Graphical Models

Léon Bottou

COS 424-4/15/2010

Introduction

People like drawings better than equations

- A graphical model is a diagram representing certain aspects of the algebraic structure of a probabilistic model.

Purposes

- Visualize the structure of a model.
- Investigate conditional independence properties.
- Some computations are more easily expressed on a graph than written as equations with complicated subscripts.

Summary

Summary

I. Directed graphical models
II. Undirected graphical models
III. Inference in graphical models

More

- David Blei runs a complete course on graphical models.

I. Directed graphical models

"Bayesian Networks"
(Pearl 1988)

A pattern for independence assumptions

Probability distribution

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Bayesian chain theorem

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

Independence assumptions

$$
\begin{aligned}
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

Graphical representation

Bayesian chain theorem

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

Directed acyclic graph

Arrows do not represent causality!

Graphical representation

Independence assumptions

$$
\begin{aligned}
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

Missing links represent independence assumptions

A more complicated example

$$
P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3}\right) P\left(x_{4} \mid x_{1}, x_{2}\right) P\left(x_{5} \mid x_{1}, x_{2}, x_{3}\right) P\left(x_{6} \mid x_{4}\right) P\left(x_{7} \mid x_{4}, x_{5}\right)
$$

Parametrization

The graph says nothing about the parametric form of the probabilities.

- Discrete distributions
- Continuous distributions

Discrete distributions

Input $\mathbf{x}=\left(x_{1}, x_{2} \ldots x_{d}\right) \in\{0,1\}^{d}$.
Class $y \in\left\{A_{1}, \ldots, A_{k}\right\}$.

General generative model

$$
P(\mathbf{x}, y)=P(y) P(\mathbf{x} \mid y)
$$

- k parameters for $P(y)$
- $k 2^{d}$ parameters for $P(\mathbf{x} \mid y)$

Naïve Bayes model

$$
P(\mathbf{x}, y)=P(y) P\left(x_{1} \mid y\right) \ldots P\left(x_{d} \mid y\right)
$$

- k parameters for $P(y)$
- kd parameters for $P(\mathbf{x} \mid y)$

Discrete distributions

Naïve Bayes model

$$
P(\mathbf{x}, y)=P(y) P\left(x_{1} \mid y\right) \ldots P\left(x_{d} \mid y\right)
$$

$$
\hat{y}(\mathbf{x})=\underset{y}{\arg \max } P(\mathbf{x}, y)
$$

Linear discriminant model

$$
P(\mathbf{x}, y)=P(\mathbf{x}) P(y \mid \mathbf{x})
$$

$$
\begin{aligned}
\hat{y}(\mathbf{x}) & =\underset{y}{\arg \max } P(\mathbf{x}, y) \\
& =\underset{y}{\arg \max } P(y \mid \mathbf{x})
\end{aligned}
$$

- $k(d+1)$ parameters for $P(y \mid \mathbf{x})$.
- 2^{d} unused parameters for $P(\mathbf{x})$.

Works when the x_{i} are correlated!

Continuous distributions

Linear regression

- Input $\mathbf{x}=\left(x_{1}, x_{2} \ldots x_{d}\right) \in \mathbb{R}^{d}$.
- Output $y \in \mathbb{R}$.

$$
P(\mathbf{x}, y)=P(y \mid \mathbf{x}) P(\mathbf{x})
$$

$$
P(y \mid \mathbf{x}) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left(y-\mathbf{w}^{\top} \mathbf{x}\right)^{2}\right)
$$

No need to model $P(\mathbf{x})$.

Bayesian regression

Consider a dataset $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$.

$$
P(\mathcal{D}, \mathbf{w})=P(\mathbf{w}) P(\mathcal{D} \mid \mathbf{w})=P(\mathbf{w}) \prod_{i=1}^{n} P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right) P\left(\mathbf{x}_{i}\right)
$$

Plates represent repeated subgraphs.
Although the parameter w is explicit, other details about the distributions are not.

