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Maximum Flow Problem

In a directed graph with source vertex s, sink 

vertex t, and non-negative arc capaicities, find vertex t, and non-negative arc capaicities, find 

a maximum flow from s to t.



Let G = (V, E) be a directed graph with source 

vertex s, sink vertex  t, arc capacities c(v, w) ≥ 0 

Assume G is symmetric: (v, w) ∈ E iff (w, v) ∈ E

(Symmetrize by adding reverse arcs with 

capacity 0 as necessary)capacity 0 as necessary)

pseudoflow f: antisymmetric function on arcs 

that is bounded by arc capacities:

f(v, w) = –f(w, v) ≤ c(v, w)

(antisymmetry simplifies some formulas)



excess e(v) of vertex v = Σ{f(u, v)|(u, v) ∈ E}

f is a preflow iff e(v) ≥ 0 for  v ≠ s

f is a flow if e(v) = 0 for v ∉ {s, t}

value of f = e(t) (= –e(s) if f is a flow)

f is maximum if e(t) is maximum

Goal: find a maximum flow 



A capacitated graph with a flow

(0-capacity symmetric arcs omitted)
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Maximum flow
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Bipartite matching via maximum flow

Find a matching of maximum size
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Direct edges from X to Y, add source s sink t, arcs 

from s to all v in S, arcs from all w in Y to t, all 

capacities 1
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Augmenting path method

(Ford & Fulkerson)

(v, w) is saturated if f(v, w) = c(v, w), otherwise 
residual

residual capacity of (v, w):

r(v, w) = c(v, w) – f(v, w)r(v, w) = c(v, w) – f(v, w)

augmenting path: path of residual arcs from s to 
t

residual capacity of an augmenting path: 
minimum residual capacity of arcs on path



f ← 0;

while ∃augmenting path P do

{Δ ← residual capacity of P;

for (v, w) on P do

{f(v, w) ← f(v, w) + Δ; f(w, v) ← f(w, v) – Δ}}



Augmenting path s, a, t
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Augmenting path s, b, t
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No augmenting path: flow is maximum
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Correctness via duality

cut: a Partition of the vertices into two parts, X

containing s and Y containing t

capacity of cut:

c(X, Y) = Σ{c(x, y)|(x, y) ∈ E & x ∈ X & y ∈ Y}c(X, Y) = Σ{c(x, y)|(x, y) ∈ E & x ∈ X & y ∈ Y}

net flow across cut:

f(X, Y) = Σ{f(x, y)|(x, y) ∈ E & x ∈ X & y ∈ Y}

≤ c(X, Y)

minimum cut: a cut of minimum capacity



Lemma: If X, Y is any cut and f is any flow, f(X, Y) 

= e(t).

Proof: Exercise

Corollary: The maximum flow value is at most 

the minimum cut capacity



Max Flow, Min Cut Theorem: The maximum flow 

value equals the minimum cut capacity

Proof: Run the augmenting path algorithm until 

there is no augmenting path.  Let X be the set 

of vertices reachable from s by a path of of vertices reachable from s by a path of 

residual arcs, Y the rest.  Then y ∈ Y, so X, Y is a 

cut.  Also, if (x, y) ∈ E with x ∈ X & y ∈ Y, then 

c(x, y) = f(x, y), so c(X, Y) = f(X, Y).



Termination?

Proof of max-flow, min-cut theorem requires 

that the augmenting path algorithm 

terminates.

Ford & Fulkerson: If arc capacities are integers, 

each augmentation increases the flow value each augmentation increases the flow value 

by at least 1, so algorithm must terminate: 

sum of arc capacities is an upper bound on 

#augmentations. This argument extends to 

fractional capacities.  Also, if arc capacities are 

integers, there is an integral maximum flow. 



What if capacities are irrational?

How many augmentations?How many augmentations?



Augmenting path s, a, b, t
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Augmenting path s, b, a, t
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Augmenting path s, b, a, t
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#augmentations not polynomial in graph size 

and #bits needed to represent capacities

If capacities are irrational, algorithm need not 

terminate, flow value need not converge to terminate, flow value need not converge to 

maximum (even though it will converge).



Efficiency requires a good choice of augmenting 

paths

Edmonds &Karp: Choose augmenting path with 

fewest arcs: O(nm) augmentations, O(nm2) 

time.

