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Recap

Statistical learning model (PAC learning):

without restricting hypothesis class - overfitting
ERM algorithm learns finite hypothesis classes (examples: apple factory
(finite-precision rectangles), conjunctions)

Agnostic learning in the statistical model

Agnostic learning as a way for handling noise (HW1)

Started infinite learnable hypothesis classes: half-lines, rectangles.

Unlearnability: disjunctive formulas (DNF), restriction to hypothesis
class necessary

Today: unlearnable classes, sufficient and necessary condition for
learning (VC-dimension), fundamental theorem of statistical learning.
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When can’t we learn?

Theorem (No Free Lunch)

Let m be a training set sampled i.i.d, and let X be a domain with at least
2m distinct elements. Then, for every learning algorithm A (which creates
a hypothesis A(S) : X → {0, 1} from the training data), there exists a
distribution D over X × {0, 1} and a concept f : X → {0, 1} such that:

1 errD(f) = 0

2 ES∼Dm [errD(A(S))] ≥ 1
4

Thus: ”learning without restricting the hypothesis may result in
overfitting”.
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No free lunch thm

Lemma

Let C ⊆ X , |C| = 2m and f be a function f : C → {0, 1} ∈ F = {0, 1}C .
Let Df be the distribution over C × {0, 1} defined by:

Pr(x, y) =

{
1
|C| = 1

2m x ∈ C, y = f(x)

0 o/w

Then for any learning algorithm A : (C × {0, 1})m → F there exists a
function f ∈ F such that ES∼Dm

f

[
errDf

(A(S))
]
≥ 1

4

Lemma implies theorem, since err
Df

(f) = Pr
(x,y)∼Df

[f(x) 6= y] = 0

Proof by the probabilistic method (showing existence via probably
of an event being non-zero). In our case, we show:
Q = Ef∈F [ E

S∼U(C)m
[err
Df

(A(S))]] ≥ 1
4 , where U(C) is uniform

distribution over C.
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No free lunch thm

Q = E
f∈F

[ E
S∼U(C)m

[err
Df

(A(S))]] = E
f∈F

[ E
S∼U(C)m

[ E
c∼U(C)

[I{AS(c) 6=f(c)}]]]

= E
S∼U(C)m

[ E
c∼U(C)

[ E
f∈F

[I{AS(c) 6=f(c)}]]]

= E
S∼U(C)m

[ E
c∼U(C)

[ E
f∈F

[I{AS(c)6=f(c)}|c ∈ S] · Pr[c ∈ S]

+ E
f∈F

[I{AS(c)6=f(c)}|c 6∈ S) · Pr[c 6∈ S]]]

≥ E
S∼U(C)m

[ E
c∼U(C)

[
1

2
· 0 +

1

2
· E
f∈F

[I{AS(c) 6=f(c)}|c /∈ S]]]

= E
S∼U(C)m

( E
c∼U(C)

(
1

2
· 1

2
)) =

1

4

Therefore we have Q ≥ 1
4
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When is a concept unlearnable?

Complexity of possible restrictions grows with sample size without
limit (or till the limit of inputs, as in DNF formulas).

Leads to the notion of VC-dimension we have seen last lecture.

This notion exactly characterizes what is learnable in the statistical
(PAC) learning model for both finite and infinite hypothesis classes,
and gives rise to tight upper bounds on the sample complexity for
learning them.
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VC-theory

Definition

A restriction of hypothesis class H to C = {c1, ..., cm} ⊆ X is the set of
all binary vectors induced by the hypothesis of H on items of C.

HC = {(h(c1), ..., h(cm))|h ∈ H}

Definition

A set C ⊆ X is shattered by hypothesis class H iff ‖HC‖ = 2|C|.

Definition

The VC-dimension of H is the largest cardinality of a set C ⊆ X that is
shattered by H.
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Examples

positive half-lines

axis-aligned rectangles

convex polygons in Euclidean plane.

finite classes:

Lemma

For any finite hypothesis class H and arbitrary domain,
VC-dim(H) ≤ log |H|.
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Fundamental theorem of statistical learning

Theorem

A hypothesis class H is learnable if and only if VC-dim(H) <∞, in which
case it is PAC learnable with sample complexity

mH(ε, δ) = O(
VC-dim(H)

ε
log

1

δε
)

and agnostically learnable with sample complexity

mH(ε, δ) = O(
VC-dim(H)

