Path Compression and Making the Inverse Ackermann Function Appear Natural(ly)

Raimund Seidel

Universität des Saarlandes

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$
O(m \cdot \alpha(m, n)+n)
$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$
O(m \cdot \alpha(m, n)+n)
$$

where $\alpha(m, n)$ is the "Functional Inverse" of the Ackermann Function.

What is this $\alpha(m, n)$??

What is this $\alpha(m, n)$??

Why does this $\alpha(m, n)$ appear in the analysis of path compression??

What is this $\alpha(m, n)$??

This definition of $\alpha(m, n)$ is not particularly enlightening.

Why does this $\alpha(m, n)$ appear in the analysis of path compression ??

Union Find with Path Compressions

Union Find with Path Compressions

Maintain partition of $S=\{1,2, \cdots, n\}$

under operations

Union Find with Path Compressions

Maintain partition of $S=\{1,2, \cdots, n\}$ under operations

Union (2, 4)

Union Find with Path Compressions

Maintain partition of $S=\{1,2, \cdots, n\}$ under operations

Union (2, 4)

Find (3) = 6 (representative element)

Implementation

* forest \mathcal{F} of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group
$\begin{array}{ccccc}2 & \frac{4}{\uparrow} & \frac{6}{\uparrow} & \underline{5} & \underline{9} \\ 1 & 1 & 1 & & \\ & & 3 & \\ & & \uparrow & & \\ & & 7 & & \end{array}$

Implementation

* forest \mathcal{F} of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

Implementation

* forest \mathcal{F} of rooted trees with node set S
* one tree for each group in current partition
* root of tree is representative of the group

Find (x) follow path from x to root

Heuristic 1: "linking by rank"

- each node x carries integer rk(x)
- initially $\mathrm{rk}(x)=0$
- as soon as x is NOT a root, rk(x) stays unchanged
- for Union (x, y) make node with smaller rank child of the other in case of tie, increment one of the

© Raimund Seidel
 ranks

Heuristic 2: Path compression

when performin a Find (x) operation make all nodes in the "findpath" children of the root

sequence of Union and Find operation

Explicit cost model:

$\operatorname{cost}(\mathrm{op})=\#$ times some node gets a new parent

Time for Union $(x, y)=O(1)=O(\operatorname{cost}(\operatorname{Union}(x, y)))$
Time for Find $(x)=O(\#$ of nodes on findpath)
$=O(2+\operatorname{cost}(\operatorname{Find}(x)))$

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

General path compression in forest \mathcal{F}

General path compression in forest \mathcal{F}

General path compression in forest \mathcal{F}

$\operatorname{cost}(\operatorname{compress}(x, y))=\#$ of nodes that get a new parent

Problem formulation

\mathcal{F} forest on node set X
C sequence of compress operations on \mathcal{F}
$|C|=\#$ of true compress operations in C

$\operatorname{cost}(C)=\sum($ cost of individual operations $)$

How large can cost(C) be at most, in terms of $|X|$ and $|C|$?

Idea:

For the analysis try "divide and conquer."

Idea:

For the analysis try "divide and conquer."

Question:

How do you "divide"?

Dissection of a forest \mathcal{F} with node set X :
partition of X into "top part" X_{+} and "bottom part" X_{b}
so that top part X_{+}is "upwards closed",
i.e. $x \in X_{+} \Rightarrow$ every ancestor of x is in X_{+}also

Dissection of a forest \mathcal{F} with node set X :
partition of X into "top part" X_{+} and "bottom part" X_{b}
so that top part X_{+}is "upwards closed",
i.e. $x \in X_{+} \Rightarrow$ every ancestor of x is in X_{+}also

Dissection of a forest \mathcal{F} with node set X :
partition of X into "top part" X_{+} and "bottom part" X_{b}
so that top part X_{+}is "upwards closed",
i.e. $x \in X_{+} \Rightarrow$ every ancestor of x is in X_{+}also

Note: X_{t}, X_{b} dissection for \mathcal{F} \mathcal{F}^{\prime} obtained from \mathcal{F} by sequence of path compressions $\}$

Main Lemma:

C ... sequence of operations on \mathcal{F} with node set X X_{t}, X_{b} dissection for \mathcal{F} inducing subforests $\mathcal{F}_{+}, \mathcal{F}_{b}$

Main Lemma:

C... sequence of operations on \mathcal{F} with node set X X_{\dagger}, X_{b} dissection for \mathcal{F} inducing subforests $\mathcal{F}_{\dagger}, \mathcal{F}_{b}$
$\Rightarrow \exists$ compression sequences C_{b} for \mathcal{F}_{b} and C_{+}for \mathcal{F}_{\dagger} with

$$
\left|C_{b}\right|+\left|C_{+}\right| \leq|C|
$$

and

$$
\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+
$$

Proof: 1) How to get C_{b} and C_{+}from C :

