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Introduction

People like drawings better than equations

– A graphical model is a diagram representing

certain aspects of the algebraic structure

of a probabilistic model.

Purposes

– Visualize the structure of a model.

– Investigate conditional independence properties.

– Some computations are more easily expressed on a graph

than written as equations with complicated subscripts.
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Summary

Summary
I. Directed graphical models

II. Undirected graphical models
III. Inference in graphical models

More

– David Blei runs a complete course on graphical models.
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I. Directed graphical models

“Bayesian Networks”
(Pearl 1988)
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A pattern for independence assumptions

Probability distribution

P (x1, x2, x3, x4)

Bayesian chain theorem

P (x1, x2, x3, x4) = P (x1)P (x2|x1)P (x3|x1, x2)P (x4|x1, x2, x3)

Independence assumptions

P (x1, x2, x3, x4) = P (x1)P (x2|x1)P (x3|x1, x2)P (x4|x1, x2, x3)

= P (x1)P (x2|x1)P (x3|x1)P (x4|x1, x2)
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Graphical representation

Bayesian chain theorem

P (x1, x2, x3, x4) = P (x1)P (x2|x1)P (x3|x1, x2)P (x4|x1, x2, x3)

Directed acyclic graph

�� ��

��

��

Arrows do not represent causality!
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Graphical representation

Independence assumptions

P (x1, x2, x3, x4) = P (x1)P (x2|x1)P (x3|x1, x2)P (x4|x1, x2, x3)

= P (x1)P (x2|x1)P (x3|x1)P (x4|x1, x2)

�� ��
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��

Missing links represent independence assumptions
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A more complicated example

P (x1)P (x2)P (x3)P (x4|x1, x2)P (x5|x1, x2, x3)P (x6|x4)P (x7|x4, x5)
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�� ��

����

Parametrization
The graph says nothing about the parametric form of the probabilities.
– Discrete distributions
– Continuous distributions
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Discrete distributions

Input x = (x1, x2 . . . xd ) ∈ {0, 1}d.
Class y ∈ {A1, . . . , Ak}.

General generative model

P (x, y) = P (y)P (x|y)

� �

– k parameters for P (y)

– k 2d parameters for P (x|y)

Näıve Bayes model

P (x, y) = P (y)P (x1|y) . . . P (xd|y)

��

���

��

– k parameters for P (y)

– k d parameters for P (x|y)
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Discrete distributions

Näıve Bayes model

P (x, y) = P (y)P (x1|y) . . . P (xd|y)

��
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��

ŷ(x) = arg max
y

P (x, y)

Linear discriminant model

P (x, y) = P (x)P (y|x)

� �

ŷ(x) = arg max
y

P (x, y)

= arg max
y

P (y|x)

– k parameters for P (y).

– k d parameters for P (x|y).

Fails when the xi are correlated !

– k(d + 1) parameters for P (y|x).

– 2d unused parameters for P (x).

Works when the xi are correlated !
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Continuous distributions

Linear regression

– Input x = (x1, x2 . . . xd ) ∈ Rd.
– Output y ∈ R.

P (x, y) = P (y|x)P (x)

� �

P (y|x) ∝ exp

(
− 1

2σ2

(
y −w>x

)2
)

No need to model P (x).
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Bayesian regression

Consider a dataset D = { (x1, y1), . . . , (xn, yn) }.

P (D,w) = P (w)P (D|w) = P (w)

n∏
i=1

P (yi|xi,w)P (xi)

�� �� �

�������

Plates represent repeated subgraphs.

Although the parameter w is explicit,

other details about the distributions are not.
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Hidden Markov Models

P (x1 . . . xT , s1 . . . sT ) = P (s1)P (x1|s1)P (s2|s1)P (x2|s2) . . . P (sT |sT−1)P (xT |sT )

��

��

��

��

��

��
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��

What is the relation between this graph and that graph?

