Path Compression and Making the Inverse Ackermann Function Appear Natural(ly)

Raimund Seidel

Universität des Saarlandes

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$O(m \cdot \alpha(m,n) + n)$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$O(m \cdot \alpha(m,n) + n)$$

where $\alpha(m,n)$ is the "Functional Inverse" of the Ackermann Function.

What is this $\alpha(m,n)$??

What is this $\alpha(m,n)$??

Why does this $\alpha(m,n)$ appear in the analysis of path compression??

What is this $\alpha(m,n)$??

This definition of $\alpha(m,n)$ is not particularly enlightening.

Why does this $\alpha(m,n)$ appear in the analysis of path compression??

Maintain partition of $S = \{1,2,\dots,n\}$ under operations

Maintain partition of $S = \{1,2,\dots,n\}$

under operations

Union(2,4)

Maintain partition of $S = \{1,2,\dots,n\}$

under operations

Union(2, 4)

Find(3) = $\underline{6}$ (representative element)

Implementation

- * forest \mathcal{F} of rooted trees with node set 5
- * one tree for each group in current partition
- * root of tree is representative of the group

Implementation

- * forest F of rooted trees with node set 5
- * one tree for each group in current partition
- * root of tree is representative of the group

Implementation

- * forest \mathcal{F} of rooted trees with node set 5
- * one tree for each group in current partition
- * root of tree is representative of the group

Find(x) follow path from x to root

"path follwoing"

Heuristic 1: "linking by rank"

- each node x carries integer rk(x)
- initially rk(x) = 0
- as soon as x is NOT a root, rk(x) stays unchanged
- for Union(x,y) make node with smaller rank
 child of the other
 in case of tie, increment one of the

ranks

Heuristic 2: Path compression

when performin a Find(x) operation make all nodes in the "findpath" children of the root

sequence of Union and Find operation

Explicit cost model:

cost(op) = # times some node gets a new parent

```
Time for Union(x,y) = O(1) = O(cost(Union(x,y)))

Time for Find(x) = O(\# of nodes on findpath)

= O(2 + cost(Find(x)))
```


For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

General path compression in forest \mathcal{F}

General path compression in forest \mathcal{F}

General path compression in forest \mathcal{F}

Problem formulation

F forest on node set X

c sequence of compress operations on \mathcal{F}

|C| = # of true compress operations in C

 $cost(C) = \sum(cost of individual operations)$

How large can cost(C) be at most, in terms of |X| and |C|?

Idea:

For the analysis try "divide and conquer."

Idea:

For the analysis try "divide and conquer."

Question:

How do you "divide"?

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. $x \in X_+ \Rightarrow$ every ancestor of x is in X_+ also

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. $x \in X_{t} \Rightarrow$ every ancestor of x is in X_{t} also

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. $x \in X_t \Rightarrow$ every ancestor of x is in X_t also

Note: X_t , X_b dissection for \mathcal{F} \mathcal{F}' obtained from \mathcal{F} by sequence of path compressions

 X_t , X_b is dissection for \mathcal{F}'

Main Lemma:

 \mathcal{C} ... sequence of operations on \mathcal{F} with node set X X_t , X_b dissection for \mathcal{F} inducing subforests \mathcal{F}_t , \mathcal{F}_b

Main Lemma:

 \mathcal{C} ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

 \Rightarrow \exists compression sequences C_b for \mathcal{F}_b and C_t for \mathcal{F}_t with

$$|C_b| + |C_t| \leq |C|$$

and

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Proof: 1) How to get C_b and C_t from C:

Proof: 1) How to get C_b and C_t from C:

compression paths from C

case 1:

into C_t

Proof: 1) How to get C_b and C_t from C:

compression paths from C

case 1:

into C_{\dagger}

case 2:

into C_b

Proof: 1) How to get C_b and C_t from C:

compression paths from C

case 1:

case 2:

case 3:

into C_{t}

into C_b

into C_{+}

into C_b

"rootpath compress"

"rootpath compress"

 $cost(compress(x, \infty)) = # of nodes that get a new parent$

Proof:

 $|C_{\mathsf{b}}| + |C_{\mathsf{t}}| \leq |C|$

compression paths from C

case 1:

case 2:

case 3:

$$\sum_{b}^{\infty} - \sum_{b}^{\infty} in \neq 0 C_{b}$$

cost(C)