Proof: 1) How to get C_{b} and C_{+}from C :

compression paths from C

case 1:

into C_{+}

Proof: 1) How to get C_{b} and C_{+}from C :

compression paths from C

case 1:

into C_{+}
case 2:
y
$\stackrel{1}{x}$
\times
$\stackrel{y}{x}$
into C_{b}

Proof: 1) How to get C_{b} and C_{+}from C :

compression paths from C

case 1:

into C_{+}
case 2:

into C_{b}
case 3:

into C_{+}
into C_{b}

"rootpath compress"

"rootpath compress"

$$
\begin{aligned}
& \operatorname{cost}(\operatorname{compress}(x, \infty))=\# \text { of nodes that get a } \\
& \text { new parent } \\
&=0
\end{aligned}
$$

Proof:

compression paths from C

case 1:

into C_{+}
case 2:
 into C_{b}
case 3:

$$
\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+\left|C_{+}\right|
$$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+\left|C_{+}\right|$

$\operatorname{cost}(C)$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+\left|C_{t}\right|$

$\operatorname{cost}(C)$

green node gets new green parent:

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+\left|C_{+}\right|$

$\operatorname{cost}(C)$

green node gets new green parent:
brown node gets new brown parent:
accounted by $\operatorname{cost}\left(C_{+}\right)$
accounted by $\operatorname{cost}\left(C_{b}\right)$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+\left|C_{+}\right|$

green node gets new green parent:
brown node gets new brown parent:
brown node gets new green parent: for the first time
accounted by $\operatorname{cost}\left(C_{+}\right)$
accounted by $\operatorname{cost}\left(C_{b}\right)$
accounted by $\left|X_{b}\right|$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+\left|C_{+}\right|$

$\operatorname{cost}(C)$

green node gets new green parent:
brown node gets new brown parent:
brown node gets new green parent: for the first time
accounted by $\operatorname{cost}\left(C_{+}\right)$
accounted by $\operatorname{cost}\left(C_{b}\right)$

accounted by $\left|X_{b}\right|$
- \#roots $\left(\mathcal{F}_{b}\right)$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|-\# \operatorname{roots}\left(\mathcal{F}_{b}\right)+$

green node gets new green parent:
brown node gets new brown parent:
brown node gets new green parent: for the first time
accounted by $\operatorname{cost}\left(C_{+}\right)$
accounted by $\operatorname{cost}\left(C_{b}\right)$

accounted by $\left|X_{b}\right|$
- \#roots $\left(\mathcal{F}_{b}\right)$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|-\# \operatorname{roots}\left(\mathcal{F}_{b}\right)+$

$\operatorname{cost}(C)$
green node gets new green parent:
brown node gets new brown parent:
brown node gets new green parent: for the first time
brown node gets new green parent: again
accounted by $\operatorname{cost}\left(C_{+}\right)$
accounted by $\operatorname{cost}\left(C_{b}\right)$
accounted by $\left|X_{b}\right|$
$-\# \operatorname{roots}\left(\mathcal{F}_{b}\right)$
accounted by $\left|C_{+}\right|$

Main Lemma':

C... sequence of operations on \mathcal{F} with node set X X_{+}, X_{b} dissection for \mathcal{F} inducing subforests $\mathcal{F}_{\dagger}, \mathcal{F}_{b}$
$\Rightarrow \exists$ compression sequences C_{b} for \mathcal{F}_{b} and C_{+}for \mathcal{F}_{\dagger} with

$$
\left|C_{b}\right|+\left|C_{+}\right| \leq|C|
$$

and

$$
\begin{aligned}
\operatorname{cost}(C) \leq & \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right) \\
& +\left|X_{b}\right|-\# \operatorname{roots}\left(\mathcal{F}_{b}\right)+
\end{aligned}
$$

$f(m, n)$... maximum cost of any compression sequence C with $|C|=m$ in an arbitrary forest with n nodes.

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$

C compression sequence $\quad|C|=m$

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$

Proof:

forest \mathcal{F}

$$
\left|X_{t}\right|=\left|X_{b}\right|=n / 2
$$

C compression sequence $\quad|C|=m$

$$
\begin{aligned}
& \text { Main Lemma } \Rightarrow \exists C_{+}, C_{b} \quad\left|C_{b}\right|+\left|C_{+}\right| \leq|C| \\
& m_{b}+m_{+} \leq m \\
& \operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right) \quad+\left|X_{b}\right|+\left|C_{+}\right|
\end{aligned}
$$

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$
Proof:
forest \mathcal{F}

$$
\left|X_{+}\right|=\left|X_{b}\right|=n / 2
$$

C compression sequence $\quad|C|=m$
Main Lemma $\Rightarrow \exists C_{+}, C_{b} \quad\left|C_{b}\right|+\left|C_{+}\right| \leq|C|$

$$
m_{b}+m_{t} \leq m
$$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right) \quad+\left|X_{b}\right|+\left|C_{+}\right|$
Induction: $\leq\left(m_{b}+n / 2\right) \log n / 2+\left(m_{+}+n / 2\right) \log n / 2+n / 2+m_{+}$

