COS 423

Problem Set No.1

Spring 2007

 Due Monday 2/19 before class

 Collaboration Allowed

1. The standard computer representation of a search tree uses two, or possibly three, pointers per node: to the left child, right child, and (if a third pointer is used) to the parent of a node. These pointers are in addition to the key in the node and any information associated with the key. Describe a way to represent a search tree using only two pointers per node so that the left child, the right child, and the parent of any node can each be accessed in constant time (and identified as the left child, right child, or parent, respectively). Take care that your solution deals correctly with nodes having no children, and with nodes having only one child. Note that the solution to this problem gives an alternative solution to exercise 13.3-6 in the text, which asks for a suggestion of how to implement red-black-tree insertion efficiently if the representation includes no storage for parent pointers. (I believe that the intended suggestion is to use a stack to record the nodes on the access path from the root to the insertion position, as I mentioned in class.)

2. Show that red-black trees are history-dependent, in the following sense: give an example of a red-black tree and a key not in the tree such that if the key is inserted and then deleted, the resulting red-black tree is different from the original tree. (Note that this is not true of treaps, the randomized search trees discussed in Problem 13-4.)

3. Software engineer “A” (for anonymous) wants to implement red-black trees, but is lazy. “A” implements red-black tree insertion correctly, but instead of implementing deletion as discussed in class and in Section 13.4, “A” implements naïve deletion as presented in Section 12.3. That is, the red-black restructuring rules are applied on insertion, but on deletion no restructuring is done. Demonstrate that this is a very bad idea, at least in the worst case, by giving a sequence of
[image: image1.wmf]()

On

 insertions and intermixed deletions that begin with an empty tree and produce a tree with a node of depth
[image: image2.wmf]()

n

W

(in which even the average access time, let alone the worst-case access time, is
[image: image3.wmf]()).

n

W

4. The left spine of a binary search tree is the path obtained by starting at the root and following left pointers until reaching a node with no left child (the smallest in the tree); the right spine is the path obtained by starting at the root and following right pointers until reaching a node with no right child (the largest in the tree). A red-black deque (double-ended queue) is a red-black tree with a non-standard two-pointer-per-node representation: every node other than those on the left and right spines has pointers to its left and right children as normally, but each node on the left spine points to its parent and to its right child, and each node on the right spine points to its parent and to its left child. That is, along the left and right spines the pointers are reversed. The root, which is the unique node on both spines, has two null pointers. Access to the tree is via two nodes: the smallest and largest, which are the only nodes with no entering pointers.

This data structure is intended to allow fast access to both ends, as well as to allow joins to be especially efficient. We consider two-way joins (as opposed to the three-way joins considered in Problem 13-2). Given two red-black deques
[image: image4.wmf]1

T

 and
[image: image5.wmf]2

T

such that all keys in
[image: image6.wmf]1

T

 are less than all keys in
[image: image7.wmf]2

,

T

 the join operation combines
[image: image8.wmf]1

T

 and
[image: image9.wmf]2

T

into a single red-black deque containing the union of all their keys. Describe algorithms for access, insertion, deletion, and join on red-black deques with the following running times: the worst-case time to access the
[image: image10.wmf]th

d

smallest key in an n-node deque is
[image: image11.wmf](log(min{,}1));

Odnd

-+

 the amortized time to insert or delete the
[image: image12.wmf]th

d

smallest key is
[image: image13.wmf](log(min{,}1));

Odnd

-+

 and the amortized time to join two deques is
[image: image14.wmf](1).

O

Verify the correctness of your algorithms, and prove the time bounds. Note that you must develop four algorithms, but the amortized analysis should apply simultaneously to insertion, deletion, and join. You will get partial credit for a partial result, for example if you can’t implement join, or if you can implement join but can only get a slower amortized time bound for it.

_1232285819.unknown

_1232286444.unknown

_1232287037.unknown

_1232343162.unknown

_1232286495.unknown

_1232285856.unknown

_1232286042.unknown

_1232286121.unknown

_1232285897.unknown

_1232285838.unknown

_1232285733.unknown

_1232285802.unknown

_1232285565.unknown