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

cost(C)

green node gets new green parent:

accounted by $cost(C_t)$

cost(C)

brown node gets new brown parent:

accounted by $cost(C_t)$

accounted by $cost(C_b)$

cost(C)

green node gets new green parent:

accounted by $cost(C_b)$

brown node gets new brown parent:

accounted by $|X_b|$

brown node gets new green parent: for the first time

cost(C)

4

green node gets new green parent:

brown node gets new brown parent:

brown node gets new green parent: for the first time accounted by $cost(C_t)$

accounted by $cost(C_b)$

accounted by $|X_b|$ - $\#\text{roots}(\mathcal{F}_b)$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| - \#roots(\mathcal{F}_b) + |C_t|$

cost(C)

green node gets new green parent:

brown node gets new brown parent:

brown node gets new green parent: for the first time

accounted by $cost(C_t)$

accounted by $cost(C_b)$

accounted by $|X_b|$ - $\#\text{roots}(\mathcal{F}_b)$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| - \#roots(\mathcal{F}_b) + |C_t|$

cost(C)

green node gets new green parent:

brown node gets new brown parent:

brown node gets new green parent: for the first time

brown node gets new green parent:

again

accounted by $cost(C_t)$

accounted by $cost(C_b)$

accounted by $|X_b|$ - $\#\text{roots}(\mathcal{F}_b)$

accounted by $|C_t|$

Main Lemma':

 \mathcal{C} ... sequence of operations on \mathcal{F} with node set X X_{t} , X_{b} dissection for \mathcal{F} inducing subforests \mathcal{F}_{t} , \mathcal{F}_{b}

 \Rightarrow \exists compression sequences C_b for \mathcal{F}_b and C_t for \mathcal{F}_t with

$$|C_{\mathsf{b}}| + |C_{\mathsf{t}}| \leq |C|$$

and

f(m,n) ... maximum cost of any compression sequence C with |C|=m in an arbitrary forest with n nodes.

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

Proof:

forest ${\cal F}$

C compression sequence |C|=m

Proof:

forest \mathcal{F}

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence

Proof:

forest F

$$|X|=n$$

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence

Main Lemma
$$\Rightarrow \exists C_{\dagger}, C_{b} |C_{b}| + |C_{\dagger}| \leq |C|$$

$$m_{b} + m_{t} \leq m$$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Proof:

forest J

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence

Main Lemma
$$\Rightarrow \exists C_{\dagger}, C_{b} |C_{b}| + |C_{\dagger}| \leq |C|$$

 $m_{b} + m_{\dagger} \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction: $\leq (m_b+n/2)\log n/2 + (m_t+n/2)\log n/2 + n/2 + m_t$

Proof:

forest F

$$\langle |=n \qquad \mathcal{F}_{\dagger} \qquad X_{\dagger} \qquad \mathcal{F}_{\bullet} \qquad \mathcal{F}$$

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence

Main Lemma
$$\Rightarrow \exists C_{t}, C_{b} |C_{b}| + |C_{t}| \leq |C|$$

 $m_{b} + m_{t} \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction:
$$\leq (m_b+n/2)\log n/2 + (m_t+n/2)\log n/2 + n/2 + m_t$$

$$\leq (m_b + m_t + n/2 + n/2) \log n/2 + n + m$$

Proof:

forest J

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence |C|=m

Main Lemma
$$\Rightarrow \exists C_{t}, C_{b} |C_{b}| + |C_{t}| \leq |C|$$

 $m_{b} + m_{t} \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction: $\leq (m_b+n/2)\log n/2 + (m_t+n/2)\log n/2 + n/2 + m_t$

$$\leq (m_b + m_t + n/2 + n/2) \log n/2 + n + m$$

$$\leq (m+n) \cdot \log_2 n/2 + (m+n) = (m+n) \cdot \log_2 n$$
 SAARLAND UNIVERSITY

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

 $O((m+n) \cdot \log n)$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

 $O((m+n) \cdot \log n)$

By choosing a dissection that is "unbalanced" in relation to m/n one can prove a better bound of

 $O((m+n)\cdot\log_{\lceil m/n\rceil+1}n)$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

