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Introduction

People like drawings better than equations
— A graphical model is a diagram representing
certain aspects of the algebraic structure

of a probabilistic model.

Purposes
— Visualize the structure of a model.

— Investigate conditional independence properties.
— Some computations are more easily expressed on a dgraph
than written as equations with complicated subscripts.
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Summary

Summary
I. Directed graphical models

II. Undirected graphical models
III. Inference in graphical models

More
— David Blei runs a complete course on graphical models.
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I. Directed graphical models

“Bayesian Networks”
(Pearl 1988)
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A pattern for independence assumptions

Probability distribution

P(x1, 0, x3,24)

Bayesian chain theorem

P(x1, 22, x3,14) = P(x1) Plxg|z1) Plas|xy, v2) Pxa|zy, 29, 23)

Independence assumptions

P(ry, 20,23, 24) = P(1) P(xo|rq) P(w3|T1, 19) Pl24]21, 29, 73)
= P(z1) P(xa|z1) P(xg|ry) Pry|ry, 22)
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Graphical representation

Bayesian chain theorem

P(xy, w9, x3,24) = P(x1) P(x2|z1) P(T3|01, T2) Pl4]T1, 29, T3)

Directed acyclic graph

N

Arrows do not represent causality!
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Graphical representation

Independence assumptions

P(xy, 0,23, 24) = P(x1) P(x2|r1) P(x3|21, 12) Pl24]T1, 29, 73)
= P(x1) P(xa|z1) P(xs|zy) Plzy|zy, x0)

Missing links represent independence assumptions
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A more complicated example

P(x1) P(x2) P(x3) P(xy|r1, 12) PT5|71, 00, 23) P(26|74) P(T7|74, 25)
s
(&) (@)

Parametrization
The graph says nothing about the parametric form of the probabilities.

— Discrete distributions
— Continuous distributions
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Discrete distributions

Input x = <£C1,£132...£Ud) c {O, 1}d.
Class y € {Ay,..., AL},

General generative model
P(x,y) = P(y) P(x]y)

Co—

— k parameters for P(y)
— k2% parameters for P(x|y)

Naive Bayes model

P(x,y) = P(y) P(z1]y) ... P(zqly)
(=)
v

— k parameters for P(y)
— kd parameters for P(x|y)

Léon Bottou
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Discrete distributions

Naive Bayes model Linear discriminant model

P(x,y) = P(y) P(z1]y) ... P(zqly) P(x,y) = P(x) P(y|x)

CO—W
(¥

y(x) = argmax P(x,y)

Y
= arg max P(y|x)
) Y
y(x) = arg max P(x, y)
Y

— k parameters for P(y). — k(d + 1) parameters for P(y|x).
— kd parameters for P(x|y). — 2% ynused parameters for P(x).
Fails when the z; are correlated ! Works when the z; are correlated !
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Continuous distributions

Linear regression
— Input x = (z1,29...24) € R
— Output y € R.

P(x,y) = P(y|x) P(x)

CO—

Plylx) o exp 55 (0= w'x))

No need to model P(x).
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Bayesian regression

Consider a dataset D = { (x1,41),-- -, (Xn,yn) }-

P(D,w) = P(w) P(Dlw) = P(w) | [ P(yilxi,w) P(x;)
i=1

\ ’LZl...TL/

Plates represent repeated subgraphs.

Although the parameter w is explicit,

other details about the distributions are not.
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Hidden Markov Models

P(xy...xp, s1...57) = P(s1) P(x1]s1) P(sa|s1) P(wa|s2) ... P(splsp—1) P(er|sT)

§&878

What is the relation between this graph and that graph?

