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Prices and the winner's curse 

Jeremy Bulow* 

and 

Paul Klemperer** 

We usually assume that increases in supply, allocation by rationing, and exclusion of potential 
buyers reduce prices. But all these activities raise the expected price in an important set of cases 
when common-value assets are sold. Furthermore, when we make the ass~~mptionsneeded to rule 
out these "anomalies" for symmetric buyers, small asymmetries among the buyers necessarily 
cause the anomalies to reappear: Our results help explain rationing in initial public offerings and 
outcomes of spectrum auctions. We illustrate our results in the "Wallet Game" and in another 
new game we introduce, the "Maximum Game." 

1. Introduction 
"Increases in supply lower prices." "It is never profitable to commit to rationing at a price 

at which there is surely excess demand." "Excluding potential buyers cannot raise prices." 
Although economists from Veblen (1899) to Becker (1991) have shown counterexamples, 

these statements are still often taken almost for granted. However, this article shows why it is 
perfectly reasonable for these statements to be false in auction markets, without any special 
assumptions, and when this is likely to happen. 

To understand our results, it is important to understand how a bidder determines the maximum 
he will be willing to pay for an asset. If a buyer's estimate of an asset's value is affected only by 
his own perceptions and not by the perceptions of others, he should be willing to pay up to his 
valuation. This is the Adam Smith world, where a buyer can easily maximize his utility given any 
set of prices, and a firm can easily maximize its profits. In this sort of "private value" model, the 
statements in the first paragraph are generally true.' 

But in many important markets, others' perceptions are informative. The extreme cases 
are "common-value" assets, or assets all buyers would value equally if they shared the same 
information. Financial assets held by noncontrol investors may be the best example; oil fields are 
commonly cited. Most assets have both a private and a common value element, particularly if 
imperfect substitutes exist. For example, a house's value will have both common and idiosyncratic 
(private) elements. 
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'They are always true for ascending auctions, on wh~chwe focus. Counterexan~plescan be constructed for 
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With common values, buyers may find it prudent to exit an ascending price auction at more 
or less than their pre-auction estimate of the value, so the statements in the first paragraph are 
often false in common-value auctions. 

The reason is the "winner's curse." Buyers must bid more conservatively the more bidders 
there are, because winning implies a greater winner's curse. This effect can rnore than compensate 
for the increase in competition caused by more bidders, so more bidders can lower expected prices. 
Conversely, adding more supply, and/or rationing, creates more winners, so reduces the bad news 
learned by winning, and so may raise bids enough to increase expected prices. This article shows 
when this happens and why it is surprisingly often. 

A good example is provided by the market for initial public offerings (IPOs). Rather than 
being priced to clear the market, many IPOs are made at prices that guarantee excess demand. 
By pricing low enough so that everyone will want to buy, potential shareowners are absolved of 
the winner's curse of being buyers only when they are among the most optimistic investors. This 
allows the pooling price to be quite high and, under quite reasonable conditions, as high or higher 
than the expected price in a standard auction. Our analysis similarly shows why restaurateurs, 
theater owners, and football teams may profitably choose to price at levels that will likely require 
rationing. 

Likewise, in a descending-price (or Dutch) auction, in which the price is lowered continuously 
until a bidder accepts the current price, selling to more bidders can lower the expected price, that 
is, can mean waiting longer on average until someone jumps in to buy. The result is analogous to 
the phenomenon that giving a seminar to a larger audience can yield fewer questions: the more 
listeners, the rnore each one wonders, "If my question is so good, why hasn't someone else asked 
it?'With more bidders, each worries more that "If the price is fair, why hasn't someone else 
bought it?" These effects can dominate both the competitive effect that more competition leads 
(ceteris paribus) to more aggressive behavior, and the direct effect that (even holding individual 
behavior constant) more people results in faster bidding and a faster flow of questions. 

Our results are especially likely in asymmetric "almost-common-value" ascending auctions 
in which some coinpetitors have a small advantage, because the other bidder(s) then face an 
exacerbated winner's curse. Again this point is similar to the observation that the presence of 
a single audience member who is thought to be smarter than her colleagues can significantly 
dampen everyone else's questioning. 

For a more significant application, consider the A and B band spectrum ascending auction 
held in 1994-1995 by the U.S. Federal Communications Commission. Pacific Telesis was the 
natural buyer of the single Los Angeles license available for sale2 and was able to acquire it very 
cheaply. Markets where two licenses were sold generally yielded more competitive prices relative 
to their demographic characteristic^.^ Even where one bidder had an advantage, the prices of both 
licenses were determined by aggressive colnpetition for the second license. So prices were higher, 
even though the third-highest bid set the price in these markets, while the second-highest bid set 
the price in Los ~ n g e l e s . ~  

The recent European "third-generation" mobile-phone license auctions also yielded low 
prices in ascending auctions when the number of clearly advantaged incumbent bidders equalled 
the number of licenses. The license prices were over 100 euros per capita each in the United 

AT&T was ineligible to bid, and PacTel benefited from its name recognition and experience in California, as 
well as its familiarity with the California wireless market In which it was a duopolist before its spinoff of its cellular 
subsidiary, Airtouch. No one knew what PCS licenses were really worth, but it is fair to say that the Los Angeles license 
was worth more to PacTel than to anyone else. 

For example, Chicago yieldcd about $31 per head of population for each of the two licenses, compared with 
less than $26 per head of population for Los Angeles' single license, in spite of Chicago's inferior demographics. (The 
famous long commutes of Angelenos and the area's population density make it a particularly desirable place to own a 
wireless telephone franchise.) The single New York license yielded only $17 per head of population. See Klemperer and 
Pagnozzi (2002). 

In our model, one bidder has a small private-value advantage. Bulow, Huang, and Klemperer (1996) analyze a 
similar almost-common-value model in whlch one bidder has a small ownership advantage and show that in this context, 
too, a small advantage can lead to large profits for the advantaged bidder and to low revenues for the seller. 
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Kingdom, where there were five licenses and just four incumbent bidders, and in Germany, where 
there were six licenses and four incumbents, but they were less than 35 euros per capita in the 
Netherlands, where there were equal numbers (five) of licenses and incumbent^.^ 

Our results for the asymmetric case apply even when the differences between players' actual 
valuations are arbitrarily small. However, we do assume that the advantaged player is much the 
most likely to have the highest actual valuation, so in this sense our asymmetric results do depend 
on a particular firm being clearly advantaged-as in the examples above of the Los Angeles and 
European spectrum license auctions. 

Section 2 sets up a simple model of a standard ascending auction among bidders with 
'.almostn common values.' Section 3 develops the intuition behind our results. Section 4 shows 
when higher prices are associated with selling more units in the symmetric case.8 Section 5 shows 
that the results are dramatically different when bidders are asymmetric: greater supply raises price 
precisely when it does not with symmetric bidders! 

Section 6 shows when rationing, as in IPOs, is an optimal mechanism. Section 7 shows when 
restricting participation in an auction can raise expected revenue^.^ Section 8 considers first-price 
auctions. 

Section 9 extends the model to more bidders and more units, and to more general value func-
tions. In particular, we introduce another natural structure of valuation function, the "Maximum 
Game," which yields extreme "perverse" results, independent of the distribution of bidder types: 
if 11 symmetric bidders have a common value for an object equal to the maximum of their signals, 
then in a pure ascending auction every bidder bids up to his own signal, and the price equals the 
actual second-highest of all n signals. But if the object is simply rationed at a fixed price, every 
bidder (even one with the lowest possible signal) will be willing to pay the expected highest of the 
other n - 1 signals, which is greater in expectation. Other "perverse" results of prices decreasing 
in demand and increasing in supply in the symmetric case are equally easy to obtain. Our main 
model uses an additive value function, as in the "Wallet Game,"Io but the Maximum Game struc-
ture underlies models such as Matthews (1984), Harstad and Bordley (1996), Levin (2001), and 
Parlour and Rajan (2001), which explains why they have obtained some results related to ours." 
Section 10 concludes. 

2. The model 
We use the simplest possible model to make our points: each of three risk-neutral potential 

bidders observes a private signal t, independently and identically distributed according to the 
distribution F ( t , ) ,  i = 1, 2, 3. We assume F ( . )  has a strictly positive continuous finite derivative 

Our formal model does not allow for more than one advantaged bidder, and it is unclear how far our results 
generalize in this direction (see Section 9). But the results of the modcl would probably be reinforced by incorporating 
entry and bidding costs, which werc probably significant in the European auctions, and, of course, our results would be 
reinforced by larger advantages than those we consider. (See Avery (1998), Daniel and Hirshleifer (1995). Hirshleifer 
(1995), and Klemperer (2000) for a general discussion of bidding costs.) 

Klelnperer was the principal auction theorist advising the U.K. government on its auction. Bulow was also an 
advisor. See Binmore and Klemperer (2002) and Klemperer (2002a, 2002b).

'Recent articles that use models similar to ours are Avery and Kagel(1997) and de Frutos and Rosenthal(1998), 
but these works address concerns very different from ours. See also Bikhchandani and Riley (1991). Klemperer (1998) 
and de Frutos and Pechlivanos (2002) build on the current article. 

In our model, the ascending auction always allocates a single object to the highest valuer-see Maskin (1992) 
for more general conditions under which this holds-but does not always allocate multiple objects efficiently. 

Externalities between bidders (see Jehiel and Moldovanu (1996, 2000) and Caillaud and Jehiel (1998)) provide 
a different reason why an auctioneer may want to limit the participation of bidders. In Compte and Jehiel's (forthcoming) 
mixed private/common value setting, bidders have different amounts of information, and adding bidders may hurt revenues. 

'OThe Wallet Game was introduced in Bulow and Klemperer (1997) and Klemperer (1998).