 $O((m+n) \cdot \log n)$

By choosing a dissection that is "unbalanced" in relation to m/n one can prove a better bound of

 $O((m+n) \cdot \log_{\lceil m/n \rceil + 1} n)$

Proof: exercise

$$f: \mathbb{N} \to \mathbb{R}$$

$$f: \mathbb{N} \to \mathbb{R}$$

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$\mathsf{f}:\mathbb{N} o \mathbb{R}$$

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = \min \{ k \mid \underbrace{f(f(\cdots f(n)\cdots) \leq 1}_{k \text{ times}} \}$$

$$f: \mathbb{N} \to \mathbb{R}$$

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = \min \{ k \mid \underbrace{f(f(\cdots f(n)\cdots) \leq 1}_{k \text{ times}} \}$$

Properties: f a "nice" compaction, i.e. f(n) < n-1 $\Rightarrow f^*$ a "nice" compaction and f^* "much smaller" than f

Examples for f*:

f(n)

f*(n)

n-1

n-1

n-2

n/2

n-c

n/c

n/2

log₂n

n/c

log_cn

 \sqrt{n}

log log n

log n

log*n

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```



```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!


```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!

Lemma: $r(x)=r \Rightarrow x$ has at least r children.


```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!

```
Lemma: r(x)=r \Rightarrow x has at least r children and at least 2^r descendants.
```


Inheritance Lemma:

Frank forest with maximum rank r and node set X

Inheritance Lemma:

Frank forest with maximum rank r and node set X

$$\mathbf{S} \in \mathbb{N}: \quad \mathbf{X}_{>s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) > \mathbf{s} \} \qquad \mathcal{F}_{>s} \quad \text{induced forests} \\ \mathbf{X}_{\leq s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) \leq \mathbf{s} \} \qquad \mathcal{F}_{\leq s} \quad \text{induced forests}$$

- i) $X_{\leq s}$, $X_{>s}$ is a dissection for \mathcal{F}
- ii) $\mathcal{F}_{\leq s}$ is a rank forest with maximum rank $\leq s$
- iii) $\mathcal{F}_{>s}$ is a rank forest with maximum rank $\leq r-s-1$

Inheritance Lemma:

Frank forest with maximum rank r and node set X

- i) $X_{\leq s}$, $X_{>s}$ is a dissection for \mathcal{F}
- ii) $\mathcal{F}_{\leq s}$ is a rank forest with maximum rank $\leq s$
- iii) $\mathcal{F}_{>s}$ is a rank forest with maximum rank < r-s-1

Inheritance Lemma:

Frank forest with maximum rank r and node set X

- i) $X_{\leq s}$, $X_{>s}$ is a dissection for \mathcal{F}
- ii) $\mathcal{F}_{\leq s}$ is a rank forest with maximum rank $\leq s$
- iii) $\mathcal{F}_{>s}$ is a rank forest with maximum rank $\leq r-s-1$

Proofs: exercise

f(m,n,r) = maximum cost of any compression sequence C, with <math>|C|=m, in rank forest \mathcal{F} with n nodes and maximum rank r.

f(m,n,r) = maximum cost of any compression sequence C, with <math>|C|=m, in rank forest \mathcal{F} with n nodes and maximum rank r.

Trivial bounds:

$$f(m,n,r) \leq (r-1)\cdot n$$

$$f(m,n,r) \leq (r-1)\cdot m$$

f(m,n,r) = maximum cost of any compression sequence C, with |C|=m, in rank forest \mathcal{F} with n nodes and maximum rank r.