ε2
log

1

δ
)
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Fundamental theorem of statistical learning - proof outline

Definition

The growth function of H is defined by τH : N 7→ N :

τH(m) = max
C⊆X , |C|=m

|HC |

Let d = VC-dim(H). Two main parts:

Sauer’-Shelah lemma: even though H can be large/infinite, when
restricting it to C ⊆ X we have τH(m) = O(md)

The generalization error as a function of the training set size m = |S|
behaves as

log τ(m)

m
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Part 1: Sauer-Shelah Lemma

Lemma

The growth function of H satisfies:

τH(m) ≤
{
m

d

}
≡

d∑
i=0

(
m

i

)
m>d
≤
(em
d

)d
Proof: by induction on m+ d. Base: m+ d = 0.
Claim: If |C| = 0, then |HC | ≤ 1.

Proof.

Suppose we have more than one hypothesis in HC . Then, there exists x in
X s.t. h1(x) 6= h2(x). Therefore, if we chose C = {x} then H shatters C,
and thus V Cdim(H) > 1. Contradicting the assumption that d = 0.
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Part 1: Sauer-Shelah Lemma - cont.

Inductive Step: assume correctness for m+ d ≤ k Define:

1 C ′ := C/{x} thus |C ′| = m− 1

2 H1 := HC′

3 H2 := {h ∈ HC |h(x) = 1 ∧ ∃h′ ∈ HC s.t.
h′(x) = 0 ∧ h(y) = h′(y) ∀y ∈ C ′}

We’re going to apply induction to H1,H2. But first, Claim:

|Hc| = |H1|+ |H2|

proof of Claim.

Let h ∈ HC′ and let h̃ ∈ HC s.t. h̃(y) = h(y) for all y in C’.
Q: How many h̃ does exist?
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proof of Claim cont.

A: either one or two:
Case 1: There exist one h̃. Thus, h̃(x) = 0 or h̃(x) = 1 thus h̃ not in H2.
So we count this h̃ only in H1.
Case 2: There exist two h̃; h̃1 and h̃2. w.l.o.g, h̃1(x) = 0 and h̃2(x) = 1.
Thus, by definition: h̃1 projection over C ′ is in H1 and h̃2 in H2. So
again, we count both of them.
This proves that |Hc| = |H1|+ |H2|.

Observation 1: Applying induction assumption, since (m− 1) + d < m− d,

|H1| = |HC′ | ≤
{
m− 1

d

}

Claim.

V Cdim(H2) ≤ V Cdim(Hc)− 1
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Proof of Claim.

Suppose H2 shatters some S ⊆ C ′.
Then by definition, HC shatters S ∪ {x} thus
V Cdim(Hc)≥ V Cdim(H2) + 1.

Observation 2: Applying induction assumption again,

|H2| ≤
{
m− 1

d− 1

}
Combining both observations and the Claim we get:

|Hc| = |H1|+ |H2| ≤
{
m− 1

d

}
+

{
m− 1

d− 1

}
=

{
m

d

}
(last identity is a combinatorial identity in homework) This completes
Sauer-Shelah lemma.
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Fundamental theorem of statistical learning - recall proof
outline

Two main parts:

Sauer’-Shelah lemma: even though H can be large/infinite, when
restricting it to C ⊆ X we have τH(m) = O(md)

The generalization error as a function of the training set set m = |S|
behaves as

log τ(m)

m
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Part II (main)

Theorem

Let D be an unknown distribution function and H a realizable hypothesis
class. Given a set S consisted of m iid samples from D, so that

m = O(
1

ε
log

τH(2m)

εδ
)

then ∀ε, δ > 0 and ∀h ∈ H such that errS(h) = 0:

Pr[err
D

(h) < ε] > 1− δ

Remark: this can be strengthened a bit in terms of ε, δ, or altenatively
realizeability can be removed at a cost of additional ε.
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Part II - main idea

The proof reduces the concentration argument to a finite sample.

1 First, we reduce the question of learnability to that of learning a finite
sample.

2 Prove concentration on the finite sample.

Part 1:
Let S, S′ be two i.i.d. samples of size m.

Let A be the event where exists h ∈ H such that errS(h) = 0, but
errD (h) > ε.

Let B be the event where ∃h ∈ H so that errS (h) = 0 and
errS′ (h) > ε/2.