' 'Matthews focuses on first-price auctions and obtains results related to our Section 7. Harstad and Bordley and 
Parlour and Rajan examine rationing mechanisms and obtain results related to our Section 6. All these articles use more 
complex models with affiliation. Levin obtains results similar to our Section 4 results, while Krishna and Morgan (2001) 
obtain results equivalent to the symmetric case of our Section 7. Our article shows why results like ours and theirs can 
arise, and it shows they are surprisingly likely and that affiliation is not important for them. 
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f (.) everywhere on its range, and the lowest possible signal is t > 0, so F(t)  = 0. Conditional on 
all the signals, the expected value, vi, of a unit to i is 

That is, each unit has a common value, v = c ; ~ ~ti, to all the bidders, plus aprivate value, aiti,  to 
each bidder i .  We will focus on two cases, "the symmetric case" in which a1 = a 2  = a 3  = a > 0 
and "the asymmetric case" in which a1 > a 2  = a 3  = a > 0. In the latter case we will refer to 
bidder 1 as the "advantaged" bidder and to bidders 2 and 3 as "disadvantaged" bidders. To make 
our points most starkly and straightforwardly, we consider the case in which the private-value 
components, that is, the ai 's, are all small, and we consider the asymmetric case in which a/al is 
also small; we state our results throughout for the limits in which ai + 0, V,, so vl zz v2 zz v3 zz v 
and, for the asymmetric case, a/al 4 0. Thus the limit of the symmetric game is just the "Wallet 
Game," in our previous terminology.I2 

Since al  is small, bidder 1's private-value "advantage" in the asymmetric case is small. But 
because a/al is also small, bidder 1 is much the most likely to have the highest actual value for 
a unit (and as a/al -+ 0, bidder 1 always has the highest actual value). So bidder 1's advantage 
is not small in this sense. 

No bidder wants more than one unit. We consider two cases: the auctioneer has one unit to 
sell, and the auctioneer has two units to sell. (The number of units is common knowledge.) 

We assume a conventional ascending-bid "English" auction in which the price, p,  starts at 
zero and rises continuously until the number of bidders still willing to pay the current price equals 
the number of units the auctioneer has for sale. Each bidder observes the price at which any other 
bidder drops out, and a bidder who drops out cannot reenter the auction.I3 

Each player's pure strategy specifies the price level up to which he will remain in the 
bidding, as a function of his private signal and of the price (if any) at which any other player quit 
previously. We look for perfect Bayesian equilibria, but we restrict attention to those equilibria in 
which symmetric bidders follow symmetric strategies. We also restrict attention to equilibria in 
which each bidder stays in the bidding just so long as he would be happy to find himself a winner, 
and stops bidding at that price at which he would be just indifferent were he to find himself a 
winner on the assumptions that any opponent(s) who drop out to make him a winner are of their 
lowest possible types assuming they have followed the equilibrium strategies prior to the current 
price.14 Appendix B shows that this yields a unique (perfect Bayesian) equilibrium. 

We write the actual ith-highest signal among all the potential bidders as t(ij, and we write 
the highest and second-highest of two bidders as t(1,2j and t(2.2) respectively. 

We write h(ti) = f (t,)/[l - F(t,)] for i's hazard rate, and we compress notation by writing 
h, for h(t,). Bidder i's marginal r e ~ e n u e ' ~ . ' ~  is defined as 

l 2  A classroom example involves three students, each of whom knows only the amount of money, t,, in his or her 
own wallet. They compete for a prize equal to the combined contents of their wallets, v = t l  + t2 + ts. See Klemperer 
(1998). 

l 3  Auction theorists call this a "Japanese auction." See Bikhchandani and Riley (1993) or the working paper version 
of our article (Bulow and Klemperer, 1997) for a formal description. 

l4  These restrictions both avoid trivialities (although there are other equilibria, they do not seem very natural-see 
Appendix B) and greatly reduce the technical burden: Bikhchandani and Riley (1993) show how cumbersome and lengthy 
is a fully general analysis of even the completely symmetric version of our model. They too make assumptions to obtain 
a unique equilibrium (the same equilibrium as ours, though their model is a special case of ours). 

Is The marginal revenue of bidder i with signal ti is exactly the marginal revenue extracted from the customer who 
is the same fraction of the way down the distribution of potential buyers of a monopolist whose demand is such that ~t has 
q = 1 - F(t i )  customers who have values 2 11 = v,(t,) (i.e., there are F(t,) customers with values less than vi(ti)). 

l6 Bulow and Roberts (1989) first showed how to interpret independent private-value auctions in terms of marginal 
revenues, and Bulow and Kle~nperer (1996) extended their interpretation to more general settings such as this one. This 
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Note that since (we assumed) the a, are all small, MR, = v - ( I l h , )  . 
We write E(t)  and E(v) for the (unconditional) expectations o f t  and v, and E(t  t > z) for 

the expectation of the signal t conditional on its exceeding z ,  etc. Recall that if hazard rates are 
increasing (decreasing), the expected "time" ( t  - z) to arrival of a signal, t ,  conditional on it not 
yet having arrived at time z,is decreasing (increasing) in z ,  that is, 

Lemma 1. E(t - z t 2 z) is increasing (decreasing) in z if the hazard function h is decreasing 
(increasing). 

Proof. See Appendix B. 

3. Intuition 
w This section uses "marginal revenues" to develop the intuition behind our main results, 
recalling from Bulow and Klemperer (1996) that the expectedprice from the auction equals the 
expected marginal revenue of the winning biclder(sj." 

The symmetric case. When bidders are symmetric, the bidder(s) with the highest signal(s) 
win(s) the unit(s). 

Now in a pure private-value auction in which a bidder's value, v;, just equals his own signal, 
t i ,  i 's marginal revenue MR; = v; - l /  hi = ti - l /  hi is increasing in t, under weak assumptions 
that are satisfied by most standard distributions. Thus the standard single-unit auctions that assign 
a single unit to the high-value bidder thereby assign it to the bidder with the highest marginal 
revenue. Since in a two-unit auction one unit goes to the second-highest-value bidder who has a 
lower marginal revenue, it follows that revenue per unit is lower in the two-unit case. 

However, in an (almost) pure common-value auction in which vi = v, = v, so M R i  z 
v - 1/ hi,the bidder with the highest signal has the highest marginal revenue only if hazard rates, 
hi, are increasing in signals. This is a much more stringent condition. The intuition is that with 
private values, when a bidder has a higher signal it affects only his own value and marginal revenue. 
But with common values, when a bidder has a higher signal it also raises the other bidders' values 
and so raises the others' marginal revenues. So it takes a much stronger distributional condition 
to ensure that bidders with higher signals have higher marginal revenues. 

If indeed bidders with higher signals do have higher marginal revenues in the common-value 
case, then the logic is the same as for the private-value case and revenue per unit is lower when 
selling two units than when selling one unit. But if instead bidders with higher signals have 
lower marginal revenues, as will be the case if hazard rates are decreasing in signals, a standard 
auction that sells to the bidder(s) with the highest signal(s) will sell to the lowest-marginal-revenue 
bidder(s). So in this case revenue per unit is higher when selling two units than when selling one 
unit. 

The asymmetric case. The difference in the asymmetric case is that the bidder with the 
highest signal does not necessarily win a standard ascending auction. 

In our case, in which it is common knowledge that bidder 1 is much the most likely to have 
the highest actual value, this bidder is much the most likely to win an ascending auction for a 
single unit. The reason is that the other bidders have greatly exaggerated "winner's curses" from 
beating bidder 1 and so must bid very cautiously, which also reduces 1's "winner's curse." 

interpretation allows the translation of results from monopoly theory into auction theory and so facilitates the analysis of 
auctions and the development of intuition about them. 

l7 The result assumes that a bidder with the lowest possible signal never makes moncy; our asymmetric, multiunit, 
decreasing-hazard-rate case does give expected profits to a bidder with the lowest possible signal, but the required 
correction does not affect our results (see Section 5). Klemperer (1999, Appendix B) gives a simple exposition of the 
result. 
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But with increasing hazard rates, bidder 1 is not much more likely than bidders 2 and 3 to 
win an ascending auction for two units. The reason is that 2 and 3 compete against each other, 
syininetrically, for the second unit and do not face an abnormally large winner's curse in that 
competition. Because the prices of both units will be the same, the more aggressive bidding by 2 
and 3 increases 1's winner's curse, which causes 1 to bid more cautiously and further reduces 2's 
and 3's winner's curses; we will show that when 1's value advantage is small it has only a small 
effect on the equilibrium. 

So when three bidders compete for two units, and hazard rates are increasing, the bidders 
with the two highest signals who also have the two highest marginal revenues (almost) always 
win. But when three bidders compete for a single unit in the asymmetric case, bidder 1, who 
on average only has the average signal and average marginal revenue, (almost) always wins. So 
expected prices are higher when two units are sold. 

The analysis of the decreasing-hazard-rate case is a little more complex (see Section 5),but 
in this case, too, the asymmetric case is the exact reverse of the symmetric case. 

4. The symmetric case 
To develop our results more formally, we begin with the symmetric case in which a, = a 2  = 

a 3  = a > 0 (but a = 0).18 
When three bidders compete for a single object, the lowest bidder, with signal t(3), quits 

when the price reaches the level where he would just be indifferent about winning if both his 
opponents dropped out, that is, at (3 + a)t(3). To see this, observe that conditional on winning 
at price p' = (3 + a ) t l  (and assuming the kind of equilibrium behavior we are looking for), his 
inferred value of the unit equals v' = (1 + a)t(3)+ 2t' and v' > p' H t(3) > t'. So if he were to 
find himself a winner at any price higher than (3 + a)t(3), he would lose money; conversely, he 
would make money if he won at any lower price and so should not quit earlier. So the equilibrium 
is a separating one in which the other bidders can then infer (assuming equilibrium behavior) his 
actual signal, t(3). The next-lowest bidder then quits when the price reaches the point at which 
he would just be indifferent about winning were he the marginal winner, that is, were he tied for 
the highest signal, so he quits at p = t(3)+ (2 + a)q2).19 But v = t(7)+ t(2)+ t(l), SO (since a = 0) 
p = =: - (((I)- t(2))+ E(p)  = E(v) - E(t - t(2) t > t(2)). 

Lemma 2.  When three symmetric bidders compete for one object, the bidder with the highest 
signal wins and (for small a )  the expected price = E(v) - E(t - t(2) t > t(2)). 