Trivial bounds:

$$f(m,n,r) \leq (r-1)\cdot n$$

$$f(m,n,r) \leq (r-1)\cdot m$$

$$f(m,n,r) \leq m + (r-2) \cdot n$$

$$r \left\{ \begin{array}{c|c} \mathcal{F}_{t} \\ \hline \mathcal{F}_{b} \end{array} \right\} r-s-1 < r \qquad |X_{>s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{\leq s}| = n_{b} = n-n_{t} \qquad |C_{b}| = m_{b} \end{array}$$

$$cost(C) \leq cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

$$r \left\{ \begin{array}{c|c} \mathcal{F}_{t} \\ \hline \mathcal{F}_{b} \end{array} \right\} r-s-1 < r \qquad |X_{>s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{\leq s}| = n_{b} = n-n_{t} \qquad |C_{b}| = m_{b} \end{array}$$

$$\begin{aligned} & cost(\ C\) \leq \ cost(\ C_t\)\ +\ |cost(\ C_b\)\ +\ |X_b|\ -\ \#rts(\mathcal{F}_b) +\ |C_t| \\ & \leq \ f(m_t,n_t,r-s-1)\ + \end{aligned}$$

$$r \left\{ \begin{array}{c|c} \mathcal{F}_{t} \\ \hline \mathcal{F}_{b} \end{array} \right\} r-s-1 < r \qquad |X_{>s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{\leq s}| = n_{b} = n-n_{t} \qquad |C_{b}| = m_{b} \end{array}$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| - \#rts(\mathcal{F}_{b}) + |C_{t}|$$

$$\le f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) +$$

$$r \left\{ \begin{array}{c|c} \mathcal{F}_{t} \\ \hline \mathcal{F}_{b} \end{array} \right\} r-s-1 < r \qquad |X_{>s}| = n_{t} \qquad |C_{t}| = m_{t} \\ |X_{\leq s}| = n_{b} = n-n_{t} \qquad |C_{b}| = m_{b} \end{array}$$

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

 $\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t -$

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

 $\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t - (s+1) \cdot n_t +$

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

 $\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t - (s+1) \cdot n_t +$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| - \#rts(\mathcal{F}_{b}) + |C_{t}|$$

$$\le f(m_{t}, n_{t}, r-s-1) + f(m_{b}, n_{b}, s) + n-n_{t} - (s+1) \cdot n_{t} + m_{t}$$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$cost(C) \le cost(C_t) + cost(C_b) + |X_b| - \#rts(\mathcal{F}_b) + |C_t|$$

 $\le f(m_t, n_t, r-s-1) + f(m_b, n_b, s) + n-n_t - (s+1) \cdot n_t + m_t$

Each node in \mathcal{F}_{t} has at least s+1 children in \mathcal{F}_{b} , and they must all be different roots of \mathcal{F}_{b} .

$$f(m,n,r) \le f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$f(m,n,r) \le f(m_t,n_t,r-s-1) + f(m_b,n_b,s) + n - (s+2)\cdot n_t + m_t$$

$$n_{t} + n_{b} = n$$

 $m_{t} + m_{b} \le m$ $0 \le s < r$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = \frac{n}{m}$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) & \leq k \cdot m_{t} + n_{t} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t} \\ & \leq k \cdot m_{t} + n_{t} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{t} + m_{t} \end{split}$$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = \frac{n}{m}$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) & \leq k \cdot m_{t} + n_{t} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t} \\ & \leq k \cdot m_{t} + n_{t} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{t} + m_{t} \end{split}$$