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$
Proof:
forest \mathcal{F}

$$
\left|X_{+}\right|=\left|X_{b}\right|=n / 2
$$

C compression sequence $\quad|C|=m$
Main Lemma $\Rightarrow \exists C_{+}, C_{b} \quad\left|C_{b}\right|+\left|C_{+}\right| \leq|C|$

$$
m_{b}+m_{t} \leq m
$$

$\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right) \quad+\left|X_{b}\right|+\left|C_{+}\right|$
Induction: $\leq\left(m_{b}+n / 2\right) \log n / 2+\left(m_{+}+n / 2\right) \log n / 2+n / 2+m_{+}$

$$
\leq\left(m_{b}+m_{+}+n / 2+n / 2\right) \log n / 2+n+m
$$

Claim: $\quad f(m, n) \leq(m+n) \cdot \log _{2} n$
Proof:
forest \mathcal{F}

$$
\left|X_{+}\right|=\left|X_{b}\right|=n / 2
$$

C compression sequence $\quad|C|=m$
Main Lemma $\Rightarrow \exists C_{+}, C_{b} \quad\left|C_{b}\right|+\left|C_{+}\right| \leq|C|$

$$
m_{b}+m_{t} \leq m
$$

$$
\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{b}\right)+\operatorname{cost}\left(C_{+}\right)+\left|X_{b}\right|+\left|C_{+}\right|
$$

Induction: $\leq\left(m_{b}+n / 2\right) \log n / 2+\left(m_{+}+n / 2\right) \log n / 2+n / 2+m_{+}$

$$
\leq\left(m_{b}+m_{+}+n / 2+n / 2\right) \log n / 2+n+m
$$

$$
\leq(m+n) \cdot \log _{2} n / 2+(m+n)=(m+n) \cdot \log _{2} n \text { SARAN }
$$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

$$
O((m+n) \cdot \log n)
$$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

$$
O((m+n) \cdot \log n)
$$

By choosing a dissection that is "unbalanced" in relation to m / n one can prove a better bound of

$$
O\left((m+n) \cdot \log _{[m / n]+1} n\right)
$$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

$$
O((m+n) \cdot \log n)
$$

By choosing a dissection that is "unbalanced" in relation to m / n one can prove a better bound of

$$
O\left((m+n) \cdot \log _{[m / n]+1} n\right)
$$

Proof: exercise

Path compression and union by rank

$f: \mathbb{N} \rightarrow \mathbb{R}$

Brief digression

$f: \mathbb{N} \rightarrow \mathbb{R}$

Brief digression

$$
f^{*}(n)= \begin{cases}0 & \text { if } n \leq 1 \\ 1+f^{*}(f(n)) & \text { if } n>1\end{cases}
$$

$f: \mathbb{N} \rightarrow \mathbb{R}$

Brief digression

$$
f^{*}(n)=\min \{k \mid \underbrace{f(f(\cdots \cdots \cdot f(n) \cdots) \leq 1\}}_{k \text { times }}
$$

$f: \mathbb{N} \rightarrow \mathbb{R}$

Brief digression

$$
f^{\star}(n)= \begin{cases}0 & \text { if } n \leq 1 \\ 1+f^{\star}(f(n)) & \text { if } n>1\end{cases}
$$

$$
f^{*}(n)=\min \{k \mid \underbrace{f(f(\cdots \cdots f(n) \cdots) \leq 1\}}_{k+\text { times }}
$$

> Properties: $\quad f$ a "nice" compaction, i.e. $f(n)<n-1$
> $\Rightarrow f^{*}$ a "nice" compaction and f^{*} "much smaller" than f

Examples for f^{*} :

Brief digression

$f(n)$	$f^{*}(n)$
$n-1$	$n-1$
$n-2$	$n / 2$
$n-c$	n / c
$n / 2$	$\log _{2} n$
n / c	$\log _{c} n$
\sqrt{n}	$\log ^{2} \log n$
$\log n$	$\log ^{*} n$

Path compression and union by rank

Def: \mathcal{F} forest, x node in \mathcal{F}

$$
r(x)=\text { height of subtree rooted at } x
$$

$$
(r(\text { leaf })=0 \quad)
$$

\mathcal{F} is a rank forest, if
for every node x for every i with $0 \leq i<r(x)$, there is a child y_{i} of x with $r\left(y_{i}\right)=i$.

Path compression and union by rank

Def: \mathcal{F} forest, x node in \mathcal{F} $r(x)=$ height of subtree rooted at x

$$
(r(\text { leaf })=0)
$$

\mathcal{F} is a rank forest, if
for every node x for every i with $0 \leq i<r(x)$, there is a child y_{i} of x with $r\left(y_{i}\right)=i$.

Note: Union by rank produces rank forests !

Path compression and union by rank

Def: \mathcal{F} forest, x node in \mathcal{F} $r(x)=$ height of subtree rooted at x ($r($ leaf $)=0$)
\mathcal{F} is a rank forest, if
for every node x for every i with $0 \leq i<r(x)$, there is a child y_{i} of x with $r\left(y_{i}\right)=i$.