Proof. See Appendix B 

If instead, three bidders compete for two objects, the lowest quits in symmetric equilibrium 
at the price at which he would just be indifferent about winning were he the marginal winner, 
that is, were he tied with the second-highest signal. So the actual lowest-signal bidder with 
signal t(3) quits at the value to him if the second-highest-signal bidder has the same signal, (t(3)), 
and the remaining signal equals its expected value given the two lowest signals are t(3), that is, 
E(t I t 2 ti3)). So the lowest-signal bidder quits at p = (1 + a)t(3) + t(3)+ E(t I t > But 
E(v) = E(t(3))+ 2E(t t > t(3)), so E(p)  % E(v) - E(t - ti31 I t > t(3)). 

Lemma 3. When three symmetric bidders compete for two objects, the bidders with the highest 
signals win and (for small a )  the expected price % E(v) - E(t - t(j) 1 t > t(3). 

Proof. See Appendix B. 

la As a i 0, the equilibrium of this case approaches the symmetric equilibrium of the pure common-values model. 

l9 If he were to find himself a winner at any higher price he would lose money, since at price p' = t(3)+ ( 2  + a ) t l  
with t' > t(21,the inferred value of the unit equals t(3)+ (1  +~ t ) t ( ~ )+ t' conditional on winning at price p', and conversely 
he would make money at any lower price and so should not quit before p. 

20 If either of the other bidders were to quit and leave him as a winner at any higher price, p' = (2+oc)t1+E(t 1 t 2 t ' )  
with t' > tc3),he would expect to lose money, since he would then infer a unit's value to be (1 + oc)t(3)+ t' + E ( t  1 t > t ' )  
< p', and conversely he would expect to profit from a victory at any lower price. 
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From Lemmas 2 and 3, selling two units rather than one lowers (raises) the per-unit price 
obtained if E(t  - t(3) I t > t(?)) is greater than (less than) E(t - t(2) / t > t(z)). But for any 
realization of t(3) we know from Lemma 1 that this is true when hazard rates are increasing 
(decreasing). So increasing hazard rates iinply that the expected price is greater with one unit, 
and decreasing hazard rates imply that the expected price is greater with two units. 

Proposition 1. With three symmetric bidders, the expected price per unit is higher when one 
unit is sold than when two units are sold if hazard rates, h, ,  are increasing in the signals, ti. The 
expected price per unit is lower when one unit is sold than when two units are sold if hazard rates 
are decreasing. 

The difference between the prices in the one-unit and two-unit auctions, that is, the difference 
between E(t  -t(2) I t > t(2)) and E(t - t(7) I t > t(7)), is just the difference between the information 
rents of the winning bidders. Since the seller's revenue equals the social surplus less the information 
rent of the bidders, and the social surplus is (almost) independent of the allocation in (almost) 
common-value auctions, a higher information rent implies a lower price. 

It is now easy to find examples in which selling more units raises the expected price. (See 
Example 1 below.) 

Section 3 provided some intuition for our result; the key is that the expected price equals 
the expected marginal revenue of the winner(s), that is, of the highest-signal bidder(s) in the 
symmetric case. So the expected price is decreasing in the number of winners only if lower-signal 
bidders have lower marginal revenues. In a private-value model, the condition for lower-signal 
bidders to have lower marginal revenues is just that a bidder's marginal revenue is downward 
sloping, that is, that a inonopoly firm with demand q = 1- F(p)  has marginal revenue downward 
sloping in its own output.21~22 But with comlnon values, when a bidder has a higher signal it also 
raises the other bidders' values and so raises the others' marginal revenues; the corresponding 
condition in the common-value case is that the same firm's marginal revenue is steeper than its 
demand curve.23 

Equivalently, the firm's marginal revenue must be downward sloping in an opponent's output; 
this is exactly the condition required to guarantee that firm outputs in a quantity-setting oligopoly 
are "strategic substitutes," in the terminology of Bulow, Geanakoplos, and Klemperer (1985a). 
And the assumption of strategic substitutes, while colnmonly made, and perhaps more plausible 
than the converse assumption of strategic complements, is not a reasonable general a s s u ~ n ~ t i o n . ~ "  
Indeed, among the most commonly used demand curves, linear demand (p  = A - Bq ++ q = 
(A - p)/B) yields strategic substitutes, constant elasticity demand ( p  = ~ ~ ' 1 ' 1  = (p/A)o,@ q 
q < -1) yields strategic complements, and logarithmic demand ( p  = A - ( l l h )  log q @ q = 
e-'(p-*), i.e., quantity is exponential in price) yields strategic independence (neither strategic 
substitutes nor strategic complements) for a monopolist facing a small new entrant. 

Corresponding exactly to the oligopoly cases, we have the following example. 

Example 1. With uniformly distributed signals, F( t )  = (t -t)/(t-t),expected price is decreasing 

21 The demand curve q = 1 - F(p)  is just the conventional demand curve that would be created by a very large 
number of buyers with values u;(ti) when the ti are drawn independently from the distribution F(t,).  (Buyers are atomistic 
with total mass 1.) For more discussion of the analogy between a bidder with signal distributed as F(ti) and a market with 
demand curve 1 - F(p) ,  see Bulow and Klemperer (1996). 

22 Note that the expected marginal revenue of the second-highest bidder is always below the expectcd marginal 
revenue of the highest bidder in a private-value model, because the second-highest value both equals the expected marginal 
revenue of the highest bidder and exceeds the actual marginal revenue of the second-highest bidder. 

23 If M R j  = v - 1/ hj(tj),  then the slope of the "demand curve" is av/at j ,  whereas the slope of marginal revenue 
is av/at j  + (ahj /at j ) / (hj( t j ) )2 The latter is greater (less) than the former if h is increasing (decreasing). In the common- 
value auction this determines whether an increase in j ' s  signal increases his marginal revenue relative to i's. In oligopoly 
it determines whether an increase in j ' s  output increases i's marginal revenue and thus i 's output. 

24 See Bulow, Geanakoplos, and Klemperer (1985b) for an example in which a lnonopolist facing a new entrant 
views products as strategic complements in the terminology they introduced. 
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in supply.25 With constant-elasticity distributed signals, F(t)  = 1 - (tit)", expected price is 
increasing in supply.26With exponentially distributed signals, F(t)  = 1 - ep"('-'), expected price 
is independent of supply. 

So,just as in oligopoly, it is an empirical matter whether firms' outputs are strategic substitutes 
or strategic complements, so in symmetric pure common-value auctions it must be an empirical 
matter whether price is increasing or decreasing in supply. 

The next section, however, will show that even small asymmetries can make the relationship 
between supply and price even less predictable. 

5. The asymmetric case 
This section will show that when the result that greater supply lowers expected price holds 

for the perfectly symmetric case, it can fail when there are small asymmetries between the bidders. 
In particular it fails if the item(s) for sale are arbitrarily close to pure common values but one 
bidder, say bidder 1, almost certainly has a (slightly) higher actual value than the others. We 
assume a1 > a2 = a3 = a > 0, but a1 = 0 and ( a / a l  ) E 0. We begin by analyzing bidding 
behavior in more detail. 

Lemnzn 4. When three bidders compete for one object in the asymmetric case (i.e., small ai and 
small a / a l ) ,  the advantaged bidder (almost always) wins and the expected price = E ( v )  E(t  t ) .  

Proot See Appendix B. 

The logic is straightforward. Bidder i quits where he would be just indifferent about finding 
himself a winner, so his marginal type ti quits at price p = ( I  + + t j  + t k ,where t j  and tkare 
his expectations of j 's and k's signals conditional on his winning at this price. That is, t j  is the 
marginal type of bidder j who is just quitting if any type of j is currently quitting,27and similarly 
for tk.Likewise, type t j  of j is in fact just quitting if and only if p = ti+(1 +a,)t j  + tk .So types ti 
and t j  quit simultaneously if and only if (1+ai)ti + t j  +tk = ti+(I + a j ) t j  + tk  ++aiti = a j t j ,  and ti 
quits before (after) tj if and only if atti < (>)a j t j .  So since all > at2 and alt > at3 for almost 
all actual signals t2 and t3 of bidders 2 and 3 for sufficiently large a l l a ,  bidder 1 is almost always 
the winner. If, for example, in fact alt > at2 > atn, then bidder 3 quits first at (1 + a)ts + t3 + t 
(since at this price he knows t2 > t3 SO the current lowest types of bidders 2 and 1that could remain 
are t2= t3 and tl = 0,and bidder 2 quits next at p = (1 +a)tz + t3 +t = t2 + t3 +t = v - (tl - t). 

The intuition is that because bidder 1 (almost always) values the asset the most, bidders 2 
and 3 face enormous winner's curses if bidder 1 ever exits, and they must therefore assume tl = t 
whenever he bids. So they quit at = t2 + t3 + t ,  and bidder 1 almost always wins. 

However, with three bidders competing for two units and increasing hazard rates, bidder 1's 
advantage is almost eliminated and he wins only when he has one of the two highest signals. 

Lernrnn 5. When three bidders compete for two objects, in the asymmetric case (i.e., small ai and 
small a / a l ) ,  (i) if hazard-rates, h i ,  are increasing in signals, the bidders with the highest signals 
(almost always) win and the expected price = E(v) -E(t  - t(3) 1 t > t(3)),and (ii) if hazard-rates 
are decreasing, the advantaged bidder and the disadvantaged bidder with the higher signal win 
and the expected price = E(v) - E(t - t(2,2) I t > t(2,2)). 

Proof. See Appendix B .  

25 For example, if F(t) = t/4 for 4 2 t > 0 (which corresponds probabilistically to a linear demand curve), 
the expected values of the three signals would be 1, 2, and 3. The expected price in a three-for-one auctio~lwould be 
1 + 2 + 2 = 5, and the expected price in a three-for-two auction would be 1+ I + (2 + 3)/2 = 4.5. 

26 For example, if F(t)  = 1- t-2 fort 2 I (which corresponds probabilistically to a demand curve q = I -F(p) = 
p-2, that is, constant elasticity of 2 ) ,  the expected values of the three signals would be 1.2, 1.6, and 3.2. So the expected 
price in a three-for-one auction would be 1.2 + 1.6 + 1.6 = 4.4, and the expected price with three-for-two would be 
1.2+ 1.2 + (1.6 + 3.2)/2 = 4.8. 

27 If j has already quit, then f is j's inferred signal, and if j has not quit but no type of j is quitting, then f i  is j ' s  

lowest possible signal consistent with equilibrium. 