Claim

Pr[A] ≤ 2 Pr[B]
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By law of complete probability:

Pr (B) = Pr (B | A) Pr (A) + Pr
(
B | Ā

)
Pr
(
Ā
)
≥ Pr (B | A) Pr (A)

Therefore it is enough to show that PrS′ (B | A) ≥ 1
2 Define the random

variable Y = 1
m

∑m
i=1 Zi, where Zi is:

Zi =

{
1, Pr(xi,yi)∼D (h (xi) 6= yi)

0, otherwise
.

Notice: 0 ≤ Y ≤ 1, Y = errS′ (h) and also E[Y ] = errD (h) ≥ ε, thus,

Pr (Y < ε/2) ≤ Pr (|Y −E[Y ]| > ε/2) ≤ 2 exp
(
−mε

2

)
where for the last transition we used Chernoff’s inequality (stronger
version) Therefore, by our choice of m

Pr (B | A) = Pr (Y ≥ ε/2) ≥ 1− 2e−
mε
2 ≥ 1

2
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part 2

Recall: S, S′ are two i.i.d. samples of size m.

Let A be the event where exists h ∈ H such that errS(h) = 0, but
errD (h) > ε.

Let B be the event where ∃h ∈ H so that errS (h) = 0 and
errS′ (h) > ε/2.

We’ve shown Pr[A] ≤ 2 Pr[B]. We proceed to bound Pr[B].
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heart of the proof

Claim

Pr[B] = Pr[∃h ∈ H, err
S

(h) = 0, err
S′

(h) >
ε

2
] ≤ τH (2m) 2−

mε
2

Given S = {x1, ..., xm}, S′ = {x′1, ..., x′m}, we define T, T ′ as follows:
∀1 ≤ i ≤ m we assign xj to T and x′j to T ′ with probability 1

2 , and vice

versa w.p. 1
2 . Since S, S′ were sampled iid, the sets T, T ′ are also iid.

Define BT as the event where ∃h ∈ H so that errT (h) = 0, and
errT ′ (h) ≥ ε/2. Therefore:

Pr
S,S′

(B) = Pr
S,S′,T

(BT ) = E
S,S′

Pr
T

[BT |S, S′]
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heart of the proof

The amount of error configurations, given S, S′, h is limited by τH (2m),
so:

Pr
T

[BT |S, S′] = Pr
T

[
∪h∈H err

T
(h) = 0 ∧ err

T ′
(h) >

ε

2
|S, S′

]
≤ |HS∪S′ | max

h,S,S′
Pr
T

[BT |S, S′, h]

≤ τH (2m) max
h,S,S′

Pr
T

[BT |S, S′, h]

Now suppose there are k mistakes for h in the samples S, S′. If
#mistakes = k < mε

2 , then event BT cannot hold, and its probability is
zero. Else, mistakes must occupy disjoint places, and

max
h,S,S′

Pr
T

[BT |S, S′, h] ≤ 2−k ≤ 2−
mε
2

and hence
Pr
T

[BT |S, S′] ≤ τH (2m) · 2−
mε
2
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conclusion

Thus,

Pr[B] =
∑

S,S′ PrT [BT |S, S′] Pr[S, S′]

≤ τH (2m) 2−
mε
2
∑

S,S′ Pr[S, S′]

≤ τH (2m) 2−
mε
2

And we conclude,

Pr[A] ≤ 2 Pr[B] ≤ 2τH (2m) 2−
mε
2 ≤ δ

The last inequality is by our choice of

m = O(
1

ε
log

τH(2m)

δ
)
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conclusion

We have seen:

For d = VC-dim(H), that τH(m) ≤ ( emd )d

For sample size m = O(1ε log τH(2m)
δ ) we have ∀h ∈ H such that

errS(h) = 0 that
Pr[err

D
(h) < ε] > 1− δ

This shows sample complexity bound of (exercise...)

mH(ε, δ) = O(
d

ε
log

d

δε
)

Concluding the positive part of the fundamental theorem of statistical
learning.
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conclusions

Claim

If VC-dim(H) =∞, then H is not learnable

Sketch: for every sample size m, there exists a subset C ⊆ X for which
the ”no free lunch” theorem applies.
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Recap + what’s next

Fundamental theorem of statistical learning exactly characterizes
finite and infinite hypothesis classes that are learnable.

No efficient algorithms (only ERM till now...).

Restricted to statistic model (training set available).

Next:

Efficient algorithms for learning.

Online model.

@ E.H. (Princeton University) Lesson 3 COS 511 25 / 25