Note: Union by rank produces rank forests !
Lemma: $r(x)=r \Rightarrow x$ has at least r children.

Path compression and union by rank

Def: \mathcal{F} forest, \times node in \mathcal{F} $r(x)=$ height of subtree rooted at x ($r($ leaf $)=0$)
\mathcal{F} is a rank forest, if
for every node x for every i with $0 \leq i<r(x)$, there is a child y_{i} of x with $r\left(y_{i}\right)=i$.

Note: Union by rank produces rank forests !
Lemma: $r(x)=r \Rightarrow x$ has at least r children and at least 2^{r} descendants.

Inheritance Lemma:

\mathcal{F} rank forest with maximum rank r and node set X

$$
\begin{array}{llll}
s \in \mathbb{N}: & X_{>s}=\{x \in X \mid r(x)>s\} & \mathcal{F}_{>s} & \\
& X_{\leq s}=\{x \in X \mid r(x) \leq s\} & \mathcal{F}_{\leq s} & \text { induced forests }
\end{array}
$$

Inheritance Lemma:

\mathcal{F} rank forest with maximum rank r and node set X

$$
\begin{array}{lll}
s \in \mathbb{N}: & X_{>s}=\{x \in X \mid r(x)>s\} & \mathcal{F}_{>s} \\
& X_{\leq s}=\{x \in X \mid r(x) \leq s\} & \mathcal{F}_{\leq s}
\end{array}
$$

i) $X_{\leq s}, X_{>s}$ is a dissection for \mathcal{F}
ii) $\mathcal{F}_{<s}$ is a rank forest with maximum

$$
\text { rank } \leq s
$$

iii) $\mathcal{F}_{>s}$ is a rank forest with maximum

$$
\text { rank } \leq r-s-1
$$

Inheritance Lemma:

\mathcal{F} rank forest with maximum rank r and node set X

$$
\begin{array}{lll}
s \in \mathbb{N}: & X_{>s}=\{x \in X \mid r(x)>s\} & \mathcal{F}_{>s} \\
& X_{\leq s}=\{x \in X \mid r(x) \leq s\} & \mathcal{F}_{\leq s}
\end{array}
$$

i) $X_{\leq s}, X_{>s}$ is a dissection for \mathcal{F}
ii) $\mathcal{F}_{<s}$ is a rank forest with maximum rank $\leq s$
iii) $\mathcal{F}_{>s}$ is a rank forest with maximum
 rank $\leq r-s-1$

Inheritance Lemma:

\mathcal{F} rank forest with maximum rank r and node set X

$$
\begin{array}{lll}
s \in \mathbb{N}: & X_{>s}=\{x \in X \mid r(x)>s\} & \mathcal{F}_{>s} \\
& X_{\leq s}=\{x \in X \mid r(x) \leq s\} & \mathcal{F}_{\leq s}
\end{array}
$$

i) $X_{\leq s}, X_{>s}$ is a dissection for \mathcal{F}
ii) $\mathcal{F}_{<s}$ is a rank forest with maximum rank $\leq s$
iii) $\mathcal{F}_{>s}$ is a rank forest with maximum
 rank $\leq r-s-1$

Proofs: exercise

$f(m, n, r)=$ maximum cost of any compression sequence C, with $|C|=m$, in rank forest \mathcal{F} with n nodes and maximum rank r.

$f(m, n, r)=$ maximum cost of any compression sequence C, with $|C|=m$, in rank forest \mathcal{F} with n nodes and maximum rank r.

Trivial bounds:

$$
\begin{aligned}
& f(m, n, r) \leq(r-1) \cdot n \\
& f(m, n, r) \leq(r-1) \cdot m
\end{aligned}
$$

$f(m, n, r)=$ maximum cost of any compression sequence C, with $|C|=m$, in rank forest \mathcal{F} with n nodes and maximum rank r.

Trivial bounds:

$$
\begin{aligned}
& f(m, n, r) \leq(r-1) \cdot n \\
& f(m, n, r) \leq(r-1) \cdot m \\
& f(m, n, r) \leq m+(r-2) \cdot n
\end{aligned}
$$

$$
\operatorname{cost}(C) \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right|
$$

$$
\begin{aligned}
\operatorname{cost}(C) & \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right| \\
& \leq f\left(m_{+}, n_{+}, r-s-1\right)+
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cost}(C) & \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right| \\
& \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cost}(C) & \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right| \\
& \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-n_{+}-
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cost}(C) & \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right| \\
& \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-n_{+}-(s+1) \cdot n_{+}+
\end{aligned}
$$

 $\{r-s-1<r$
$\} s$

$$
\begin{aligned}
& \left|X_{>s}\right|=n_{+} \\
& \left|X_{\leq s}\right|=n_{b}=n-n_{+}
\end{aligned}
$$

$$
\left|C_{+}\right|=m_{+}
$$

$$
\left|C_{b}\right|=m_{b}
$$

$$
\begin{aligned}
\operatorname{cost}(C) & \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right| \\
& \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-n_{+}-(s+1) \cdot n_{+}+
\end{aligned}
$$