� �

���
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Conditional independence patterns (1)

Tail-to-tail

�

�

� �

�

�

P (a, b, c) = P (a|c)P (b|c)P (c)

P (a, b) =
∑
c

P (a|c)P (b|c)P (c)

6= P (a)P (b) in general

P (a, b, c) = P (a|c)P (b|c)P (c)

P (a, b|c) = P (a, b, c)/P (c)

= P (a|c)P (b|c)

a ⊥6⊥ b | ∅ a ⊥⊥ b | c
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Conditional independence patterns (2)

Head-to-tail

� � � � � �

P (a, b, c) = P (a)P (c|a)P (b|c)

P (a, b) =
∑
c

P (a)P (c|a)P (b|c)

= P (a)
∑
c

P (b, c|a)

= P (a)P (b|a)

6= P (a)P (b) in general

P (a, b, c) = P (a)P (c|a)P (b|c)
= P (a, c)P (b|c)

P (a, b|c) = P (a, b, c)/P (c)

= P (a|c)P (b|c)

a ⊥6⊥ b | ∅ a ⊥⊥ b | c
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Conditional independence patterns (3)

Head-to-head

�

�

� �

�

�

P (a, b, c) = P (a)P (b)P (c|a, b)

P (a, b) =
∑
c

P (a)P (b)P (c|a, b)

= P (a)P (b)
∑
c

P (c|a, b))

= P (a)P (b)

P (a, b, c) = P (a)P (b)P (c|a, b)

P (a, b|c) 6= P (a|c)P (b|c) in general

Example:

c =“the house is shaking”

a =“there is an earthquake”

b =“a truck hits the house”

a ⊥⊥ b | ∅ a ⊥6⊥ b | c

Léon Bottou 16/37 COS 424 – 4/15/2010



D-separation

Problem

– Consider three disjoint sets of nodes: A, B, C.

– When do we have A ⊥⊥ B | C ?

Definition

A and B are d-separated by C if all paths from a ∈ A to b ∈ B
– contain a head-to-tail or tail-to-tail node c ∈ C, or

– contain a head-to-head node c such that neither c

nor any of its descendants belongs to C.

Theorem

A and B are d-separated by C ⇐⇒ A ⊥⊥ B | C
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II. Undirected graphical models

“Markov Random Fields”
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Another independence assumption pattern

Boltzmann distribution

P (x) =
1

Z
exp
(
− E(x)

)
with Z =

∑
x

exp
(
− E(x)

)
– The function E(x) is called energy function.

– The quantity Z is called the partition function.

Markov Random Field

– Let {xC} be a family of subsets of the variables x.

– The distribution P (x) is a Markov Random Field with cliques {xC} if

there are functions EC(xC) such that E(x) =
∑
C

EC(xC).

Equivalently,

P (x) =
1

Z

∏
C

ΨC(xC) with ΨC(xC) = exp(−EC(xC)) > 0 .
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Graphical representation

P (x1, x2, x3, x4, x5) =
1

Z
Ψ1(x1, x2) Ψ2(x2, x3) Ψ3(x3, x4, x5)

�� �� ��

��

��

��

��

��

– Completely connect the nodes belonging to each xC.

– Each subset xC forms a clique of the graph.
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Markov Blanket

Definition

– The Markov blanket of x is the minimal subset of variables Bx
of the variables x such that P (x |x \ x) = P (x | Bx).

Example

P (x3 |x1, x2, x4, x5) =
Ψ1(x1, x2) Ψ2(x2, x3) Ψ3(x3, x4, x5)∑
x′3

Ψ1(x1, x2) Ψ2(x2, x
′
3) Ψ3(x′3, x4, x5)

=
Ψ2(x2, x3) Ψ3(x3, x4, x5)∑
x′3

Ψ2(x2, x
′
3) Ψ3(x′3, x4, x5)

= P (x3 |x2, x4, x5)
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Graph and Markov blanket

The Markov blanket of a MRF variable is the set of its neighbors.

P (x3 |x1, x2, x4, x5) = P (x3 |x2, x4, x5)

�� �� ��

��

��

��
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Consequence
– Consider three disjoint sets of nodes: A, B, C.

A ⊥⊥ B | C ⇐⇒
{

Any path between a ∈ A and b ∈ B
passes through a node c ∈ C.

Conversely (Hammersley-Clifford theorem)
– Any distribution that satisfies such properties with respect to

an undirected graph is a Markov Random Field.
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Directed vs. undirected graphs

Consider a directed graph.

