

‣ digital audio review

‣ guitar string data type

‣ ring buffer data type

‣ guitar hero client

http://princeton.edu/~cos126

Ring buffer API

Goal. Design a data type that can implement Karplus–Strong.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance requirement. All instance methods must take constant time (called 44,100 times per second).

22

public class RingBuffer

public RingBuffer(int capacity) creates an empty ring buffer of given capacity

public int capacity() maximum number of items in buffer

public int size() number of items currently in buffer

public boolean isEmpty() is this ring buffer empty?

public boolean isFull() is this ring buffer full?

public void enqueue(double x) adds item x to the end

public double dequeue() removes and returns item from front

public double peek() returns item from front

Ring buffer implementation

Performance bug.

・Enqueue: add item at a[n] and increment n.

23

3 1 4 1 5

0 1 2 3 4 5 6 7 8 9

a[]

n

enqueue 9

Ring buffer implementation

Performance bug.

・Enqueue: add item at a[n] and increment n.

24

3 1 4 1 5

0 1 2 3 4 5 6 7 8 9

a[]

n

9

enqueue

constant time per op

Ring buffer implementation

Performance bug.

・Enqueue: add item at a[n] and increment n.

・Dequeue: remove item a[0] and shift all items.

25

3 1 4 1 5

0 1 2 3 4 5 6 7 8 9

a[]

n

9

dequeue

constant time per op

Ring buffer implementation

Performance bug.

・Enqueue: add item at a[n] and increment n.

・Dequeue: remove item a[0] and shift all items.

26

1 4 1 5

0 1 2 3 4 5 6 7 8 9

a[]

n

9

3dequeue

constant time per op

linear time per op

Ring buffer implementation

Performance bug.

・Enqueue: add item at a[n] and increment n.

・Dequeue: remove item a[0] and shift all items.

 
 
 
 
 
 

Bottom line. Too slow to generate samples at 44.1kHz !

27

1 4 1 5

0 1 2 3 4 5 6 7 8 9

a[]

n

9

3dequeue

linear time per op

constant time per op

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

28

first

3 1 4

0 1 2 3 4 5 6 7 8 9

a[]

last

1 5

9enqueue

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

29

first

3 1 4

0 1 2 3 4 5 6 7 8 9

a[]

last

1 5 9

enqueue

constant time per op

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

30

first

3 1 4

0 1 2 3 4 5 6 7 8 9

a[]

last

1 5 9

dequeue

constant time per op

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

31

first

1 4

0 1 2 3 4 5 6 7 8 9

a[]

last

1 5 9

dequeue 3

constant time per op

constant time per op

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

32

first

1 4

0 1 2 3 4 5 6 7 8 9

a[]

last

1 5 9

enqueue

constant time per op

constant time per op

2

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

33

first

1 4

0 1 2 3 4 5 6 7 8 9

a[]

last

1 5 9

enqueue

constant time per op

constant time per op

2

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

34

first

1 4

0 1 2 3 4 5 6 7 8 9

a[] 1 5 9

enqueue

constant time per op

constant time per op

6

2

last

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

35

first

1 4

0 1 2 3 4 5 6 7 8 9

a[] 1 5 9

enqueue

constant time per op

constant time per op

2

last

6

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

・Use cyclic wrap-around (compute indices modulo capacity).

36

first

1 4

0 1 2 3 4 5 6 7 8 9

a[] 1 5 9

enqueue

constant time per op

constant time per op

5

2 6

last

Ring buffer implementation

Efficient implementation.

・Enqueue: add item at a[last] and increment last.

・Dequeue: remove item a[first] and increment first.

・Use cyclic wrap-around (compute indices modulo capacity).

37

first

1 4

0 1 2 3 4 5 6 7 8 9

a[] 1 5 9

enqueue

constant time per op

constant time per op

2 6

last

5

Ring buffer implementation: performance matters

Q. I have a quad-core MacBook Pro with 16GB memory and TouchBar. 
 Does constant time vs. linear time matter in practice?