Each node in \mathcal{F}_{+}has at least $s+1$ children in \mathcal{F}_{b}, and they must all be different roots of \mathcal{F}_{b}.
 $\{r-s-1<r$
$\} s$

$$
\begin{aligned}
& \left|X_{>s}\right|=n_{+} \\
& \left|X_{\leq s}\right|=n_{b}=n-n_{+}
\end{aligned}
$$

$$
\left|C_{+}\right|=m_{+}
$$

$$
\left|C_{b}\right|=m_{b}
$$

$$
\begin{aligned}
\operatorname{cost}(C) & \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right| \\
& \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-n_{+}-(s+1) \cdot n_{+}+m_{+}
\end{aligned}
$$

Each node in \mathcal{F}_{+}has at least $s+1$ children in \mathcal{F}_{b}, and they must all be different roots of \mathcal{F}_{b}.
 $\{r-s-1<r$
$\} s$

$$
\begin{aligned}
& \left|X_{>s}\right|=n_{+} \\
& \left|X_{\leq s}\right|=n_{b}=n-n_{+}
\end{aligned}
$$

$$
\left|C_{+}\right|=m_{+}
$$

$$
\left|C_{b}\right|=m_{b}
$$

$$
\begin{aligned}
\operatorname{cost}(C) & \leq \operatorname{cost}\left(C_{+}\right)+\operatorname{cost}\left(C_{b}\right)+\left|X_{b}\right|-\# r t s\left(\mathcal{F}_{b}\right)+\left|C_{+}\right| \\
& \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-n_{+}-(s+1) \cdot n_{+}+m_{+}
\end{aligned}
$$

Each node in \mathcal{F}_{+}has at least $s+1$ children in \mathcal{F}_{b}, and they must all be different roots of \mathcal{F}_{b}.

$$
f(m, n, r) \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+}
$$

$$
\begin{array}{r}
f(m, n, r) \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+} \\
n_{+}+n_{b}=n \quad 0 \leq s<r \\
m_{+}+m_{b} \leq m \quad 0 \leq m+1
\end{array}
$$

$$
\begin{array}{r}
f(m, n, r) \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+} \\
n_{+}+n_{b}=n \quad 0 \leq s<r \\
m_{+}+m_{b} \leq m \quad 0 \leq m
\end{array}
$$

Assume: $f(M, N, R) \leq k \cdot M+N \cdot g(R)$

$$
\begin{array}{r}
f(m, n, r) \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+} \\
n_{+}+n_{b}=n \\
m_{+}+m_{b} \leq m \quad 0 \leq s<r
\end{array}
$$

Assume: $f(M, N, R) \leq k \cdot M+N \cdot g(R)$

$$
\begin{aligned}
f(m, n, r) & \leq k \cdot m_{+}+n_{+} \cdot g(r-s-1)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+} \\
& \leq k \cdot m_{+}+n_{+} \cdot g(r)+f\left(m_{b}, n_{b}, s\right)+n-s \cdot n_{+}+m_{+}
\end{aligned}
$$

$$
f(m, n, r) \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+}
$$

$$
\begin{aligned}
& n_{+}+n_{b}=n \\
& m_{+}+m_{b} \leq m
\end{aligned} \quad 0 \leq s<r
$$

Assume: $f(M, N, R) \leq k \cdot M+N \cdot g(R)$

$$
\begin{aligned}
f(m, n, r) & \leq k \cdot m_{+}+n_{+} \cdot g(r-s-1)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+} \\
& \leq k \cdot m_{+}+n_{+} \cdot g(r)+f\left(m_{b}, n_{b}, s\right)+n-s \cdot n_{+}+m_{+}
\end{aligned}
$$

choose $s=g(r)$

$$
f(m, n, r) \leq f\left(m_{+}, n_{+}, r-s-1\right)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+}
$$

$$
\begin{aligned}
& n_{+}+n_{b}=n \\
& m_{+}+m_{b} \leq m
\end{aligned} \quad 0 \leq s<r
$$

Assume: $f(M, N, R) \leq k \cdot M+N \cdot g(R)$

$$
\begin{aligned}
f(m, n, r) & \leq k \cdot m_{+}+n_{+} \cdot g(r-s-1)+f\left(m_{b}, n_{b}, s\right)+n-(s+2) \cdot n_{+}+m_{+} \\
& \leq k \cdot m_{+}+n_{+} \cdot g(r)+f\left(m_{b}, n_{b}, s\right)+n-s \cdot n_{+}+m_{+}
\end{aligned}
$$

choose $s=g(r)$

$$
f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n_{b}, s\right)+n
$$

$$
\leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n
$$

$s=g(r)$

$f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n$
$s=g(r)$
$f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n \mid-(k+1) \cdot\left(m_{b}+m_{+}\right)$

$$
\begin{array}{l|}
s=g(r) \\
f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n
\end{array} \quad-(k+1) \cdot\left(m_{\left.m_{b}+m_{+}\right)}^{m}\right.
$$