Hidden Markov Models

$$
P\left(x_{1} \ldots x_{T}, s_{1} \ldots s_{T}\right)=P\left(s_{1}\right) P\left(x_{1} \mid s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(x_{2} \mid s_{2}\right) \ldots P\left(s_{T} \mid s_{T-1}\right) P\left(x_{T} \mid s_{T}\right)
$$

What is the relation between this graph and that graph?

Conditional independence patterns (1)

Tail-to-tail

$$
\begin{aligned}
P(a, b, c) & =P(a \mid c) P(b \mid c) P(c) \\
P(a, b) & =\sum_{c} P(a \mid c) P(b \mid c) P(c) \\
& \neq P(a) P(b) \quad \text { in general }
\end{aligned}
$$

$$
\begin{aligned}
P(a, b, c) & =P(a \mid c) P(b \mid c) P(c) \\
P(a, b \mid c) & =P(a, b, c) / P(c) \\
& =P(a \mid c) P(b \mid c)
\end{aligned}
$$

Conditional independence patterns (2)

Head-to-tail

$$
\begin{aligned}
P(a, b, c) & =P(a) P(c \mid a) P(b \mid c) \\
P(a, b) & =\sum_{c} P(a) P(c \mid a) P(b \mid c) \\
& =P(a) \sum_{c} P(b, c \mid a) \\
& =P(a) P(b \mid a) \\
& \neq P(a) P(b) \text { in general }
\end{aligned}
$$

$$
a \not \Perp b \mid \emptyset
$$

$$
a \Perp b \mid c
$$

Conditional independence patterns (3)

Head-to-head

$$
\begin{aligned}
P(a, b, c) & =P(a) P(b) P(c \mid a, b) \\
P(a, b) & =\sum_{c} P(a) P(b) P(c \mid a, b) \\
& \left.=P(a) P(b) \sum_{c} P(c \mid a, b)\right) \\
& =P(a) P(b)
\end{aligned}
$$

$$
\begin{aligned}
P(a, b, c) & =P(a) P(b) P(c \mid a, b) \\
P(a, b \mid c) & \neq P(a \mid c) P(b \mid c) \quad \text { in general }
\end{aligned}
$$

Example:
$c=$ "the house is shaking"
$a=$ "there is an earthquake"
$b=$ "a truck hits the house"

$$
a \Perp b|\emptyset \quad a \not \Perp b| c
$$

D-separation

Problem

- Consider three disjoint sets of nodes: A, B, C.
- When do we have $A \Perp B \mid C$?

Definition

A and B are d-separated by C if all paths from $a \in A$ to $b \in B$

- contain a head-to-tail or tail-to-tail node $c \in C$, or
- contain a head-to-head node c such that neither c nor any of its descendants belongs to C.

Theorem

A and B are d-separated by $C \quad \Longleftrightarrow A \Perp B \mid C$

II. Undirected graphical models

"Markov Random Fields"

Another independence assumption pattern

Boltzmann distribution

$$
P(\mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{x})) \quad \text { with } \quad Z=\sum_{\mathbf{x}} \exp (-E(\mathbf{x}))
$$

- The function $E(\mathbf{x})$ is called energy function.
- The quantity Z is called the partition function.

Markov Random Field

- Let $\left\{\mathbf{x}_{C}\right\}$ be a family of subsets of the variables \mathbf{x}.
- The distribution $P(\mathbf{x})$ is a Markov Random Field with cliques $\left\{\mathbf{x}_{C}\right\}$ if there are functions $E_{C}\left(\mathbf{x}_{C}\right)$ such that $E(\mathbf{x})=\sum_{C} E_{C}\left(\mathbf{x}_{C}\right)$.

Equivalently,

$$
P(\mathbf{x})=\frac{1}{Z} \prod_{C} \Psi_{C}\left(\mathbf{x}_{C}\right) \quad \text { with } \quad \Psi_{C}\left(\mathbf{x}_{C}\right)=\exp \left(-E_{C}\left(\mathbf{x}_{C}\right)\right)>0
$$

Graphical representation

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{Z} \Psi_{1}\left(x_{1}, x_{2}\right) \Psi_{2}\left(x_{2}, x_{3}\right) \Psi_{3}\left(x_{3}, x_{4}, x_{5}\right)
$$

- Completely connect the nodes belonging to each x_{C}.
- Each subset x_{C} forms a clique of the graph.