O RAND 2002. 
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To understand Lemma 5, again begin by observing that bidder i quits where he would be just 
indifferent about finding himself a winner. If ti,t j ,  and tkare the lowest possible signals of bidders 
i ,  j ,  and k assuming equilibrium behavior up to the current price, type ti of bidder i has expected 
value ( l+a i ) t i  +tj+E(tk tk > tk)  if j quits now, andexpected value (1 +ai)!; +E(tj  t j  2 t j )+t ,  
if k quits now. So type ti quits at p = (1 + ai ) t i  + t j  + tk+ xjProb(k quits now I j or k quits 
now)+xkProb(j quits now j or k quits now) in which x j  E E(tj  -tj I t j  > t j )  and xi and xk are 
defined similarly. Since a 2  = a3 = a < a l ,  some types of bidders 2 and 3 quit (symmetrically) 
before any type of bidder 1 quits. Now note that for small-enough a and a l ,  the differences 
between alt, and a t2(= a t 3 )  are very small relative to differences between xl and xZ(= x3) 
(except if hazard rates are constant). So if hazard rates are increasing, so xi is decreasing in t i ,  
then if tl were to fall much behind t2(= t3), then xz would become small relative to xl and t, 
would wish to quit at a lower price than t,. So types of bidder 1 would have to quit until t, 
roughly caught up to the value of t2(= t3). Therefore increasing hazard rates require tl = c2 = t3 .  
So bidder i quits at (approximately) (1 + ai)ti + ti + E(tk tk > t j  = ti), just as in symmetric 
equilibrium with symmetric bidders, and the bidder with the lowest signal, t(3), (approximately) 
quits first. So the expected price = E(t(3)+ t(3)+ E(t t > t(3))) M E(u) - E(t - t(3) t > t(3)), 
and we have part (i) of Lemma 5 .  

In words, a bidder exits when the current price equals (P), the private value component of 
the bidder's signal, p l~ i s  (C), the common value to the bidder if all others exited immediately, ylzis 
(X), the expected value in excess of (C) conditional on the auction ending immediately. (C) is 
the same for everyone. With only one unit available for sale (X) is necessarily zero, so the bidder 
with the highest (P) always wins. But with more than one unit available, (X) swamps (P) if hazard 
rates are increasing and the private values are small, so the bidders with the highest signals win. 

The intuition is that even if bidder 1 had a large advantage, bidders 2 and 3 would compete 
against each other for the second unit and would not face an abnormally large winner's curse in 
that competition. So bidders 2 and 3 bid more aggressively than when there is just one unit for 
sale, which forces bidder 1 to pay more and may cause bidder 1 to exit if his signal is low enough, 
which further reduces the other bidders' winner's curses. 

So bidder 1's position is greatly weakened by the sale of the second unit in the "normal" 
increasing-hazard-rates case. When just one unit is for sale, bidder 1 always wins it. But when 
there are two units for sale, he wins barely more often than his opponents do. 

Notice that although this turns out to be good for revenue, there is a (small) efficiency cost 
in that bidder 1 (almost always) has the highest value for a unit. 

On the other hand, if hazard rates are decreasing, xi is increasing in t i ,  so once tl falls 
behind t,(= t3), then xz becomes large relative to xl so tl wishes to quit at a still higher price 
relative to t2 ,  SO (since some types of bidders 2 and 3 start quitting first) no type of bidder 1 
ever quits. As the auction proceeds and more types of bidders 2 and 3 quit, x2 E E(t2 - t2)  
and x3 - E(t3 - t3) increase while xl - E(tl  - t l )  remains unchanged, and thus even the 
lowest type of biddkr 1 expects a larger and larger surplus conditional on winning; the higher 
the bidding goes, the more underpriced bidder 1 thinks the object is. Since bidders 2 and 3 
are symmetric, the bidder with the lower of their two signals loses, so, writing this signal as 
t(2,2), he quits at price y = E(t l )  + (1 + a)t(2.2) + t(2,2). But E(v) = E(tl  + t(1,2)+ t(2,2)), so 
E(p)  = E(v) - E(t - t(2.2) t > t(2,2)), giving us part (ii) of Lemma 5 .  

Lemmas 4 and 5 yield: 

Proposition 2. In the asymmetric case, the expected price per unit is lower when one unit is sold 
than when two units are sold if hazard rates, h i ,  are increasing in the signals, ti. The expected 
price per unit is higher when one unit is sold than when two units are sold if hazard rates are 
decreasing. 

Proof Since t is the lowest possible value o f t ,  we know from Lemma 1 that E(t - t )  is greater 
than (less than) E(t  - t(3) I t > t(3)) and E(t - t(2,2) t > t(2,2)) if hazard rates are increasing 
(decreasing). The proposition then follows directly from Lemmas 4 and 5, Q.E.D. 
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As with the symmetric case, marginal revenues help us understand these results better (see 
Section 3): When a single unit is sold it always goes to bidder 1, so the expected price equals the 
expected marginal revenue of a randomly drawn signal. 

When two units are sold, and hazard rates are increasing, the winners are the bidders with 
the two highest signals, and increasing hazard rates imply that these bidders have the highest 
marginal revenues. So two units sell at a higher per-unit price, on average, than one unit. 

When hazard rates are decreasing, on the other hand, and two units are sold, they are won by 
bidder 1, whose expected marginal revenue is that of a randomly drawn signal, and by the other 
bidder who has the higher of the other signals and the lower of the other marginal revenues. So 
the expected marginal revenue of a winner, and therefore expected price, is lower when two units 
are sold than when just one unit is sold. 

There is a further reason why with decreasing hazard-rates two units yield a lower per-unit 
price than a single unit. Recall that the expected revenue from an auction equals the expected 
marginal revenue of the winner only when any bidder with the lowest feasible signal receives 
no expected surplus (just as the Revenue Equivalence Theorem applies only to auctions where 
bidders with the worst possible signals make no money). If the assumption fails, expected revenue 
is reduced by the sum of the expected profits of the bidders conditional on their having their lowest 
possible signals. In most standard auctions the assumption holds trivially, but our decreasing- 
hazard-rate multiunit asymmetric auction is an exception in which even the lowest type of bidder 
1 always wins and makes positive expected surplus: this type makes zero expected surplus at the 
lowest feasible sale price, and an ever-increasing expected surplus at higher sale prices. So the 
two-unit decreasing-hazard-rate auction is even less profitable relative to any of our other auctions 
that do all satisfy the standard assumption. 

In short, selling more units leads to higher prices when bidders are asymmetric and hazard 
rates are increasing, and when bidders are symmetric and hazard rates are decreasing. 

6. Rationing and initial public offerings 
Selling two half-units yields the same per-unit prices as selling two whole units in our model. 

So rationing each bidder to buy only a half-unit yields a higher expected price than selling a single 
unit in those cases in which increasing supply raises price. The intuition is that creating additional 
winners reduces the winner's curse that any of them faces and so elicits more aggressive bidding 
behavior. By the same logic, the seller can do better still in the decreasing-hazard-rate case by 
simply offering each buyer one-third of a unit at a fixed price or, alternatively, by choosing the 
winner randomly among those prepared to pay the fixed price. 

Proposition 3. Rationing to all three bidders at the fixed price t + 2E(t) = E ( v )  E(t - t )  is the -

optimal n7ay to sell the good when hazard rates are decreasing.28 

Proof. See Appendix B. 

The result that rationing among all bidders is more profitable than raising the price to clear the 
market requires decreasing hazard rates.29 The more general point, however, is that the difference 
between the expected revenues from choosing a price that guarantees an immediate sellout and 
from searching for the best possible price may be small; because searching for a high price may 
reveal some negative information (about where low bidders quit), it can lead to either a higher 
or a lower price than the pooling equilibrium that rationing induces. If the seller is risk averse, it 
may prefer the sure price that rationing guarantees. 

In many finance and oil-lease models, signals are assumed to be distributed log-normally, so 
hazard rates are first increasing and then decreasing. In these cases, with symmetric bidders, the 

2R We are restricting ourselves to mechanisms that always yield a sale. Sometimes a seller can do better in expectation 
by having minimum prices that may lead to no sale. 

29 Rationing is strictly more profitable than raising the price to clear the market in the symmetric case, and/or when 
two units are available. In the asymmetric case, rationing a single unit to all three bidders 1s as profitable in expectation 
as the standard ascending auction (independent of hazard rates). (See Appendix B.) 
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seller does best to gradually raise price to eliminate the buyers with the lowest signals but then 
ration when a high-enough price is reached; Example 2 illustrates. This fits closely with practice 
in IPOs where a range of prices may be explored, but the final price is often fixed at a point where 
excess demand is most likely.30 More mildly stated, it may be surprisingly inexpensive for sellers 
to choose a rationing price in IPOs, making the practice sustainable even if it is not necessarily 
optimal. 

Example 2. With signals distributed according to the standard log-normal distribution (in which 
ln(t) is normally distributed with mean 0 and standard deviation l), symmetric bidders, and one 
unit, it is optimal to run an ascending auction that separates all bidders with signals less than 
t* E .24 and then ration among bidders with signals above t*, if there are any. Thus if no bidder 
has a signal below t *, the price will rise continuously to 3t *, at which point the seller will announce 
a rationing price of t* + 2y* in which y* = E(t I t > t*) w 1.77 (and all three bidders will then 
accept this price). If t(3) < t*, the lowest-signal bidder will quit at 3t(3), and if no further bidder 
quits before price t(3) + 2t*, the good will be rationed at price tc3, + t* + y* (which both remaining 
bidders will then accept). Expected price is 3.414; by contrast, a pure ascending auction (or a 
sealed-bid auction) would yield 3.06. 

With two units, it is again optimal to start with an ascending auction but then to ration at a 
price o f t*  + 2y* if all three bidders have signals above t*. Expected price is 3.41 1, just below the 
expected price in the optimal one-unit mechani~m.~ '  

Similarly, restaurateurs, theater owners, and football teams may raise expected revenue by 
choosing prices that assure excess demand-these examples may closely fit our model, which 
assumes that all customers demand the same number of units. 