$s=g(r)$
$f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n$

$f(m, n, r)-(k+1) \cdot m \leq f\left(m_{b}, n, s\right)-(k+1) \cdot m_{b}+n$

$$
\begin{aligned}
& s=g(r) \\
& f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n \mid \quad-(k+1) \cdot \overbrace{\left(m_{b}+m_{+}\right)}^{m} \\
& f(m, n, r)-(k+1) \cdot m \leq f\left(m_{b}, n, s\right)-(k+1) \cdot m_{b}+n \\
& \phi(m, n, r) \quad \leq \phi\left(m_{b}, n, g(r)\right) \quad+n
\end{aligned}
$$

$$
\left.\begin{array}{l}
s=g(r) \\
f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n \mid-(k+1) \cdot\left(m_{b}+m_{+}\right) \\
m \\
f(m, n, r)-(k+1) \cdot m
\end{array}\right) \quad \begin{aligned}
& \quad \leq\left(m_{b}, n, s\right)-(k+1) \cdot m_{b}+n \\
& \phi(m, n, r) \leq \phi\left(m_{b}, n, g(r)\right)+n \\
& \leq\left(\phi\left(m_{b b}, n, g(g(r))\right)+n\right)+n
\end{aligned}
$$

$$
\begin{aligned}
& s=g(r) \\
& f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n \mid-(k+1) \cdot\left(m_{b}+m_{+}\right) \\
& m
\end{aligned} \begin{aligned}
& f(m, n, r)-(k+1) \cdot m \leq f\left(m_{b}, n, s\right)-(k+1) \cdot m_{b}+n \\
& \quad(m, n, r) \quad \leq \phi\left(m_{b}, n, g(r)\right)+n \\
& \leq\left(\phi\left(m_{b b}, n, g(g(r))\right)+n\right)+n \\
& \leq\left(\left(\phi\left(m_{b b b}, n, g(g(g(r)))\right)+n\right)+n\right)+n
\end{aligned}
$$

$$
\begin{aligned}
& s=g(r) \\
& f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n \mid-(k+1) \cdot \overbrace{\left(m_{b}+m_{+}\right)}^{m} \\
& \begin{aligned}
f(m, n, r)-(k+1) \cdot m & \leq f\left(m_{b}, n, s\right)-(k+1) \cdot m_{b}+n \\
\phi(m, n, r) & \leq \phi\left(m_{b}, n, g(r)\right)+n \\
& \leq\left(\phi\left(m_{b b}, n, g(g(r))\right)+n\right)+n \\
& \leq\left(\left(\phi\left(m_{b b b}, n, g(g(g(r)))\right)+n\right)+n\right)+n \\
& \leq n \cdot g^{*}(r)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& s=g(r) \\
& f(m, n, r) \leq(k+1) \cdot m_{+}+f\left(m_{b}, n, s\right)+n \mid-(k+1) \cdot \overbrace{\left(m_{b}+m_{+}\right)}^{m} \\
& f(m, n, r)-(k+1) \cdot m \leq f\left(m_{b}, n, s\right)-(k+1) \cdot m_{b}+n \\
& \phi(m, n, r) \leq \phi\left(m_{b}, n, g(r)\right) \quad+n \\
& \leq \quad\left(\phi\left(m_{b b}, n, g(g(r))\right)+n\right)+n \\
& \leq\left(\left(\phi\left(m_{b b b}, n, g(g(g(r)))\right)+n\right)+n\right)+n \\
& \phi(m, n, r) \leq n \cdot g^{*}(r) \\
& \underset{d}{f(m, n, r)} \leq(k+1) \cdot m+n \cdot g^{*}(r)
\end{aligned}
$$

Shifting Lemma:

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
 then also $f(m, n, r) \leq(k+1) \cdot m+n \cdot g^{*}(r)$

Shifting Lemma:

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
 then also $f(m, n, r) \leq(k+1) \cdot m+n \cdot g^{*}(r)$

Shifting Corollary:

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{\star * . . . *}(r)$
for any $i \geq 0$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * \ldots . . .}(r)$

for any $i \geq 0$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{\widetilde{* * \ldots . . . *}}(r)$
for any $i \geq 0$
Trivial bound: $\quad f(m, n, r) \leq n \cdot(r-1)$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot \overbrace{}^{\star * \ldots}(r)$
for any $i \geq 0$

Trivial bound: $\quad f(m, n, r) \leq n \cdot(r-1)$

$$
=0 \cdot m+n \cdot(r-1)
$$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * . . . *}(r)$
for any $\mathrm{i} \geq 0$

Trivial bound: $\quad f(m, n, r) \leq n \cdot(r-1)$

$$
=0 \cdot m+n \cdot(r-1)
$$

$$
\begin{aligned}
& g(r)=r-1 \\
& g^{\star}(r)=r-1
\end{aligned}
$$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{\widetilde{* * \ldots . . . *}}(r)$
for any $i \geq 0$
Trivial bound: $\quad f(m, n, r) \leq m+n \cdot(r-2)$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * . . . *}(r)$
for any $i \geq 0$