choose
$$s = g(r)$$

$$f(m,n,r) \leq f(m_{t},n_{t},r-s-1) + f(m_{b},n_{b},s) + n - (s+2)\cdot n_{t} + m_{t}$$

$$\frac{n_{t} + n_{b}}{m_{t} + m_{b}} = \frac{n}{m}$$
 $0 \le s < r$

$$\begin{split} f(m,n,r) & \leq k \cdot m_{t} + n_{t} \cdot g(r-s-1) + f(m_{b},n_{b},s) + n - (s+2) \cdot n_{t} + m_{t} \\ & \leq k \cdot m_{t} + n_{t} \cdot g(r) + f(m_{b},n_{b},s) + n - s \cdot n_{t} + m_{t} \end{split}$$

choose
$$s = g(r)$$

 $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n_b,s) + n$
 $\le (k+1) \cdot m_t + f(m_b,n,s) + n$

$$s = g(r)$$

$$f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$$

$$s = g(r)$$

$$f(m,n,r) \leq (k+1) \cdot m_t + f(m_b,n,s) + n - (k+1) \cdot (m_b + m_t)$$

$$s = g(r)$$
 m $f(m,n,r) \le (k+1)\cdot m_t + f(m_b,n,s) + n$ $-(k+1)\cdot (m_b+m_t)$

$$s = g(r)$$
 m $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$ $-(k+1) \cdot (m_b + m_t)$

$$f(m,n,r) - (k+1)\cdot m \le f(m_b,n,s) - (k+1)\cdot m_b + n$$

$$s = g(r)$$
 m $f(m,n,r) \le (k+1) \cdot m_t + f(m_b,n,s) + n$ $-(k+1) \cdot (m_b + m_t)$

$$f(m,n,r) - (k+1) \cdot m \le f(m_b,n,s) - (k+1) \cdot m_b + n$$

 $\phi(m,n,r) \le \phi(m_b,n,g(r)) + n$

$$s = g(r)$$

$$f(m,n,r) \leq (k+1) \cdot m_{+} + f(m_{b},n,s) + n$$

$$-(k+1) \cdot (m_{b}+m_{+})$$

$$f(m,n,r) - (k+1) \cdot m \leq f(m_{b},n,s) - (k+1) \cdot m_{b} + n$$

$$\phi(m,n,r) \leq \phi(m_{b},n,g(r)) + n$$

$$\leq (\phi(m_{bb},n,g(g(r))) + n) + n$$

$$s = g(r)$$

$$f(m,n,r) \leq (k+1) \cdot m_{+} + f(m_{b},n,s) + n$$

$$-(k+1) \cdot (m_{b}+m_{+})$$

$$f(m,n,r) - (k+1) \cdot m \leq f(m_{b},n,s) - (k+1) \cdot m_{b} + n$$

$$\phi(m,n,r) \leq \phi(m_{b},n,g(r)) + n$$

$$\leq (\phi(m_{bb},n,g(g(r))) + n) + n$$

$$\leq ((\phi(m_{bb},n,g(g(g(r)))) + n) + n) + n$$

$$\begin{array}{lll} s = g(r) & & & & \\ f(m,n,r) \leq & (k+1) \cdot m_{t} + f(m_{b},n,s) + n & & -(k+1) \cdot (m_{b} + m_{t}) \\ \\ f(m,n,r) - & (k+1) \cdot m \leq & f(m_{b},n,s) - & (k+1) \cdot m_{b} + n \\ \\ \phi(m,n,r) & \leq & \phi(m_{b},n,g(r)) & + n \\ \\ \leq & \left(\phi(m_{bb},n,g(g(r))) + n \right) + n \\ \\ \leq & \left((\phi(m_{bbb},n,g(g(g(r)))) + n \right) + n \\ \\ \phi(m,n,r) & \leq & n \cdot g^{*}(r) \end{array}$$

$$\begin{split} s &= g(r) & \\ f(m,n,r) \leq (k+1) \cdot m_{+} + f(m_{b},n,s) + n & \\ -(k+1) \cdot (m_{b} + m_{t}) \\ f(m,n,r) - (k+1) \cdot m \leq f(m_{b},n,s) - (k+1) \cdot m_{b} + n \\ \phi(m,n,r) & \leq \phi(m_{b},n,g(r)) + n \\ & \leq (\phi(m_{bb},n,g(g(r))) + n) + n \\ & \leq ((\phi(m_{bbb},n,g(g(g(r)))) + n) + n) + n \\ \phi(m,n,r) & \leq n \cdot g^{*}(r) \\ f(m,n,r) & \leq (k+1) \cdot m + n \cdot g^{*}(r) \\ \end{split}$$

SAARLAND UNIVERSITY COMPUTER SCIENCE

Shifting Lemma:

```
If f(m,n,r) \le k \cdot m + n \cdot g(r)
then also f(m,n,r) \le (k+1) \cdot m + n \cdot g^*(r)
```

Shifting Lemma:

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+1) \cdot m + n \cdot g^*(r)$

Shifting Corollary:

```
If f(m,n,r) \le k \cdot m + n \cdot g(r) then also f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r) for any i \ge 0
```


If $f(m,n,r) \le k \cdot m + n \cdot g(r)$ then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**\dots^*}(r)$ for any $i \ge 0$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \ge 0$

Trivial bound: $f(m,n,r) \leq n \cdot (r-1)$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**\dots^*}(r)$
for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \le n \cdot (r-1)$$

= $0 \cdot m + n \cdot (r-1)$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \le n \cdot (r-1)$$

= $0 \cdot m + n \cdot (r-1)$

$$g(r) = r-1$$

 $g^*(r) = r-1$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**\dots^*}(r)$
for any $i \ge 0$

Trivial bound: $f(m,n,r) \le m + n \cdot (r-2)$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \le m + n \cdot (r-2)$$

= $1 \cdot m + n \cdot (r-2)$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \le m + n \cdot (r-2)$$

= $1 \cdot m + n \cdot (r-2)$
 $g(r) = r-2$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$
 then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$ for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \le m + n \cdot (r-2)$$

= $1 \cdot m + n \cdot (r-2)$
 $g(r) = r-2$
 $g^*(r) = r/2$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \leq m + n \cdot (r-2)$$
$$= 1 \cdot m + n \cdot (r-2)$$
$$g(r) = r-2$$
$$g^*(r) = r/2 \qquad f(m,n,r) \leq 2 \cdot m + n \cdot (r/2)$$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$
 then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$ for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \le m + n \cdot (r-2)$$

= $1 \cdot m + n \cdot (r-2)$
 $g(r) = r-2$
 $g^*(r) = r/2$ $f(m,n,r) \le 2 \cdot m + n \cdot (r/2)$
 $g^{**}(r) = \log r$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \ge 0$

Trivial bound:
$$f(m,n,r) \le m + n \cdot (r-2)$$

= $1 \cdot m + n \cdot (r-2)$
 $g(r) = r-2$
 $g^*(r) = r/2$ $f(m,n,r) \le 2 \cdot m + n \cdot (r/2)$
 $g^{**}(r) = \log r$ $f(m,n,r) \le 3 \cdot m + n \cdot \log r$

If $f(m,n,r) \le k \cdot m + n \cdot g(r)$ then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**\dots^*}(r)$ for any $i \ge 0$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r)$
for any $i \ge 0$

We know bound: $f(m,n,r) \leq 3 \cdot m + n \cdot \log r$

If
$$f(m,n,r) \le k \cdot m + n \cdot g(r)$$

then also $f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**\dots^*}(r)$
for any $i \ge 0$

We know bound: $f(m,n,r) \leq 3 \cdot m + n \cdot \log r$

Therefore for any
$$i \ge 0$$
:
$$f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot r$$

For any $i \ge 0$: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)$

Define
$$\alpha(r) = \min\{i \mid log^{**...*}(r) \leq i\}$$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

Define
$$\alpha(r) = \min\{i \mid \log^{**} \cdot \cdot \cdot^*(r) \leq i\}$$

Here is your definition of the Inverse Ackermann Function!

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

Define
$$\alpha(r) = \min\{i \mid \log^{**} \cdot \cdot \cdot^*(r) \leq i\}$$

$$f(m,n,r) \leq (m+n)(3+\alpha(r))$$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

Define
$$\alpha(r) = \min\{i \mid log^{**} \dots^*(r) \leq i\}$$

$$f(m,n,r) \leq (m+n)(3+\alpha(r))$$

$$\leq$$
 (m+n)(3+ α (log n))

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)$

For
$$t \ge 1$$
 define $\alpha_t(r) = \min\{i \mid log^{**...*}(r) \le t\}$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

For
$$t \ge 1$$
 define $\alpha_t(r) = \min\{i \mid log^{**...*}(r) \le t\}$

Here is a parametrized definition of the Inverse Ackermann Function!!

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

For
$$t \ge 1$$
 define $\alpha_t(r) = \min\{i \mid log^{**...*}(r) \le t\}$

$$f(m,n,r) \leq (3+\alpha_{t}(r))\cdot m + n\cdot t$$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

For
$$t \ge 1$$
 define $\alpha_t(r) = \min\{i \mid log^{**...*}(r) \le t\}$
$$f(m,n,r) \le (3+\alpha_t(r)) \cdot m + n \cdot t$$
 choose $t = 1+m/n$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)$

For
$$t \ge 1$$
 define $\alpha_{t}(r) = \min\{i \mid log^{**...*}(r) \le t\}$
$$f(m,n,r) \le (3+\alpha_{t}(r))\cdot m + n \cdot t$$
 choose $t = 1+m/n$
$$f(m,n,r) \le (4+\alpha_{1+m/n}(r))\cdot m + n$$

For any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

For
$$t \ge 1$$
 define $\alpha_t(r) = \min\{i \mid log^{**}...*(r) \le t\}$
$$f(m,n,r) \le (3+\alpha_t(r))\cdot m + n \cdot t$$
 choose $t = 1+m/n$
$$f(m,n,r) \le (4+\alpha_{1+m/n}(r))\cdot m + n$$

$$\le (4+\alpha_{1+m/n}(log n))\cdot m + n$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$O(m \cdot \alpha(m,n) + n)$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$O(m \cdot \alpha(m,n) + n)$$

$$f(m,n,r) \leq (4+\alpha_{1+m/n}(\log n)) \cdot m + n$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$O(m \cdot \alpha(m,n) + n)$$

$$f(m,n,r) \leq (4+\alpha_{1+m/n}(\log n)) \cdot m + n$$

$$\alpha(m,n) = \alpha_{1+m/n}(\log n)$$

Shifting Lemma:

What to remember:

```
If f(m,n,r) \le k \cdot m + n \cdot g(r)
then also f(m,n,r) \le (k+1) \cdot m + n \cdot g^*(r)
```

Shifting Corollary:

```
If f(m,n,r) \le k \cdot m + n \cdot g(r) then also f(m,n,r) \le (k+i) \cdot m + n \cdot g^{**...*}(r) for any i \ge 0
```

```
Definition of \alpha:
\alpha(r) = \min\{i \mid \log^{**...*}(r) \leq i\}
```


We used
$$f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$$

We used $f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$ to get

```
for any i \ge 0: f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot^*(r)
```


We used
$$f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$$
 to get

for any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

Actually
$$f(m,n,r) \leq 1 \cdot m + n \cdot \log r$$

We used
$$f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$$
 to get

for any
$$i \ge 0$$
: $f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)$

Actually
$$f(m,n,r) \leq 1 \cdot m + n \cdot \log r$$
 (Exercise)

We used $f(m,n,r) \leq 1 \cdot m + n \cdot (r-2)$ to get

```
for any i \ge 0: f(m,n,r) \le (3+i)\cdot m + n \cdot \log^{**} \cdot \cdot \cdot (r)
```

Actually $f(m,n,r) \leq 1 \cdot m + n \cdot \log r$ (Exercise) and therefore

```
for any i \ge 0: f(m,n,r) \le (1+i)\cdot m + n \cdot \log^{**...*}(r)
```


Actually
$$f(m,n,r) \leq 1 \cdot m + n \cdot \log^* r$$
 (difficult example and therefore

For any
$$i \ge 0$$
:
$$f(m,n,r) \le i \cdot m + n \cdot \log^{**} \cdot r$$

f(m,n,r) for small values of r

f(m,n,r) for small values of r

$$f(m,n,0) = 0$$
 $f(m,n,1) = 0$ $f(m,n,2) \le m$

f(m,n,r) for small values of r

$$f(m,n,0) = 0$$
 $f(m,n,1) = 0$ $f(m,n,2) \le m$

 $f(m,n,r) \le m + n$ for $r \le 8$, i.e. for n < 512

f(m,n,r) for small values of r

$$f(m,n,0) = 0$$
 $f(m,n,1) = 0$ $f(m,n,2) \le m$

 $f(m,n,r) \le m + n$ for $r \le 8$, i.e. for n < 512

$$f(m,n,r) \le m + 2n$$
 for $r \le 202$, i.e. for $n < 2^{203}$

f(m,n,r) for small values of r

$$f(m,n,0) = 0$$
 $f(m,n,1) = 0$ $f(m,n,2) \le m$

$$f(m,n,r) \le m + n$$
 for $r \le 8$, i.e. for $n < 512$

$$f(m,n,r) \le m + 2n$$
 for $r \le 202$, i.e. for $n < 2^{203}$

(difficult exercises)

Similar proof for $O(m \cdot \alpha(m,n) + n)$ bound also works for

- * linking by weight and path compression
- * linking by rank and generalized path compaction

Similar proof for $O(m \cdot \alpha(m,n) + n)$ bound also works for

- * linking by weight and path compression
- * linking by rank and generalized path compaction

Open problem:

simple top-down approach for proving lower bounds