7. Restricting the number of bidders 

It is also evident that when increasing supply raises price, so can restricting demand. 
Again the intuition is that reducing the number of bidders reduces each bidder's winner's 

curse. Since in a private-value ascending auction bidders follow the same strategy regardless of 
the number of bidders (they bid up to their true value), it should be no surprise that with common 
values each bidder bids more aggressively when there are fewer of them.32,33 This effect can 
dominate the effect of the winner having a lower signal, on average, when there are fewer bidders. 

As before, it is quickest to see the results using marginal revenues, though we will offer 
proofs using more traditional methods. 

When n symmetric bidders compete for one unit, the expected price equals the expected 
marginal revenue of the winner, which equals the expected marginal revenue of the bidder with 
the highest signal among the n bidders.34 So if hazard rates are decreasing, that is, the bidders 
with the higher signals have the lower marginal revenues, then the expected price is decreasing in 

-

30 This is true even when the final IPO price is set above the initially specified range. For other theor~es of rationing, 
see DeGraba (1995), DeGraba and Mohammed (1999), Denicolh and Garella (1999), Gilbert and Klemperer (2000), and 
the references they cite. 

"Because of the decreasing hazard rates for higher signals, the expected price in a pure ascending auction for two 
units (3.31) exceeds the expected price in a pure ascending auction for one unit. 

32 In the symmetric case, with two bidders, i bids up to 2t, + E(t). With three bidders, i bids up to 2ti + t(3). 

'? Kagel, Levin, and Harstad (1995) noted that bidders bid more aggressively when there are fewer of them in 
sealed second-price auctions, and Matthews (1984) argues that this also typically applies in first-price auctions. Our result 
applies equally to the asymmetric case. 

'4 Any bidder's actual marginal revenue is a function ofall the other active bidders' signals, so it depends on 
1 - 2 .  But with independent signals a bidder's marginal revenue, MRi(t , ,  t,), when i and j are active, equals his expected 
lnacginal revenue conditional on t, and t j ,  E,, {MR,(ti,  t i ,  tk& when an additional bidder k is active. So with two 
bidders and decreasing hazard rates, expected profits are E min(MRl (tl , t2), F ~ 2 ( t l ,  t2)) = E min(E,, {M Rl (tl , tz, t3)), 
Er3{MR2(tl, t2, t3))) L Emin(MRl(t1, t2, t3),MR2(t13 t2, t3)) > Emin(MRi(t1, t2, ti),MRz(ti, t2, t j ) , M & ( t ~ ,  t2, t3)) 
= expected profits when all three bidders are present. 



12 / THE RAND JOURNAL OF ECONOMICS 

n. On the other hand, when bidders are asymmetric and all three bidders are present, bidder 1 is 
the winner and, in expectation, has the marginal revenue of a randomly selected bidder. But when 
only two bidders are selected, the winner will be the bidder with the higher of their two signals 
when bidders 2 and 3 are selected (and the winner will be bidder 1 otherwise). So if marginal 
revenues are higher (lower) for the higher-signal bidders, the expected price will be higher (lower) 
when the number of bidders is arbitrarily restricted to two. That is, the results for the asymmetric 
case are again opposite to those for the symmetric case. 

Proposition 4. In the symmetric case, the expected price when one unit is sold is lower when 
only two bidders are allowed to participate than when all three compete if hazard rates, h,,  are 
increasing in the signals. The price is higher when only two bidders are allowed to participate 
than when all three compete if hazard rates are decreasing. 

In the asymmetric case the opposite results apply. 

Pmof. See Appendix B. 

In sum, restricting the number of bidders allowed to participate is likely to be a profitable 
strategy when bidders are asymmetric if hazard rates are increasing, or when bidders are com- 
pletely symmetric (in what is publicly known about them) but hazard rates are decreasing.35 Our 
model can thus explain strategies such as, for example, a merger-target opening negotiations with 
only a limited number of potential acquirers. 

Of course these results contrast with our earlier work, Bulow and Klemperer (1996), which 
emphasized conditions under which restricting bidding is not merely undesirable for the seller, but 
is even a bad idea for a seller who can gain additional negotiating power by limiting participation. 
The point of this section is that while the conditions specified in our earlier work are very 
natural for private-value auctions with symmetric bidders, they are less compelling for symmetric 
common-value or almost-common-value auctions, and perhaps even unnatural for asymmetric 
almost-common-value auctions. 

8. Sealed-bid auctions 

How are our results affected if the other of the two most common auction forms, that is, a 
sealed-bid or first-price auction, is used?36 

The answer is "hardly at all" when bidders are symmetric, since the highest-signal bidder(s) 
win(s) in any standard auction, so it follows from the Revenue Equivalence Theorem that expected 
revenues are the same in any standard auction.37 So Lemmas 2 and 3 apply in expectation, and 
Proposition 1 applies exactly as before. 

But the outcome of a sealed-bid auction, in stark contrast to that of an ascending auction, is, 
it is believed, almost unaffected by small asymmetries between the bidders.38 Assuming this is 
true, it then follows easily that in the asymmetric case the expected revenue is higher for one unit 
and is the same for two units from a sealed-bid auction than from an ascending auction if bidders' 
hazard rates are increasing, and is lower for one unit and higher for two units from a sealed-bid 
auction than from an ascending auction if hazard rates are decreasing (see Appendix A). In the 
symmetric case, the two auction types are always equally profitable. 

"We are assuming that the participants are chosen randomly when their numbers are restricted. Restricting numbers 
by requiring bidders to pay an entry fee would be very unprofitable, since it would select prccisely those bidders (higher 
signals in the symmetric case, and advantaged bidders in the asymmetric case) that the seller wishes to exclude. 

"In a sealed-bid or first-price auction for two units, bidders simultaneously and independently submit bids. The 
winners are the two high bidders, and each pays his actual bid. 

37 The Revenue Ecluivalence Theorem is due to Myerson (1981) and Riley and Sainuelson (1981). For a simple 
exposition, see Appendix A of Klemperer (1999). 

To our knowledge there is no general theorem proving this, although Avery and Kagel (1997) demonstrate the 
results for a model that is almost a special case of ours, and Bulow, Huang, and Klemperer (1999) prove the result in a 
related context. 
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In sum, without detailed information about the distribution of bidders' signals, it is very hard 
to make any predictions about which of sealed-bid and ascending auctions are more profitable.39 

9. Extensions, and the "Maximum Game" 
More bidders and more units. Extending our results to n > 3 bidders and k units is trivial 

for the symmetric case. As before, whether more or fewer units raises expected price depends on 
whether hazard rates are decreasing or increasing. Appendix A gives more detail and shows that 
with decreasing hazard rates a larger k may yield a significantly higher expected price, even when 
n is very large. It also seems straightforward that the asymmetric case generalizes to more than 
two disadvantaged bidders in the obvious way.40 

General value functions. Both for tractability and to make a clear contrast with the pure 
private-value case, vi = ti, we restricted analysis to value functions that are the sum of bidders' 
signals. However, our "perverse" results in no way depend on this. 

More generally, if i's (almost pure common) value is vi(tl, tz, t3),then i's marginal revenue, 
MRi,  equals vi - (av;/at;) . ( l /h i ) ,  so in the symmetric case, for example, fewer bidders or 
more units raise prices if (avi/ati) .( I /  hi)  is increasing in ti, which can clearly be satisfied either 
because hazard rates hi are (sufficiently) decreasing or  because a vi /ati is (sufficiently) increasing. 

Most of our results hold quite generally if we substitute the condition "the bidders with the 
higher signals have the higher MRs (i.e., ti > t j  MRi > M Rj)" for the condition "hazard rates 
are increasing in the signals," and substitute the condition "the bidders with the higher signals 
have the lower MRs" for the condition "hazard rates are decreasing," th ro~ghou t .~ '  

The Maximum Game. Example 3, which we call the Maximum Game, provides a good 
illustration of how a different choice of value function than the one we used can make it easy to 
obtain extreme "perverse" results. 

Example 3 (the Maxinzziiiz Ganze). Assume bidders' common value equals the rnaxiiiz~~iizof the 
signals, v, = v = max{t,). Then with n bidders competing for one unit in an ascending auction, 
every bidder bids up to his signal, and the price will equal the actual second-highest of the n 
signals. But if one bidder is randomly chosen for a take-it-or-leave-it offer, he will be willing to 
pay at least the expected highest of the n - 1 other signals, which is greater in expectation. 

More generally, with k units, and if only a random rn > k of the n bidders are allowed to 
compete, the expected price is, as we show below, (1 n ~ / n k ) E ( t ( ~ ) ) + ( m / n k ) E ( t ( ~ ) ) .So the more 
units, and the fewer bidders, the higher the expected price. Likewise, a rationing mechanism that 
selects the top l bidders and sells each of them l / t  of the available supply yields an expected 
price of (1 - l / l )E(t( l))+ (l/l)E(t(2)); the best of these mechanisms sets l = n ,  that is, it rations 
the available supply to all n bidders at the highest price (the expected highest of n - 1 signals) at 
which potential buyers will want to buy, while the worst of these mechanisms sets t = 1, that is, 
it is a pure ascending auction. 

The results of the Maximum Game are best understood using marginal revenues. For all 
bidders but the one with the highest signal, avi/ati = 0, so marginal revenue for these bidders 
simply equals the value of the highest bidder, which in expectation is E(t(,)).Furthermore, recall 
that the expected revenue in any auction equals the expected marginal revenue of the winning 
bidder. If a single-unit Maximum Game were conducted as an ascending auction, the bidder with 
the highest signal would win and pay the second-highest signal. So the expected revenue in such 

'9 Klemperer (1998) builds on the first draft of this article, to discuss how auctions of PCS licenses and auctions of 
companies can be designed to capture the benefits that first-price auctions offer. See also Klemperer (2002a, forthcoming). 

40 The results seem less clear-cut if there are multiple units for sale and multiple advantaged bidders. 

41 We conjecture that this applies to Lemma 5 and hence to Propositions 2 and 4, at least for value functions of 
the form vi(tl,t2, t3) = g(t l ,  t2, t3) + at, as well as (more obviously, and for more general almost pure common value 
functions) to Proposition 1. 
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an auction is E(t(2)),and this must therefore be the expected marginal revenue of the bidder with 
the highest So the bidder with the highest signal has the lowest marginal revenue. 