Trivial bound: $f(m, n, r) \leq m+n \cdot(r-2)$

$$
=1 \cdot m+n \cdot(r-2)
$$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * . . . *}(r)$
for any $i \geq 0$

Trivial bound: $\quad f(m, n, r) \leq m+n \cdot(r-2)$

$$
=1 \cdot m+n \cdot(r-2)
$$

$$
g(r)=r-2
$$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * . . . *}(r)$
for any $i \geq 0$

Trivial bound: $f(m, n, r) \leq m+n \cdot(r-2)$

$$
=1 \cdot m+n \cdot(r-2)
$$

$$
\begin{aligned}
& g(r)=r-2 \\
& g^{*}(r)=r / 2
\end{aligned}
$$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * . . . *}(r)$
for any $i \geq 0$

Trivial bound: $f(m, n, r) \leq m+n \cdot(r-2)$

$$
=1 \cdot m+n \cdot(r-2)
$$

$g(r)=r-2$
$g^{*}(r)=r / 2$
$f(m, n, r) \leq 2 \cdot m+n \cdot(r / 2)$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * . . . *}(r)$
for any $\mathrm{i} \geq 0$

Trivial bound: $f(m, n, r) \leq m+n \cdot(r-2)$

$$
=1 \cdot m+n \cdot(r-2)
$$

$g(r)=r-2$
$g^{*}(r)=r / 2$
$f(m, n, r) \leq 2 \cdot m+n \cdot(r / 2)$
$g^{\star *}(r)=\log r$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot \overbrace{}^{* * . . . *}(r)$
for any $i \geq 0$

Trivial bound: $f(m, n, r) \leq m+n \cdot(r-2)$

$$
=1 \cdot m+n \cdot(r-2)
$$

$$
\begin{array}{ll}
g(r)=r-2 & \\
g^{*}(r)=r / 2 & f(m, n, r) \leq 2 \cdot m+n \cdot(r / 2) \\
g^{* *}(r)=\log r & f(m, n, r) \leq 3 \cdot m+n \cdot \log r
\end{array}
$$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * \ldots . . .}(r)$

for any $i \geq 0$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{\cdot *_{*}^{*} \ldots}(r)$
for any $i \geq 0$
We know bound: $f(m, n, r) \leq 3 \cdot m+n \cdot \log r$

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$

then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* *} \ldots \neq(r)$

for any $i \geq 0$

We know bound: $f(m, n, r) \leq 3 \cdot m+n \cdot \log r$

Therefore for any $\mathrm{i} \geq 0$:

$$
f(m, n, r) \leq(3+i) \cdot m+n \cdot \log ^{\overbrace{}^{* *} \ldots{ }^{*}}(r)
$$

Choice of i :

Choice of i :
Define $\alpha(r)=\min \{i \mid \log \overbrace{}^{* * \ldots}(r) \leq i\}$

Choice of i :
Define $\alpha(r)=\min \left\{i \mid \log ^{* * \ldots}(r) \leq i\right\}$

Here is your definition of the Inverse Ackermann Function !!

Choice of i :
Define $\alpha(r)=\min \{i \mid \log ^{\overbrace{* *}^{*}}{ }^{i}(r) \leq i\}$

$$
f(m, n, r) \leq(m+n)(3+\alpha(r))
$$

Choice of i :
Define $\alpha(r)=\min \left\{i \mid \log ^{* * \ldots}(r) \leq i\right\}$

$$
\begin{aligned}
f(m, n, r) & \leq(m+n)(3+\alpha(r)) \\
& \leq(m+n)(3+\alpha(\log n))
\end{aligned}
$$

Choice of i :

Choice of i :

For $t \geq 1$ define $\alpha_{\dagger}(r)=\min \left\{i \mid \log ^{* *}(r) \leq \dagger\right\}$
\square

Choice of i :

For $t \geq 1$ define $\alpha_{+}(r)=\min \left\{i \mid \log ^{* * \ldots}(r) \leq \dagger\right\}$

Here is a parametrized definition of the Inverse Ackermann Function!!

Choice of i :

For $\dagger \geq 1$ define $\alpha_{\dagger}(r)=\min \left\{i \mid \log ^{* * \ldots . . .}(r) \leq \dagger\right\}$

$$
f(m, n, r) \leq\left(3+\alpha_{t}(r)\right) \cdot m+n \cdot t
$$

Choice of i :

For $t \geq 1$ define $\alpha_{\dagger}(r)=\min \left\{i \mid \log ^{* * \ldots} . .{ }^{*}(r) \leq \dagger\right\}$

$$
f(m, n, r) \leq\left(3+\alpha_{t}(r)\right) \cdot m+n \cdot t
$$

choose $t=1+\mathrm{m} / \mathrm{n}$

Choice of i :