A. Yes!

 
 
 
 
 
 
 
 
 
 
 
 
Remark. Could use same trick to speed up LFSR.

38

concert A (performance bug)

concert A (efficient implementation)

Ring buffer implementation

39

public class RingBuffer {

 private double[] a; // elements
 private int first; // index of dequeue element
 private int last; // index of enqueue element

 public int size() {
 // YOUR CODE HERE
 }
 ...

}

.5 .3 -.2 .4

0 1 2 3 4 5 6 7 8 9

a[]

first last capacity
10

Ring buffer implementation

40

public class RingBuffer {

 private double[] a; // elements
 private int first; // index of dequeue element
 private int last; // index of enqueue element

 public int size() {
 // YOUR CODE HERE
 }
 ...

}

.5 .3 -.2 .4

0 1 2 3 4 5 6 7 8 9

a[]

first last capacity
10

why wrong?return last - first;

size

 // number of elementsprivate int size;

ASSIGNMENT 6 TIPS AND TRICKS

‣ digital audio review

‣ guitar string data type

‣ ring buffer data type

‣ guitar hero client

http://princeton.edu/~cos126

 public class GuitarHeroUltraLite {
 public static void main(String[] args) {

 GuitarString stringA = new GuitarString(440.0);

 while (true) {

 if (StdDraw.hasNextKeyTyped()) {
 char key = StdDraw.nextKeyTyped();
 if (key == 'a') stringA.pluck();
 }

 StdAudio.play(stringA.sample());

 stringA.tic();

 }
 }
 }

A 1-string guitar

42

concert A

if user types 'a',
pluck the string

do Karplus–Strong update

play the sample

A 37-string guitar

Model many simultaneously vibrating guitar strings.

・Classic guitar has 6 strings and 19 frets.

・Our digital guitar has 37 strings.

・Create an array of GuitarString objects.

・Apply law of superposition.

43

440.00
554.37
659.26

440.00
220.00
880.00

A major chord

concert A with harmonics

 A
 C♯
 E

A
A
A

Superposing waves to make composite sounds

440.00
554.37
659.26

440.00
220.00
880.00

A major chord

concert A with harmonics

 A
 C♯
 E

A
A
A

Superposing waves to make composite sounds

440 � 2(i�24)/12

string i has frequency

A 37-string guitar

Model many simultaneously vibrating guitar strings.

・Classic guitar has 6 strings and 19 frets.

・Our digital guitar has 37 strings.

・Create an array of GuitarString objects.

・Apply law of superposition.

44

A major

440.00
554.37
659.26

440.00
220.00
880.00

A major chord

concert A with harmonics

 A
 C♯
 E

A
A
A

Superposing waves to make composite sounds

440 � 2(i�24)/12

string i has frequency

Making a musical instrument

User interface. User types key to pluck string.

45

A scale: i o - [z d f v

q w e r t y u i o p [z x c v b n m , . /

2 4 5 7 8 9 - = d f g j k ; ,

sp
ac

e

A B C D E F G A B C D E F G A B C D E F G A

Stairway to Heaven

46

 q q
 w i i
 8 u 7 y u t
i p z v b z p b n z p n d [i d z p i p z p i o p p

Modeling the 37 strings

How to map from a keystroke to corresponding GuitarString object?

A. 37-way if statement

B. 37-way switch statement

C. an array/string of 37 characters

D. a symbol table with char keys and GuitarString values

47

String keyboard = "q2we4r5ty7u8i9op-[=zxdcfvgbnjmk,.;/' ";

...
keyboard.length(); // 37 (don’t hardwire 37!)

keyboard.indexOf('q'); // 0

keyboard.indexOf('r'); // 5
keyboard.indexOf('+'); // -1

don’t even think about it!

good idea, but symbol tables
not yet introduced in course

And beyond

Found a new company.

48

Ge Wang *08