Since the expected price is the expected marginal revenue of the winners, and since the 
highest-signal bidder is always a winner whenever he is allowed to participate and so on average 
wins a fraction (rnlnk) of the units while other bidders win the remaining units, the expected 
sale price is (1 - rn/nk)E(t(l)) + ( r n / n k ) ~ ( t ( ~ ) ) . ~ ~Clearly, it is optimal to minimize the fraction 
of units that will be sold to the highest-signal bidder-so rationing, restricting participation, and 
increasing supply all raise the average sale price. 

The Maximum Game may be a more natural model than our additive model if, for example, 
oil or other mineral rights are being sold. (Conditional on one bidder's test finding substantial oil, 
the results of other tests that find little or no oil may be irrelevant.) 

Several symmetric common-value models whose results are driven by the Maximum Game's 
logic have been analyzed by other authors. In Matthews (1984), the signals are distributed as 
F(t) = (tlv)' (0 > 0, 0 < t < v), so the maximum signal is a sufficient statistic for the true 
value, v. Of course, bidders' signals are affiliated in this model, which complicates matters, and 
Matthews examines sealed-bid auctions, but he finds that expected price is often decreasing in 
the number of bidders, just as in our Maximum Game. 

Harstad and Bordley (1996) examine an example in which bidders have diffuse priors about 
the true value v, and their signals are drawn from a uniform distribution on [v -8,v +$1 (0 > O), 
so the expected value of v conditional on all n fignals is the average of the highest and lowest 
signal-and independent of all the other signals. Because the lowest-signal bidder, as well as the 
highest-signal bidder, therefore has a marginal revenue below the actual value (av, /at, = 112 > 0 
for these bidders), selling to the lowest-signal bidder is inferior to selling to any of the other bidders 
with signals below the highest. And once we eliminate the lowest-signal bidder (e.g.,by raising the 
price until the point at which he quits the auction), the remaining problem is exactly a Maximum 
Game. So, as we would expect, Harstad and Bordley find that profitable selling mechanisms are 
those that avoid selling to the highest- and lowest-signal bidders. Rationing equally to all except 
the lowest-signal bidder is the most profitable mechanism they examine. Again, bidders' signals 
are affiliated, but again the results are driven by the "Maximum Game" structure that is embedded 
within the 

Two other articles subsequent to ours also have the Maximum Game underlying them. Levin 
(2001) emphasizes a model in which a weighted average of the two highest signals is a sufficient 
statistic for the true value, while in Parlour and Rajan (2001) all the signals are drawn from a 
distribution centered on the true value. Since their very rich model neither restricts this distribution 
to be uniform nor restricts priors about the true value to be diffuse, the highest and lowest signals 
are no longer sufficient statistics for the true value. However, exactly as we would expect, they 
find that as the priors become more diffuse and the distribution of the signals conditional on the 
value becomes more uniform (so their model more closely approximates the Maximum Game), 
rationing performs relatively better.45 

Affiliation. Finally, we noted that bidders' signals are affiliated in several other authors' 
models. We conjecture that affiliation makes rationing less likely to be optimal and makes our 
other "perverse" results harder to obtain. Excluding bidders or rationing or adding more winners 
means less information is shared in the auction. This tends to mean lower prices with affiliation 
because of the conservatism that affiliation creates in marginal bidders; see Milgrom and Weber 

42 See Bulow and Klemperer (1996) and Appendix B of Klemperer (1999) for more details. 

4 9 h eresults can, of course, be confirmed directly by noting that the price is set by the actual (k+ 1)st-highest-signal 
participant who quits at his expectation of the maximum signal among the (k + 1) remaining bidders (including himself) 
and the (n -m )  excluded bidders, conditional on the kth-highest-signal remaining bidder having the same signal as he 
does (since he would be indifferent about finding himself a winner at this price). 

44 Of course, in this and other models with affiliated signals, there exist selling mechanisms, albeit implausible 
ones, that exwact bidders' entire surplus (CrCmer and McLean. 1985). 

45 Campbell and Levin (2001) have very recently developed additional results about the Maximum Game 
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(1982, 2000). So the standard intuition that more bidders and fewer winners will lead to higher 
prices will be more likely to hold if signals are affiliated. For example, when rationing to all 
bidders in the Maximum Game, the seller must offer each bidder a take-it-or-leave-it price equal 
to the expected highest of n - 1 signals contingent on the nth signal being the minimum possible. 
With affiliation this could easily be below the unconditional expected second-highest of n signals, 
the expected price in an ascending auction with a single winner. 

10. Conclusion 
Economists' intuition has been developed from the partial equilibrium analysis of fully 

informed buyers and sellers. These agents know the value they place on assets. So in "private-
value" auctions, more buyers raise prices, more quantity implies a lower price, and if demand 
exceeds supply it always makes sense for a seller to try to raise price. 

We have shown that this intuition does not carry over to "common-vali~e"settings such as 
financial markets where buyers have different assessments of assets that would be valued similarly 
by all if they shared their information. 

With symmetric agents, the standard results only occur with a rather strong distributional 
assumption, equivalent to what is needed for strategic substitutes in Cournot competition. When 
this assumption fails, setting a price that guarantees excess demand and rationing, as in IPOs, may 
be more profitable than finding the price that clears the market. Furthermore, restricting entry to 
an auction may increase expected revenues. 

With asymmetric agents the standard results fail under exactly the conditions for which they 
hold under symmetry. This may explain why, in the FCC's initial PCS auction, prices seemed to 
be lower in some regions where a single license was sold, than in markets where two licenses 
were available. 

Appendix A 

This Appendix discusses extensions of the model to more bidders and more units, and to sealed-bid auctions 

More bidders and more units. Generalizing from Lemmas 2 and 3, the expected price in a symmetric common-
value auction in which the true value to the bidders, v, is the sum of the signals of n bidders, and the top k < n bidders 
win, is E(pn) = E(v) - E(t - t(n+l) t 2 t ( ~ + ~ ) ) .Example A1 (which extends Example 1) illustrates that, as for just three 
bidders, whether more or fewer units raises expected price depends on whether hazard rates are decreasing or increasing. 

Example A1. With tz symmetric bidders competing fork units and uniformly distributed signals, F( t)  = (t - t ) / ( i  - t ) ,  
we have E(pk) = E(v) - [ i  - f][(k + 1)/2(tz + I)]. With exponentially distributed signals, F( t)  = 1 - eC"('-'), 
we have E(pk)  = E(v) - I lk .  With constant-elasticity distributed signals, F( t)  = 1 - (t/f)" we have E(pk)  = 

E(v) + [l/(q + l)]E(t(n+l))= E(v) + [l/(q + l)]f nS=k+,jq/ ( jq  + 1). In all three cases the ratio of buyer surplus (i.e., 
expected value minus expected price) with one winner to k winners is independent of n. 

The limit of Example A1 as tz becomes large can be looked at in different ways: In the uniform case, for any k the 
winner's expected surplus goes to zero as n becomes large. In the constant-hazard-rate case, the winner's expected surplus 
is independent of n but does therefore become small both relative to the expectation of v (which is proportional ton)  and 
to the standard deviation in v, which rises with the square root of n .  In the constant-elasticity case, the winner's expected 
surplus rises as n increases but becomes small relative to the expected value of v. Relative to the standard deviation in v, 
however, the expected surplus becomes larger (smaller) with n depending on whether the absolute value of 7 is smaller 
(larger) than two. 

The conclusion, then, is that for the "normal" case of increasing or constant hazard rates, k becomes irrelevant 
as n grows because buyer surplus becomes relatively small-and hence expected price approximates value-under all 
mechanisms. But in the "abnormal" case of decreasing hazard rates, a larger k may still yield a significantly lower buyer 
surplus, and hence also a significantly higher expected price, even when n becomes large. 

Comparison of sealed-bid and ascending auctions. In the asymmetric case, when one unit is sold, the ascending 
auction yields -- t+2E(t)  = E(v)- E(t -t) in expectation (Lemma4).The sealed-bid auction yields -- E(v)- E(t - t(2) I 
t 2 t(2))in expectation-we assume the conjecture in Section 8 that the expected revenue from the sealed-bid auction 
is almost unaffected by the small asymmetries between the bidders and so is almost Revenue Equivalent to the situation 
in Lemma 2. Applying Lemma 1, the ascending auction then yields less (more) expected revenue when hazard rates are 
increasing (decreasing). 
O RAND 2002. 
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When two units are sold in a sealed-bid auction, expected price -- E(u) - E(t - t(3) t ) qsI) in expectation, 
assuming approximate Revenue Equivalence to the situation in Lemma 3. The ascending auction yields the same in 
expectation if hazard rates are increasing, but -- E(u) - E( t  - t(2.2) t ) t(2.2)) in expectation if hazard rates are 
decreasing (Lemma 5). But with decreasing hazard rates. E(t - t(2.2) t > t(2,2))> E(t - t(3) I t ) t(3)),since for any 
random three signals t(2,2) > t(3).Therefore expected revenue is less in the ascending auction when there are two units 
and decreasing hazard rates. 

(Thinking about marginal revenues is the quickest way to see the result for the one-unit case, since the sealed-bid and 
ascending auctions yield the expected marginal revenue of the highest-signal bidder and the average bidder, respectively. 
For the two-unit, decreasing-hazard-rate case, however, marginal revenue calculations are trickier, since this is the special 
case in which the ascending auction gives positive expected surplus to the lowest type of bidder 1 (see Section 51, so the 
expected revenue from the ascending auction is the sum of the expected marginal revenues of the winning bidders minus 
this expected surplus.) 

Appendix B 

Proofs of Propositions 3 4  and Lemmas 1-5 follow. 

Proof of Proposition 3. For any allocation mechanism, let P,(ti) be the probability that i will receive the object, in 
equilibrium, and let Si(ti)be the equilibrium expected surplus to bidder i .  Incentive compatibility requires that S,(t, +dt,) > 
Si(ti)+(l+ai)dt,P, (ti) (since vi is (l+ai)dti higher for type t, +dti than for type t, ,independent of the other bidders' signals). 
Likewise Si(ti) 2 Si(ti+dt i)  - (1+a,)clti P,(t, +dt i ) ,  so (1 +ai)Pi( t i+clt,) 2 [S,(ti +elti) - S,(ti)]/clt, > (1 +a,)Pi(t,).  