For $t \geq 1$ define $\alpha_{\dagger}(r)=\min \left\{i \mid \log ^{* *}(r) \leq \dagger\right\}$

$$
f(m, n, r) \leq\left(3+\alpha_{t}(r)\right) \cdot m+n \cdot t
$$

choose $t=1+\mathrm{m} / \mathrm{n}$

$$
f(m, n, r) \leq\left(4+\alpha_{1+m / n}(r)\right) \cdot m+n
$$

Choice of i :

For $\dagger \geq 1$ define $\alpha_{\dagger}(r)=\min \left\{i \mid \log ^{* * . . . *}(r) \leq \dagger\right\}$

$$
f(m, n, r) \leq\left(3+\alpha_{t}(r)\right) \cdot m+n \cdot t
$$

choose $t=1+m / n$

$$
\begin{aligned}
f(m, n, r) & \leq\left(4+\alpha_{1+m / n}(r)\right) \cdot m+n \\
& \leq\left(4+\alpha_{1+m / n}(\log n)\right) \cdot m+n
\end{aligned}
$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$
O(m \cdot \alpha(m, n)+n)
$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$
O(m \cdot \alpha(m, n)+n)
$$

$$
f(m, n, r) \leq\left(4+\alpha_{1+m / n}(\log n)\right) \cdot m+n
$$

Bob Tarjan 1975

Theorem:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$
O(m \cdot \alpha(m, n)+n)
$$

$$
f(m, n, r) \leq\left(4+\alpha_{1+m / n}(\log n)\right) \cdot m+n
$$

$$
\alpha(m, n)=\alpha_{1+m / n}(\log n)
$$

Shifting Lemma:

What to remember:

If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+1) \cdot m+n \cdot g^{*}(r)$

Shifting Corollary:
If $f(m, n, r) \leq k \cdot m+n \cdot g(r)$
then also $f(m, n, r) \leq(k+i) \cdot m+n \cdot g^{* * . . . *}(r)$
for any $i \geq 0$
Definition of α :

$$
\alpha(r)=\min \left\{i \mid \log ^{* * \ldots \star}(r) \leq i\right\}
$$

Odds and Ends

Odds and Ends

We used $f(m, n, r) \leq 1 \cdot m+n \cdot(r-2)$

Odds and Ends

We used $f(m, n, r) \leq 1 \cdot m+n \cdot(r-2)$ to get

Odds and Ends

We used $f(m, n, r) \leq 1 \cdot m+n \cdot(r-2)$ to get

Actually $f(m, n, r) \leq 1 \cdot m+n \cdot \log r$

Odds and Ends

We used $f(m, n, r) \leq 1 \cdot m+n \cdot(r-2)$ to get

Actually $f(m, n, r) \leq 1 \cdot m+n \cdot \log r$
(Exercise)

Odds and Ends

We used $f(m, n, r) \leq 1 \cdot m+n \cdot(r-2)$ to get
for any $i \geq 0: f(m, n, r) \leq(3+i) \cdot m+n \cdot \log ^{* * \ldots} \overbrace{}^{i}(r)$

Actually $f(m, n, r) \leq 1 \cdot m+n \cdot \log r$

and therefore

(Exercise)

Odds and Ends

Actually $f(m, n, r) \leq 1 \cdot m+n \cdot \log ^{*} r$
 (difficult Exercise)

 and therefore

Odds and Ends

$f(m, n, r)$ for small values of r

Odds and Ends

$f(m, n, r)$ for small values of r

$$
f(m, n, 0)=0 \quad f(m, n, 1)=0 \quad f(m, n, 2) \leq m
$$

Odds and Ends

$f(m, n, r)$ for small values of r

$$
\begin{aligned}
& f(m, n, 0)=0 \quad f(m, n, 1)=0 \quad f(m, n, 2) \leq m \\
& f(m, n, r) \leq m+n \quad \text { for } r \leq 8, \text { i.e. for } n \leq 512
\end{aligned}
$$

Odds and Ends

$f(m, n, r)$ for small values of r

$$
f(m, n, 0)=0 \quad f(m, n, 1)=0 \quad f(m, n, 2) \leq m
$$

$$
f(m, n, r) \leq m+n \quad \text { for } r \leq 8 \text {, i.e. for } n<512
$$

$f(m, n, r) \leq m+2 n \quad$ for $r \leq 202$, i.e. for $n<2203$

Odds and Ends

$f(m, n, r)$ for small values of r

$$
f(m, n, 0)=0 \quad f(m, n, 1)=0 \quad f(m, n, 2) \leq m
$$

$$
f(m, n, r) \leq m+n \quad \text { for } r \leq 8 \text {, i.e. for } n<512
$$

$f(m, n, r) \leq m+2 n$ for $r \leq 202$, i.e. for $n<2203$
(difficult exercises)

Odds and Ends

Similar proof for $O(m \cdot \alpha(m, n)+n)$ bound also works for

* linking by weight and path compression
* linking by rank and generalized path compaction

Odds and Ends

Similar proof for $O(m \cdot \alpha(m, n)+n)$ bound also works for

* linking by weight and path compression
* linking by rank and generalized path compaction

Open problem:
simple top-down approach for proving lower bounds

