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1.  FIFO(Round-Robin) Version

In this version of the algorithm, we maintain a queue of all the active vertices (those with positive excess).  We pop the first vertex off of the queue and discharge it by applying pushing and relabeling steps to it until its excess is reduced to zero.  If a push makes a vertex active, we inject it into the back of the queue.

The running time of this method is 
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plus 
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per nonsaturating push, since the time for queue operations is 
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per push.  (The time for the 
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 relabelings is 
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 the number of saturating pushes and the time they take is 
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 the time per nonsaturating push is 
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 and the time spent finding edges on which to do pushes is 
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plus 
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per nonsaturating push.)  We shall bound the number of nonsaturating pushes, and hence the total running time, by 
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 To do this, we define passes through the queue as follows.  Pass one consists of the discharges done on vertices initially on the queue (once the arcs out of 
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 are saturated).  Pass 
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consists of the discharges done on vertices added to the queue during pass 
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 During each pass, there is at most one discharge per vertex, and thus at most one nonsaturating push per vertex, since such a push reduces the vertex excess to zero.  We shall derive an 
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bound on the number of passes, giving the desired 
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bound on the number of nonsaturating pushes.  Since there are 
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 relabelings, there are 
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 passes that do at least one relabeling.  To bound the number of passes that do not do a relabeling, let 
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 is always at least zero and at most 2n2.  A pass that does not do a relabeling decreases 
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 by at least one.  The total increase in 
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 over all passes is at most the total label increase, which is at most 2n2.  Hence the number of passes that do not do a relabeling is 
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.  Hence the total number of passes is 
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2. Big-Excess Version(assuming integer arc capacities)

In this version of the algorithm, we maintain a parameter 
[image: image25.wmf]V

that is an upper bound on the maximum excess.  Initially 
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 is the initial maximum excess, equal to the maximum of the capacities of the arcs leaving the source, say U.  Pushes are only done on vertices with excess exceeding 
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 We call such vertices big.  Once there are no big vertices, 
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 is divided by 2 and rounded down to the nearest integer, and pushing continues.  Once 
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 is less than one, all excesses must be zero, since the algorithm maintains flow integrality.  In order to guarantee that the algorithm always makes forward progress, we must modify the pushing step so that it never creates a vertex excess exceeding 
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  In particular, when pushing from 
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[image: image32.wmf],

w

 the amount of flow moved is min{e(v), cf (v,w), 
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– e(w)}.
We still need a way to select big vertices for processing.  A good method is to select a big vertex of minimum label.  With this method, any nonsaturating push moves at least 
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 units of flow.  Consider the potential function 
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 = ( (e(v)d(v) / (2
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  This potential is initially zero, always non-negative, and at most 
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  Any push reduces the potential, a nonsaturating push reduces it by at least one, and the only increases in potential are due to relabelings, which cause a total increase of 
[image: image39.wmf]2

O(),

n

 and changes in 
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 each of which can cause an increase in 
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 by up to 
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(from 
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 Thus the total number of nonsaturating pushes is 
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and the total running time is 
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 assuming that the overhead to select big vertices for processing is not too large.

Exercise: Describe a way to implement big vertex selection within the claimed time bound.     
3.  Biggest Label Selection

In this version of the algorithm, we maintain an array of buckets indexed by label.  Each bucket contains the vertices with positive excess having that label.  We also maintain a pointer to the highest non-empty bucket.  We discharge a vertex in the highest bucket.  Maintaining the pointer takes 
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time overall, since it only increases by the amount by which a label increases.

Cheriyan and Mehlhorn found a beautiful potential-based analysis. To count non-saturating pushes, we define the potential of a vertex of positive excess to be the number of vertices (with positive excess or not) with at its label or a smaller label.  This includes itself. We define the total potential to be the sum of the vertex potentials.  A nonsaturating push from a vertex of highest label decreases the potential by at least the number of vertices with the label. A saturating push can create a new vertex with positive excess.  Such a push increases the potential by at most n.  A relabel can also increase the potential by at most n.  The total increase in potential over the entire algorithm is thus 
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 dominated by the increase due to saturating pushes.  Define a phase to consist of all non-saturating pushes while the maximum label of a positive-excess vertex does not change: a phase ends either when a vertex is relabeled or when all vertices of highest label push all their excess to the next lower level. There is at most one nonsaturating push per active vertex per phase, and at most 
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 phases.  (Why?)  A big push is a non-saturating push that happens when there are at least k active vertices of maximum label; a small push is one that happens when there are fewer than k active vertices of maximum level.  Each non-saturating push during a phase except the last decreases the number of vertices of positive excess and maximum level by one.  Thus there are at most k small pushes per phase, for a total over all phases of at most 
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k.  Each big push decreases the potential by at least k, so the total number of saturating pushes during big phases is at most 
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  To balance these amounts, we choose 
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 Then the total number of non-saturating pushes, as well as the running time of the algorithm, is 
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Exercise: Plug constants into the argument above.  Choose k to exactly balance the two terms.  What is the value of k?  
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