So Pi(ti) must be a (weakly) increasing function. 
Also S,( t i )has derivative (1 + ai)Pi(ti). so 

and 

N 

= $it? + / (1 - F(ti))(l +a~?Pi( t i?dt j  (integrating by parts) 

= Si(t) + EriI - ( l  + a , )P i(t;))
hi(t0 

Now expected seller profits are the expected value of the good to the winning bidder less the expected surplus of the 
bidders. Since the value of the good to the winner is the same for all mechanisms (ignoring the a i ) ,  profits are maximized 
by minimizing the bidder's surplus. But ( l /hi( t i ) )  is increasing when hazard rates are decreasing, so since Pi(ti) is 
required to be increasing, c:=~E,, [ ( l l  hi(ti))(l +ai)P, (t,)] is minimized (ignoring the a i )  among all schemes that always 

sell (i.e., have c;=~Pi(ti) = 1) by choosing Pi(ti) = constant, for all i .  And selling at price f + 2E(t) yields Si(t) = 0 
(individual rationality implies Si(ti) 2 0 for all ti). So rationing equally to all three bidders at price + 2E(t) maximizes 
the seller's expected profits. Q.E.D. 

(The expected profit from rationing is E( t  + 2E(t)) = E(v) - E(t - t),  which exceeds the expected profits from a 
standard auction to clear the market of either one unit (apply Lemma 1 to Lemmas 2 and 4) or two units (apply Lemma 
1 to Lemmas 3 and 5). In the asymmetric, two-unit, decreasing-hazard-rate case, rationing yields the same profits as the 
ascending auction.) 

Proof of Proposition 4. In the symmetric case, with three bidders the expected price zz u - E(t - t(2) t 2 t(2)),by 
Lemma 2. When only two bidders, say i and j ,  are permitted to participate, the loser, say bidder i ,  quits at the point 
at which he would just be indifferent about winning conditional on being tied with bidder j ,  that is, 2ti + E(tk), SO the 
expected price zz E(u) - E(t - t(2,2) t 2 t(2.2)).Since t(2) is the second-highest of three signals while t(2.2) is the 
lower of two signals, then for any set of three signals, t(2) 2 t(2.2).SOthe symmetric case of the proposition follows from 
Lemma 1. 

In the asymmetric case, with three bidders the price -- 2 + t2 + t3 and the expected price -- E(v) - E(t - !)-see 
Lemma 4. Likewise, if bidder 2 is excluded, the price -- t+ t3 + E(t2) and the expected price -- E(u) - E(t - I ) .  
Similarly, if bidder 3 is excluded, the expected price -- E(u) - E(t - t).  But if bidder 1 is excluded and bidder i loses, 
then the price = 2t, + E(tl),  so the expected price -- E(v) - E(t - t(2.2) I t 2 t(2.21)(as for the symmetric case). But 
E(t - t )  P ( i ) E ( t  - t(2,2) t 2 t (2 ,~))if hazard rates are increasing (decreasing) by Lemma 1, so the asymmetric case 
of the proposition follows. Q.E.D. 

ProofofLemma1. E(t-z I t > z)= [1/(1-F(z))] ,/r0tf (t)dt-i = ~ q m ( l - ~ ( t ) ) / ( l - ~ ( z ) ) d t(integratingby partswith 

u = t ,  du = dt ,  u = -(1 - F(t)), du = f (t)dt). But 1 - F(t)  = e-l; "(")"' (the probability that a signal exceeds t equals 

1 discounted by all the hazard rates between t and t). So E(t - z I t ) z )  = ,/:Neel: "(")"dt = LCO e l ;  ii(x'z-i)d.'
"i 

dt .  
This final formula is clearly increasing (decreasing) in z if h is a decreasing (increasing) function. Q.E.D. 
O RAND 2002. 
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Plaof of Lemmas 2-5. At a given price p and for a given history (i.e., the first quitter's quit price if there has been a quit), 
we write ti for the lowest (or infimum), i.e., marginal, type of bidder i remaining in equilibrium, or we write t, for bidder 
i's expected signal if he has already exited, and write wi = (1 + a , ) ~ ,+ cj + t k .  Write x, = E(ti - t, t, 2 t i ) .  (Thus 
t,, w,, and x, are all functions of p and the history, but we will not usually write this dependence explicitly.) It will be 
convenient to write x_ = E(ti - t ) .  

Analysis of the one-unit auction. We are looking for an equilibrium in which i stays in the bidding if and only if 
p iw, . Now uici > a;tj + wi > w j  + type ti of i cannot quit if type t,, of j remains in the bidding. So types t, of 
i and t,j of j quit simultaneously if and only if aiti = a, t,,. So if ul  2 a 2  = ug = U,bidders i = 2, 3 quit according to 
t, = t3 ,with ti quitting at price p = ~ + ( 1+u)ti +ti for p < (1 + u l ) ~ + ( a l/a)c+(al  /a)f,  and if bidder i quits in this range, 
then type t j  of the other of these two bidders quits at price p = L + L ~+(1 +u) t j  for p < (1 + a l ) t + t ,  + (a l / a ) t ,  and beyond 
this price bidder j and bidder 1 both quit according to altl = atj and p = (1 + u l ) t l  + t i  + ( a l / a ) t l  = t l  + t ,  + (1 +a)Lj 
( j  = 2, 3; j ji).(Bidders 1 and j infer i 's actual signal t, from the price at which he quit.) 

No type of bidder 1 quits until p = (1 +a l ) t l  + t2+t3 .  If neither of the other bidders quits before this price (so then 
p = (1 + a l )c  + ( a l / a ) t  + ( a l / a ) t  and alt = at2= at3) ,  then all three bidders quit according to t2= t3= ( a l/u ) t l  (and 
p = wl = w2 = w3)thereafter, and after one bidder has quit the remaining bidders e and rn quit according to a& = a,,,t,,, 
and 17 = wi = w,, . It is straightforward that this is a (perfect Bayesian) equilibrium and is unique under our assumptions. 

Thus if ul  = a 2  = u3 = a ,  the final price is (I + a)t(,) + t(2) + tc3) x 2 t ~ )+ t(3) for small u .  If ul > a! = a3 = 

a ,  then as (:) - 0 the probability of bidder 1 winning approaches one, so the final price is (almost always) 

t + t2 + t j  + a max(t2, t3) x t + t2 + tj. This proves Lemmas 2 and 4. 

3 Analysis of the two-unit auction. We look for an equilibrium in which a bidder quits when he would be just 
indifferent were he to find himself a winner. In such an equilibrium let Hi@) he the hazard rate with which i quits at price 
p, that is,"6 

So type ti of i quits when 

that is, the price equals i's expected value conditional on winning, since, in this case, with probability [H,/(H, + Hk)] it 
is j who has quit so ti = ti and E(tk) = f k  + xk. 

We begin with the asymmetric case. Let a1 > a 2  = a3 = u .  

Increasing hazard rates. Begin with the standard case in which the hazard rate, f (ti)/(l - F(ti)), is increasing in 
ti, so xi is decreasing in t i .  No one quits until p = (3 + u) t  + x_, at which price the lowest types of bidders 2 and 3 quit. 
Since 2 and 3 behave symmetrically, t2= t3 ,  and p = 1+ (2 + a)i2 + x_ until a l t  + x2 = at, + L, at which price, say p ,  
bidder 1 is also just indifferent about finding himself a winner. For types of all three bidders to be quitting simultaneous^, 
we require 

so using the symmetry of bidders 2 and 3 yields 

in which 1zi(ci) r ,f(ii)/(l  - F(ti)) (i.e., as defined in Section 2). Since h i@,)is finite everywhere, this yields tl as a 
continuous upward-sloping function of f2, that is, cc > d t l / d t 2  ) 0 everywhere, and t2 > t l ,  xl > x2, and altl > a t 2  

46 More precisely, the equilibrium functions i,(p)are defined by the equilibrium hazard rates Hi (p), since otherwise 
t:(.) might not be defined by ti(.).  The condition that a bidder quits when he is just indifferent about winning ensures that 
Hi(p) is finite, that is, ti(p) is single-valued and continuous. 
O RAND 2002. 
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everywhere. (As ( e l f l  - a t 2 )  - 0, d i l /d f2  - cx, + a l f l  > at2everywhere. As (xl - x2) - (cult1 - a f 2 )  -+ 0, 
d f l /d t2  - 0 so also dxl/clc2 - 0 while dx2/dt2 i0, + (xl - x2) - (a1f1 - a t 2 )  > 0 everywhere when f l  > f .  So 
also oo > d t l  /df2 > 0 when tl > t .) 

Does the (unique) solution to this differential equation define a (perfect Bayesian) Nash equilibrium? To see that 
it does, first note that having f ,  as a function of t2(uniquely) defines t l ( p )  and f2(p)  using p = (1 + u l ) f l  + 2t2 + x2 
(since f1 and c2 + x2 and hence p are all continuous and upward-sloping functions of t 2 )  Now assume bidders 2 and 3 
bid according to f2(p)  (and f3(p) = f2 (p) )  Then type tl of bidder 1's profits from finding himself a winner at price p are 
p - ((1 + ul)tl + 2t2 + x2) = (1 + a l ) ( t l  - t l ) ,  and we have shown f l  is continuous and increasing in p for p 2 j ,  (i.e., 
where 2, > f), so type tl's uniquely optimal strategy is to quit at tl = f ,  . Similarly, assume bidders I and 3 bid according 
to t l (p)and f2(p),respectively. Then type t2 of bidder 2's profits from finding himself a winner at price p are 

and f2 is continuous and increasing in p (for p 2 p from our analysis of the differential equation, and for 
p E ((3 + a)f  + g ,  11) from our earlier argument). So type t2 quits at t2 = t2 .  Thus our equations define a (perfect 
Bayesian) Nash equilibrium. (If there is an upper bound, 7,on ti, then above the price where t2= f 3  = 7, we can continue 
to define 1's strategy according to p = (1 + a ) f l  + 7 + i+ 0.) 