B
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Conditional independence patterns (1)

Tail-to-tail
@ © @ ©
P(a,b,c) = Plalc) P(b|c) P(c) P(a,b,c) = P(alc) P(b|c) P(c)
P(a,b) = ZP(@]C) P(blc) P(c) P(a,blc) = Pl(a,b,c)/P(c)

% Pc(a) P(b) in general = P(alc)P(blc)

allb|0 alb]|c
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Conditional independence patterns (2)

Head-to-tail
P(a,b,c) = P(a) P(cla) P(blc) P(a,b,c) = P(a)P(cla) P(b|c)
= Pla,c) P(blc)
P(a,b) = Y P(a) P(cla) P(b|c)
c P(a,blc) = Pl(a,b,c)/P(c)
= P(a) }_ P(b.cla) — P(a|e)P(bc)

C

= P(a) P(bla)
# P(a) P(b) in general

allb|0 alb|c
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Conditional independence patterns (3)

Head-to-head

@QG

P(a,b,c) = P(a) P(b) P(c|a,b) P(a,b,c) = P(a) P(b) P(c|a,b)
P(a,b) = ZP(@) P(b) P(c|a,b) P(a,blc) # P(a|c)P(blc) in general
c Example:
— P(a) P(b) > P(cla,b)) ¢ = “the house is shaking"
— P(a) P(b) ‘ a = “there is an earthquake”

b= "a truck hits the house”

al b|0 a bl c
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D-separation

Problem
— Consider three disjoint sets of nodes: A, B, C.
— When do we have A 1L B | C'7?

Definition
A and B are d-separated by C' if all paths fromac Atobe B
— contain a head-to-tail or tail-to-tail node ¢ € C, or
— contain a head-to-head node c such that neither c
nor any of its descendants belongs to C'.

Theorem
A and B are d-separated by C <= AL B|C
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II. Undirected graphical models

‘“‘Markov Random Fields”
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Another independence assumption pattern

Boltzmann distribution

1

P(x) = — exp (- E(x)) with Z=> exp(— E(x))

— The function E(x) is called energy function.
— The quantity Z is called the partition function.

Markov Random Field
— Let {xo} be a family of subsets of the variables x.
— The distribution P(x) is a Markov Random Field with cliques {x~} if
there are functions E¢(x¢) such that E(x) = Y  Ex(xc).
C

Equivalently,

P(x)= [ ¥elxe) with We(xc) = exp(~Ec(xe) > 0.
C
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Graphical representation

1
P(ay, w9, 23,24, 25) = — V1(21, ) Ya(2g, 23) V3(23, 24, 25)

— Completely connect the nodes belonging to each x.
— Each subset xo forms a clique of the graph.
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Markov Blanket

Definition
— The Markov blanket of x is the minimal subset of variables 5,
of the variables x such that P(z|x\ z) = P(z|By).

Example

Uy(x1, 22) Voo, 3) Us(23, 14, 25)
> (g, w9) Voo, 25) Wa(ah, 24, x5)
73

Wo(xe, x3) V3(23, 14, T5)
> W, x5) W3(ah, 24, 25)

/
Ly

P(z3| 1, x9, x4, x5) =

= P(x3| 29, 24, T5)
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Graph and Markov blanket

The Markov blanket of a MRF variable is the set of its neighbors.

P(xg|x1, 29,24, x5) = Plx3| 29, T4, T5)

O—E—@
7y, @5
Vs
Cconsequence

— Consider three disjoint sets of nodes: A, B, C.

Any path between a € A and b€ B

ALB|C — { passes through a node c e C.

Conversely (Hammersley-Clifford theorem)
— Any distribution that satisfies such properties with respect to
an undirected graph is a Markov Random Field.
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Directed vs. undirected graphs

Consider a directed graph.

P(x) = P(xy) P(xz) Plagley,xa) Pleafe)
—— —— — —— N y

~~

Wy (x1) Uo(wo) V3(21, 79, 73) Wyl22, 74) (Z=1)

O—E O—@
ool e

The opposite inclusion is not true because the undirected graph
marries the parents of x5 with a moralization link.

Directed and undirected graphs represent different sets of distributions.
Neither set is included in the other one.
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Example: image denoising

Noise model: randomly flipping a small proportion of the pixels.
Image model: pixel distribution given its four neighbors.