Markov Blanket

Definition

- The Markov blanket of x is the minimal subset of variables \mathcal{B}_{x} of the variables \mathbf{x} such that $P(x \mid \mathbf{x} \backslash x)=P\left(x \mid \mathcal{B}_{x}\right)$.

Example

$$
\begin{aligned}
P\left(x_{3} \mid x_{1}, x_{2}, x_{4}, x_{5}\right) & =\frac{\Psi_{1}\left(x_{1}, x_{2}\right) \Psi_{2}\left(x_{2}, x_{3}\right) \Psi_{3}\left(x_{3}, x_{4}, x_{5}\right)}{\sum_{x_{3}^{\prime}} \Psi_{1}\left(x_{1}, x_{2}\right) \Psi_{2}\left(x_{2}, x_{3}^{\prime}\right) \Psi_{3}\left(x_{3}^{\prime}, x_{4}, x_{5}\right)} \\
& =\frac{\Psi_{2}\left(x_{2}, x_{3}\right) \Psi_{3}\left(x_{3}, x_{4}, x_{5}\right)}{\sum_{x_{3}^{\prime}} \Psi_{2}\left(x_{2}, x_{3}^{\prime}\right) \Psi_{3}\left(x_{3}^{\prime}, x_{4}, x_{5}\right)} \\
& =P\left(x_{3} \mid x_{2}, x_{4}, x_{5}\right)
\end{aligned}
$$

Graph and Markov blanket

The Markov blanket of a MRF variable is the set of its neighbors.

$$
P\left(x_{3} \mid x_{1}, x_{2}, x_{4}, x_{5}\right)=P\left(x_{3} \mid x_{2}, x_{4}, x_{5}\right)
$$

Consequence

- Consider three disjoint sets of nodes: A, B, C.

$$
A \Perp B \left\lvert\, C \Longleftrightarrow\left\{\begin{array}{l}
\text { Any path between } a \in A \text { and } b \in B \\
\text { passes through a node } c \in C .
\end{array}\right.\right.
$$

Conversely (Hammersley-Clifford theorem)

- Any distribution that satisfies such properties with respect to an undirected graph is a Markov Random Field.

Directed vs. undirected graphs

Consider a directed graph.

$$
\begin{equation*}
P(\mathbf{x})=\underbrace{P\left(x_{1}\right)}_{\Psi_{1}\left(x_{1}\right)} \underbrace{P\left(x_{2}\right)}_{\Psi_{2}\left(x_{2}\right)} \underbrace{P\left(x_{3} \mid x_{1}, x_{2}\right)}_{\Psi_{3}\left(x_{1}, x_{2}, x_{3}\right)} \underbrace{P\left(x_{4} \mid x_{2}\right)}_{\Psi_{4}\left(x_{2}, x_{4}\right)} \tag{Z=1}
\end{equation*}
$$

The opposite inclusion is not true because the undirected graph marries the parents of x_{3} with a moralization link.

Directed and undirected graphs represent different sets of distributions. Neither set is included in the other one.

Example: image denoising

Noise model: randomly flipping a small proportion of the pixels. Image model: pixel distribution given its four neighbors.

Inference problem

- Given the observed noisy pixels, reconstruct the true pixel distributions.

III. Inference in graphical models

Inference

Partition the variables

- A: the variables of interest.
$-B$: the observed variables.
$-R$: the rest.

We want $P(A \mid B)$

Inference

Inference for learning

Inference for recognition

Inference

Inference for both (Bayesian averaging)

Factor graph

$$
P(\mathbf{x}) \propto \Psi_{1}\left(x_{1}\right) \Psi_{2}\left(x_{2}\right) \Psi_{3}\left(x_{1}, x_{2}, x_{3}\right) \Psi_{4}\left(x_{2}, x_{4}\right)
$$

A factor graph is a bipartite undirected graph.