Finally, it is easy to check that there are no other candidate equilibria in the increasing-hazard-rate case. At any price 
after p (at which price-

is first satisfied), it yields a straightforward contradiction for there to be no types of 1 quitting, or no types of 2 and 3 
quitting, or no types of any of 1, 2, and 3 quitting, as the price rises.47 

So the equilibrium we have found is unique under our assumptions. Finally, note from the differential equation that 
xl - x2 is of order altl - a f 2 .  (h2/ hl > 1, SO d f l /d f2  > ((XI - x2)/(alf l  - ac2)) - 1, SO x1 - x:, cannot become 
much larger than a l f l  - at2without d f l /d f2  becoming large and so reducing xl - x2.) So as a1 + 0, xl + x2 and so 
c2 - el along the equilibrium path?8 So the winners are almost always the bidders with the higher signals, and the price 
is almost always set by the bidder with the lowest signal, t(3),who quits at = (1 + a)t(3) + t(3) + E(t t > t(3)). 

Decreasing hazard rates. As in the increasing-hazard-rate case, no one quits until p = (3 + a ) f  + x ,  at which price 
the lowest types of bidders 2 and 3 start quitting symmetrically according to f2  = f3 and p = f + (2 + a)c2 +g .  Now with 
decreasing hazard rates, as f2 increases so does x2, so if, as we assume,a is small, (1 +a l ) f+2 t2+x2 > t+ (2+a) t2+x_ = p 
for all c2. That is, for bidder 1 to never quit while bidders 2 and 3 quit symmetrically satisfies the first-order conditions 
for equilibrium everywhere. It is straightforward that this also defines a (perfect Bayesian) Nash equilibrium: if bidders 
2 and 3 bid according to c2(p), no types of player 1 ever wish to quit. If no type of bidder 1 ever quits, while bidder 
3 bids according to c2(p), then the expected profits of type t2 of bidder 2 if he finds himself a winner at price p are 
p - ((1 + u)t2 + f + f2  + x) = (1 + a)(f2 - t2), which is contilluous and increasing in p ,  so t2 optimally quits at q = c2. 

Are there any other equilibria in the decreasing-hazard-rate case? Clearly, as the price rises with p = t + (2 +a) t2+ g  
there is no point at which some types of 1 start quitting. (Their expected values from being a winner always exceed the 
price.) However, we need to consider the possibility that at some price at or above (3 + u) t  + g ,  no types of any players 
are quitting. This would require beliefs that conditional on the out-of-equilibrium event that player 2 does find himself a 
winner, he believes that player 3 quit with probability 5 A, where p = f + (2 + u)f2 + h g  + (1 - h)x2. 

Note that as p rises, h falls, since x2 > x .  So no types of players 2 and 3 can ever start quitting again unless types of 
player 1 also do, since if the marginal types of 2 and 3 (but not 1) quit, their expected value conditional on being a winner 
is t + (2 + a)f2 + X_ - p = (1 - A)(& - x2) i0, SO an atom of types of 2 and 3 wishes to quit, so (almost) all of these 
types lose money conditional on winning, which is a contradiction. 

Now one possibility is a l f  > uf2, so no types of player 1 would ever quit, since their expected values from being a 
winner exceed (1 +a l ) f  +2f2 +x2 > f + (2 +a)f2 +h g  + (1 - h)x2 = p ,  Vh E [O, I]. In this case we have a contradiction 
at the price that yields h = 0 (this price is reached with positive probability-as are all prices-since the hazard rate is 
decreasing): The price cannot rise above this price without at least the marginal types of 2 wishing to quit, so an atom 

j7If 2 and 3 alone stop quitting, their marginal types would earn (f ,  + f2  + f3) + a2f2 + x2 - p ,  i.e., strictly lose 
money in expectation, if they found themselves winners; if 1 alone stops quitting, the marginal types of 2 and 3 would 
earn (el + f2  + f3) + a2f2 + xl - p by winning and so would also stop quitting; if all stopped quitting, 1 would earn 

( t l  + f 2  + f3) + a l f l  + x2 - p ,  so 1 would instead continue to quit. 
4%ore precisely, YE, VK, 3 8s.t. {al < S +I f2 - f l  iE Y f2  < K}. TOsee this, let mino5,,sK{-x~(ti)} = 

@ > 0 (this minimum exists because -xj(ti) = 1 - xi(t,)(hi(ti))and fi(t,) and hence -xj(ti) is continuous, and @ > 0 
because xi(ti) < l /h i ( t , )  follows from the increasing hazard rate). So xl - x2 > @(f2- t , ) .  So if S i@&/4K,then 
(f2 - t l )  > &/2+ dfl/clf2 > [ @ ( ~ / 2 ) / ( @ ~ / 4 ) ]- I = 1 + f2  - f1  can never increase above &/2. 
O RAND 2002. 
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of types 2 and 3 wishes to quit (as above), so (almost) all of these lose money conditional on winning, which is a 
contradiction. 

Another possibility is alt = a t 2  In this case the marginal types of 1 also wish to quit at h = 0. But the 
price cannot then rise higher without any types of 2 and 3 quitting, since 1's marginal condition would imply 
p = (1 + ul)c1 + 2t2 + x2 > tl  + (2 + a)c2 + x2, which implies that types of 2 and 3 must quit, but for any (actual) 
relative probability h = Hj/(H1 + H3) with which player 2 believes that another player who quits is player 3, player 2's 
expected value from winning is tl + (2 + a) t2  + Axl + (1 - h)x2 < p ,  SO an atom of types of 2 and 3 must quit, which is 
a contradiction, as before. 

Finally, we may have alt < at2at the price at which types of 2 and 3 stop quitting. In this case types of player 1 
start quitting at price p = (1 + a l ) f  + 2t2 + x2 = t + (2 + a) t2  + hx  + (1 - h)x2 for some h E (0, 1). At this price the 
marginal types of players 2 and 3 must also start quitting at hazard rates such that h = H2/(H1 + H2) (= H3/(HI + Hj)). 
(If not, the marginal types of players 2 and 3 would either be strictly losing or strictly making money (in expectation) 
conditional on winning. Both are contradictions, the latter because the types just below the current marginal types of 2 
and 3 would not have been willing to quit earlier where their first-order conditions were satisfied.) 

Now where types of 1 start quitting, we have tl = t i(a /a l ) t2  and x:, > X I ,so when al is small we require 
h small, that is, HI /H2 large, hence dtl/clc2 is large. So alt, - ut2 + 0 and a l f ,  = at2 is achieved for finite t2. 
(Until this point t l  and t2must just be following the differential equation determined by p = (1 + a l ) t l  + 2t2 + x2 = 
el + (2 + a)f2 + [H2/(H1 + H2)]x1 + [Hl/(H1 + H2)]x2, that is, the same differential equation as in the increasing-
hazard-rate case.) But at u l t l  = a t 2 ,  and hence H2/(HI + Hz) = 0, we have the same contradiction that we had with 
ale = at2 and h = 0. (Any finite rate of quitting of player 2 would imply that all types close to t2 strictly wished 
to quit, which is a contradiction, but if no types of player 2 quit as the price, and hence t l ,  rises, then we will have 
p = (1 + a l ) t l  + 2c2 + xx:, > e l  + (2 + a) t2  + x2, which is also a contradiction.) 

So the equilibrium we found, in which player 1 never quits while players 2 and 3 quit symmetrically according to 
c2 = t3and p = t + (2 + a)t2 + X, is the unique (perfect Bayesian) Nash equilibrium satisfying our assumptions, and the 
final price is t + + (2 + a )  min(t2, t3) = E(t) + (2 +u) min(t2, t3) = E(t) +2 min(t2, t3), in which t2 and t3 are the actual 
signals of bidders 2 and 3. 

The symmetric case. When a1 = 012 = a3 = a ,  it is straightforward that it is a (perfect Bayesian) equilibrium for 
bidders to quit according to t l  = t2 = c3 and p = (3 + a ) t l  + x l ,  and that this is the unique equilibrium satisfying our 
assumptions. In this case the final price is (3 + a)t(3) + x(3) % 2q3) + E(t t 2 t(j)). Thus we have proved Lemmas 3 
and 5. 

Other equilibria. Note that there are other equilibria of the ascending auction that do not satisfy the additional 
assumptions we imposed in Section 2. In particular: 

(i) When three bidders compete for a single unit, and player 2 or 3 receives a signal sufficiently low (a2t2 iu l t  
or a3t3 < a l t )  that he knows he will surely lose to player 1, different equilibria can be constructed by making different 
assumptions about how far he bids up the price in such a case (however, assumptions different from ours would not 
importantly affect our results). 

(ii) When three bidders compete for a single unit, the chance of both opponents quitting at any point is of second 
order, so equilibria can be constructed in which a player may bid beyond the point where he would wish to win but then 
drop out immediately when another player does. (Allowing equilibria of these kinds would not affect any of our results, 
assuming symmetric players behave symmetrically; note also that these equilibria would not survive if bids increased in 
discrete jumps so that there was generally positive probability of both opponents quitting simultaneously.) 

(iii) Even when just two players i and j compete for a single unit, it is an equilibrium for i to quit immediately 
while j never quits. (With unbounded supports of the signals, this is a perfect Bayesian Nash equilibrium supported by j 
believing that if he were to observe the out-of-equilibrium behavior that i stays in to price p, then i's signal is at least p ;  
such equilibria can be ruled out by having a largest possible signal, or by insisting each player bids up at least as far as his 
minimum possible value given his own information.) Obviously these kinds of equilibria also arise when three bidders 
compete for either one or two units. 

(iv) When three bidders compete for two units, it seems possible to construct equilibria in which symmetric bidders 
behave asymmetrically; beyond a certain price just one bidder is quitting, so there is no restriction on this bidder's beliefs 
about who has quit conditional on the out-of-equilibrium event that he finds himself a winner, and the careful choice of 
beliefs may support an equilibrium. 

(v) When three players compete for two units and hazard rates are decreasing, equilibria can be constructed in which 
the first-order conditions fail because a player initially expects to lose money conditional on winning, but he expects to 
make up these losses (in expectation) if the bidding continues for a while. These equilibria also seem particularly unnatural 
because they require symmetric players to behave asymmetrically. 
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