Dinic: In each phase, find all augmenting paths 

with k arcs but no fewer: reduces amortized 

time per augmentation from O(m) to O(n), 

total time to O(n2m) (just like Hopcroft-Karp 

bipartite matching algorithm)  



Faster, simpler algorithms

Break computation into smaller parts: change 

flow on one arc at a time, move flow along 

estimated shortest path to sink

Allow (temporary) excess flow at a vertex: 

preflow (e(v) ≥ 0 for v ≠ s)

Vertex v ∉ {s, t} is active if e(v) > 0



valid vertex labeling d

d(v) is a non-negative integer,

d(t) = 0, d(s) = n,

d(v) ≤ d(w) + 1 if (v, w) is residuald(v) ≤ d(w) + 1 if (v, w) is residual

→ d(v) is at most the number of arcs on a 

residual path from v to t, if there is such a 

path   



Preflow push algorithm

d ← 0; d(s) ← n; f ← 0; 

for (s, v) ∈ E do f(s, v) ← c(s, v);

while ∃ active v do

if ∃ residual (v, w) ∋ d(v) > d(w) thenif ∃ residual (v, w) ∋ d(v) > d(w) then

f(v, w) ← f(v, w) + min{e(v), r(v, w)}

[push: saturating if it saturates (v, w), non-

saturating otherwise ]

else d(v) ← 1 + min{d(w)|(v, w) residual} [label]



After initialization: flows, labels
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Process a: label, push to b 
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Process b: label, push to t 
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Process b: label, push to a 
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Process a: push to t, no active vertices 
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Basic properties of algorithm

After initialization, labeling is valid; while loop 
maintains validity  

f is always a preflow.   

e(t) at any later time ≤ Σ{e(v)|d(v) < n}Σ

If e(v) > 0, there is a simple path of positive flow 
from s to v (proof: exercise)

If e(v) > 0, d(v) < 2n – 1: there is a residual path 
from v to s along which d can decrease by at 
most 1 per arc  



At most 2n – 1 labelings per vertex.  Time to 

label a vertex is O(degree).  Time for all 

labelings is O(nm).

Implementation of pushes: For each vertex v, 

maintain a current arc (v, w).  To process v in 

while loop, do a push on current arc if while loop, do a push on current arc if 

allowed; if not, replace current arc by next arc 

on arc list; if current arc is last on list, label v

At most one saturating push per incident arc 

between labelings of v → O(nm) saturating 

pushes, O(1) time per push + O(nm) overhead 



How many non-saturating pushes?

How to choose vertices for processing?



Variants

Label-tightening: Periodically, set all labels equal 

to their maximum possible values (via BFS 

backward from t followed by BFS backward 

from s).  Takes O(m) time

Lazy return of excess: do no steps at vertices of 

label ≥n.  Once done, return excess flow to s by 

finding paths of positive flow from s to vertices 

of label ≥n and reducing the flow on such paths.  

Simple implementation takes O(nm) time  



Running time by choice of vertices

Any order: O(n2m) time

Queue of active vertices(FIFO): O(n3) time

Highest label: O(n2m½) timeHighest label: O(n2m½) time

Large excess: O(n2lgU + nm) time, if capacities 

are integers ≤U



Analysis: charge non-saturating pushes against 

other steps via a potential functionother steps via a potential function



Generic method

Φ = Σ{d(v)|v active}

0 ≤ Φ ≤ 2n2 

A non-saturating push decreases Φ by at least 

one → amortized cost ≤ 0one → amortized cost ≤ 0

Amortized cost of a label of v = Δd(v)

Amortized cost of a saturating push ≤ 2n

→ #non-saturating pushes = O(n2m)



FIFO method

Define passes:

pass 0 = processing of initially active vertices 

pass k + 1 = processing of vertices added to 

queue during pass k

Φ = max{nd(v)|v active}

0 ≤ Φ ≤ 2n2 

A pass does at most n non-saturating pushes, at 

most one per vertex, has actual cost at most n



A pass that increases labels by a total of k

increases Φ by at most (k – 1)n → amortized 

cost ≤ kn → total amortized cost ≤ 2n3cost ≤ kn → total amortized cost ≤ 2n

→ O(n3) running time



Large-excess method

Assume capacities are integral, at most U

Δ is a scale factor, initially the smallest power of 

two no less than U

An excess is big if it is at least Δ/2

Process a vertex with big excess; break a tie in 

favor of smallest label.  Never allow an excess 

to exceed Δ.  When all active vertices have 

small excess, divide Δ by 2 



To maintain bound on excesses during a push: 

increase f(v, w) by min{e(v), r(v, w), Δ – e(w)}

If e(v) is big, e(w) is not big, and the push is non-

saturating, then it increases e(w) by at least saturating, then it increases e(w) by at least 

Δ/2

Overhead to implement big-excess rule is O(nm)   



A phase is the time between changes in Δ.  

During the last phase, Δ = 1 → #phases ≤ lgU

Φ = Σ{2e(v)d(v)/Δ|v active}

0 ≤ Φ ≤ 4n2

Each non-saturating push decreases Φ by at 

least 1 → amortized cost of a non-saturating 

push is at most 0

Label increase of k increases Φ by at most 2k, 

≤4n2 over all relabelings



Decrease in Δ doubles Φ, increasing Φ by at 

most 2n2 per change in Δ, at most 2n2lgU over 

all phases

→ O(n2lgU + nm) running time