Noisy pixels
(observed)

True pixels
- (hidden)

Inference problem
— Given the observed noisy pixels,
reconstruct the true pixel distributions.
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III. Inference in graphical models
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Inference

Partition the variables
— A: the variables of interest.
— B: the observed variables.

— R: the rest.

We want P(A|B)
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Inference

Inference for learning

4 )
i) —=()~t+—w)  Pw|D)?
\_ i:1...nj

Inference for recognition

O——W

Py | x, w) ?
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Inference

Inference for both (Bayesian averaging)

®—@)

\ Z:1...n/

Py | x,D) ?
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Factor graph

P(x) oc Wy (x1) Wo(wo) Vs(x1, 2, 73) Vy(22, 24)

% ¢2 ¢4

A factor graph is a bipartite undirected graph.
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Gibbs sampling

A computationally intensive inference algorithm

w ¢ Clamp the observed variables.
% 2 4
Randomly initialize the other variables.

Repeat:

— Pick one unobserved variable .
@ @ @ @ — Compute P(x|ne(ne(z))).

— Pick a new value for o accordingly.

Observe the empirical distribution
¢3 of the variables of interest.
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Direct computation

Sum-Product algorithm

The sum-product algorithm efficiently solves the problem
when the factor graph (restricted to the unobserved variables) is a tree.

— directed graphical models: trees, polytrees, ...
— undirected graphical models: trees, and more ...

Particular cases

— Forward algorithm for HMMSs.
— Belief propagation for directed graphical models.
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Sum-product algorithm (1)

Definitions

Mlﬁs—mc(w)
z py (@)=Y ][ Velxe)
..... R X \DC
s - fy—, () :Z H Veolxo)
""""" () X Vo

— x represents all unobserved variables other than x in the cyan zone.
— W represents all factors in the cyan zone.
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Sum-product algorithm (2)

Recursions

fp—sa(T) M\IJS—m:(x) — Z qu<X8> H Mmm—ﬂIJS(xm)

T L1--Tm--T)\f m

py,—p(v) = Vs(z) if Usis a leaf.

:LL:U—>\IJS($) - H N\IJZ—>33($>

lene(x)\s

fy—y (v) =1 if z is a leaf.

— T hese recursion work because we assume the factor graph is a tree.
— Starting from the leafs, compute the messages . everywhere.

Léon Bottou 33/37 COS 424 — 4/15/2010



Sum-product algorithm (3)

Conclusion

’
’

¢ 1 (.CE) / ----- ]5(1’)2 H M\PS—KL‘(I)
. pomal . sene(x)
T % ]5(55)
______ Plz) = —
> U S

Issues

— Normalization is easy when z is discrete.
When zx is continuous. ..

— Multiplying all these small numbers causes numerical problems.
Renormalizing or using logarithms is often necessary.
This is also true in HMMSs.
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Max-product

Semi-ring Algorithm
{RY +, x} Sum-product
{R, &, +} ?

{RT, max, x } Max-product
{R, max, +} Sum-product

The max-product and max-sum algorithms can be used
to compute the most likely values of the hidden variables.

Backtracking requires attention.
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Loopy graphs

Junction tree algorithim
— Performs inference in general graphs.
— Quickly becomes intractable.

Graph partitionning algorithms
— Very useful for image segmentation and image processing.
— Only works for certain graphs.

Approximations

— T here are coarse approximations.

— There are refined approximations.

— Instead of defining a probabilistic model and approximating,
one could work directly with the approximation. ..
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Conclusion

Is it really easier with graphs?

Benefits

— Visualization of the structure.

— Visualization of independence assumptions.
— Elegant generic algorithms for everything.

Drawbacks

— Visualization is incomplete.

— Confusion between directed models and causality.

— The computational cost of normalization is a recurrent issue.
— One has to rederive the algorithms by hand anyway.

— Algorithms for loopy graphs are usually intractable.
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