Gibbs sampling

A computationally intensive inference algorithm

Clamp the observed variables.
Randomly initialize the other variables.
Repeat:

- Pick one unobserved variable x.
- Compute $P(x \mid$ ne $($ ne $(x)))$.
- Pick a new value for x accordingly.

Observe the empirical distribution
of the variables of interest.

Direct computation

Sum-Product algorithm

The sum-product algorithm efficiently solves the problem when the factor graph (restricted to the unobserved variables) is a tree.

- directed graphical models: trees, polytrees, ..
- undirected graphical models: trees, and more ...

Particular cases

- Forward algorithm for HMMs.
- Belief propagation for directed graphical models.

Sum-product algorithm (1)

Definitions

$$
\begin{aligned}
& \mu_{\Psi_{s} \rightarrow x}(x)=\sum_{\mathrm{X}} \prod_{\Psi_{C}} \Psi_{C}\left(\mathbf{x}_{C}\right) \\
& \mu_{x \rightarrow \Psi_{s}}(x)=\sum_{\mathrm{x}} \prod_{\Psi_{C}} \Psi_{C}\left(\mathbf{x}_{C}\right)
\end{aligned}
$$

- x represents all unobserved variables other than x in the cyan zone.
- Ψ_{C} represents all factors in the cyan zone.

Sum-product algorithm (2)

Recursions

$$
\begin{aligned}
& \mu_{\Psi_{s} \rightarrow x}(x)=\sum_{x_{1} \ldots x_{m} \ldots x_{M}} \Psi_{s}\left(\mathbf{x}_{s}\right) \prod_{m} \mu_{x_{m} \rightarrow \Psi_{s}}\left(x_{m}\right) \\
& \mu_{\Psi_{s} \rightarrow x}(x)=\Psi_{s}(x) \text { if } \Psi_{s} \text { is a leaf. }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{x \rightarrow \Psi_{s}}(x)=\prod_{l \in \operatorname{ne}(x) \backslash s} \mu_{\Psi_{l} \rightarrow x}(x) \\
& \mu_{x \rightarrow \Psi_{s}}(x)=1 \text { if } x \text { is a leaf. }
\end{aligned}
$$

- These recursion work because we assume the factor graph is a tree.
- Starting from the leafs, compute the messages μ everywhere.

Sum-product algorithm (3)

Conclusion

$$
\begin{aligned}
& \tilde{p}(x)=\prod_{s \in \operatorname{ne}(x)} \mu_{\mathbb{\Psi}_{s} \rightarrow x}(x) \\
& P(x)=\frac{\tilde{p}(x)}{\sum_{x^{\prime}} \tilde{p}\left(x^{\prime}\right)}
\end{aligned}
$$

Issues

- Normalization is easy when x is discrete. When x is continuous...
- Multiplying all these small numbers causes numerical problems. Renormalizing or using logarithms is often necessary. This is also true in HMMs.

Max-product

Semi-ring	Algorithm
$\left\{\mathbb{R}^{+},+, \times\right\}$	Sum-product
$\{\mathbb{R}, \oplus,+\}$	$?$
$\left\{\mathbb{R}^{+}, \max , \times\right\}$	Max-product
$\{\mathbb{R}, \max ,+\}$	Sum-product

The max-product and max-sum algorithms can be used to compute the most likely values of the hidden variables.

Backtracking requires attention.

Loopy graphs

Junction tree algorithm

- Performs inference in general graphs.
- Quickly becomes intractable.

Graph partitionning algorithms

- Very useful for image segmentation and image processing.
- Only works for certain graphs.

Approximations

- There are coarse approximations.
- There are refined approximations.
- Instead of defining a probabilistic model and approximating, one could work directly with the approximation. . .

Conclusion

Is it really easier with graphs?

Benefits

- Visualization of the structure.
- Visualization of independence assumptions.
- Elegant generic algorithms for everything.

Drawbacks

- Visualization is incomplete.
- Confusion between directed models and causality.
- The computational cost of normalization is a recurrent issue.
- One has to rederive the algorithms by hand anyway.
- Algorithms for loopy graphs are usually intractable.