P (x) = P (x1)︸ ︷︷ ︸
Ψ1(x1)

P (x2)︸ ︷︷ ︸
Ψ2(x2)

P (x3|x1, x2)︸ ︷︷ ︸
Ψ3(x1, x2, x3)

P (x4|x2)︸ ︷︷ ︸
Ψ4(x2, x4) (Z = 1)

��

��

��

��

��

��

��

��

The opposite inclusion is not true because the undirected graph

marries the parents of x3 with a moralization link.

Directed and undirected graphs represent different sets of distributions.

Neither set is included in the other one.
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Example: image denoising

Noise model: randomly flipping a small proportion of the pixels.

Image model: pixel distribution given its four neighbors.

���������	
�
����	
�	��

�
�	����	
�
�����	��

Inference problem

– Given the observed noisy pixels,

reconstruct the true pixel distributions.
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III. Inference in graphical models
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Inference

Partition the variables

– A: the variables of interest.

– B: the observed variables.

– R: the rest.

We want P (A|B)
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Inference

Inference for learning

�� �� �

�������
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Inference for recognition

�

�������������

� �
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Inference

Inference for both (Bayesian averaging)

�� �� �
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Factor graph

P (x) ∝ Ψ1(x1) Ψ2(x2) Ψ3(x1, x2, x3) Ψ4(x2, x4)

�� �� �� ��

�� ��

��

��

A factor graph is a bipartite undirected graph.
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Gibbs sampling

A computationally intensive inference algorithm

�� �� �� ��

�� ��

��

�� Clamp the observed variables.

Randomly initialize the other variables.

Repeat:

– Pick one unobserved variable x.

– Compute P (x | ne(ne(x)) ).

– Pick a new value for x accordingly.

Observe the empirical distribution

of the variables of interest.
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Direct computation

Sum-Product algorithm

The sum-product algorithm efficiently solves the problem

when the factor graph (restricted to the unobserved variables) is a tree.

– directed graphical models: trees, polytrees, . . .

– undirected graphical models: trees, and more . . .

Particular cases

– Forward algorithm for HMMs.

– Belief propagation for directed graphical models.
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Sum-product algorithm (1)

Definitions

�
��

��������

µΨs→x(x) =
∑
x

∏
ΨC

ΨC(xC)

��

�

��������

µx→Ψs(x) =
∑
x

∏
ΨC

ΨC(xC)

– x represents all unobserved variables other than x in the cyan zone.

– ΨC represents all factors in the cyan zone.
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Sum-product algorithm (2)

Recursions

�

��

����

�������� µΨs→x(x) =
∑

x1..xm..xM

Ψs(xs)
∏
m

µxm→Ψs(xm)

µΨs→x(x) = Ψs(x) if Ψs is a leaf.

��

�

��������

µx→Ψs(x) =
∏

l∈ne(x)\s
µΨl→x(x)

µx→Ψs(x) = 1 if x is a leaf.

– These recursion work because we assume the factor graph is a tree.

– Starting from the leafs, compute the messages µ everywhere.
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Sum-product algorithm (3)

Conclusion

�
��

��������
p̃(x) =

∏
s∈ne(x)

µΨs→x(x)

P (x) =
p̃(x)∑
x′
p̃(x′)

Issues

– Normalization is easy when x is discrete.
When x is continuous. . .

– Multiplying all these small numbers causes numerical problems.
Renormalizing or using logarithms is often necessary.
This is also true in HMMs.
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Max-product

Semi-ring Algorithm

{ R+, +, × } Sum-product

{ R, ⊕, + } ?

{ R+, max, × } Max-product

{ R, max, +} Sum-product

The max-product and max-sum algorithms can be used

to compute the most likely values of the hidden variables.

Backtracking requires attention.
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Loopy graphs

Junction tree algorithm

– Performs inference in general graphs.

– Quickly becomes intractable.

Graph partitionning algorithms

– Very useful for image segmentation and image processing.

– Only works for certain graphs.

Approximations

– There are coarse approximations.

– There are refined approximations.

– Instead of defining a probabilistic model and approximating,

one could work directly with the approximation. . .
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Conclusion

Is it really easier with graphs?

Benefits

– Visualization of the structure.

– Visualization of independence assumptions.

– Elegant generic algorithms for everything.

Drawbacks

– Visualization is incomplete.

– Confusion between directed models and causality.

– The computational cost of normalization is a recurrent issue.

– One has to rederive the algorithms by hand anyway.

– Algorithms for loopy graphs are usually intractable.
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