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Our goal is to explore the possibility of simplifying updating in balanced binary search trees by doing rebalancing only during insertions, not during deletions. Our observation is that the insertions provide the structure of the tree; deletions only remove part of it. If the structure is built in a balanced way, perhaps deletions do not affect the balance too much.

Since deletions can turn an originally perfectly balanced tree into an arbitrary one, we have to give up any hope to achieve an 
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worst-case search time, where n is the current number of items in the tree.  Instead, we strive for an 
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worst-case search time, where m is the total number of insertions.  Observe that 
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are the same unless m is larger than any fixed polynomial in n.  If m becomes much bigger than n, we can afford to completely rebuild the tree (in O(n) time) to make it balanced.

We describe two possible ways of implementing deletion without rebalancing.  One of them works well; the other doesn’t. In the first (bad) method, we store with each node its rank difference, and we maintain the invariant that all rank differences are 1 or 2, as in rank-balanced trees.  We encode the rank difference of a node in a single bit. We no longer require that leaves have rank zero; deletions can cause leaf ranks to grow arbitrarily.  When a node is deleted, if it is a leaf it is merely removed. If it has one child, this child becomes a child of the parent of the deleted node, retaining its old rank difference. That is, if the child had rank difference 1, it remains 1; if it is 2, it remains 2.  This has the effect of increasing the rank of the child (and of all its descendants) by 1 or 2, depending on the rank difference of the deleted node. We must also look at how insertions work. In our bad example, all insertions will add a new child to an old leaf, so we only discuss this case. When such an insertion occurs, the new leaf gets an initial (illegal) rank difference of 0. We then rebalance bottom-up exactly as in AVL and rank-balanced trees.  All rank differences remain 1 or 2, except for at most one rank difference of zero in the middle of an insertion.

With this method, the following sequence of intermixed insertions and deletions will build a tree containing a path of length about 
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(linear, not logarithmic height). We let the items be integers.  Insert 1, then 2, then 3.  Now 2 is the root, with left child 1 and right child 3, both of rank difference 1.  Now repeat the following sequence of three operations, for 
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: insert j, delete j, re-insert j.  Just before the first insertion of j, the tree will consist of a long left path 1, 2,…, 
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 the root, having right child 
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 will have rank difference 1.  The first insertion of j makes it the right child of 
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 and promotes both 
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 leaving 
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 with rank difference 2 and 
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 and j with rank difference 1.  The deletion and re-insertion of j causes another promotion of 
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 and then a single rotation, making 
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 the root; its left and right children 
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 and j both now have rank difference 1.  Thus the tree has the same shape, but with one more node.

One can change the insertion algorithm to avoid this example, by maintaining the rank of the root, computing the rank of each node reached during a search (by summing rank differences), and giving a newly inserted node a rank difference of zero only if its parent has rank zero.  But there are bad examples for this method, too.  (The examples are a little less bad: the tree height is not proportional to m but to a fractional power of m.)  
To get a good method, we maintain the node ranks explicitly and compute the rank differences, rather than the other way around. A newly inserted node gets a rank of zero; its rank difference is initially zero only if its parent is a leaf.  When a node with a child is deleted, the child retains its rank, not its rank difference.  With this method it is no longer true that all rank differences are 1 or 2; the rank differences can become arbitrarily large. What is true is that all ranks are non-negative, and all rank differences are positive (except for one rank difference of zero in the middle of an insertion). We need to slightly generalize the rebalancing cases for an insertion.  (See the notes on rank-balanced trees.) The case “
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” becomes “
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”; the subcase “
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” becomes “
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”. The transformations remain the same.  In Figure 1, the rank differences of r and t are correspondingly relaxed: the rank difference of r in the second and third rows and the rank difference of t in the second row must be preceded by “ ≥ ”.

With this method the rank of the root remains an upper bound on the tree height. We want to show that this rank is 
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 To do this we assign non-negative potentials to the nodes and define the potential of the tree to be the sum of the node potentials. We do this in such a way that each insertion increases the potential by at most 1, and each increase in the rank of the root decreases the potential by an amount exponential in this rank.

Specifically, let 
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 be the 
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 Fibonacci number, defined by the recurrence 
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for 
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 The Fibonacci numbers satisfy 
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 where 
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 is the golden ratio, 
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Exercise: Prove 
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 by induction on r.

To each node of rank r we give a potential of 
[image: image34.wmf]2

r

F

+

 if it is a 0,1-node, 
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 if it is a 0, j-node for 
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 if it is a 1,1-node, and zero otherwise.  (We assign potentials to illegal nodes, ones with a 0-child, because such nodes exist in the middle of insertions and this makes the analysis completely explicit.)

Initially the tree is empty and thus has potential zero.  A deletion does not increase the rank of any node, nor can it cause a node to need additional potential, so deletions cannot increase the potential of the tree.  A new leaf is a 1,1-node of rank zero and thus needs zero potential.  The parent of the new leaf is either a leaf of rank zero that becomes a 0,1-node, or a 1,2-node of rank 1 that becomes a 1,1-node, or a 2,2-node of rank 1 that becomes a 1,2-node, or has rank at least 2. In either of the first two cases, addition of the leaf increases the potential of the parent from 0 to 1 for a net increase of 1; in either of the last two cases the potential of the parent does not increase.  Thus adding a leaf can increase the potential by at most 1.  A case analysis shows that each case of an insertion can move potential around but cannot increase the total potential.  For example, in the promotion case if node p has rank r, after q is promoted p is a 0,1-node with potential 
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  After p is promoted, it has potential 0, but its parent may change from a 1,1-node to a 0.1-node, increasing its potential by 
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 or from a 1, j-node with 
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 to a 0, j-node, increasing its potential by 
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 or from a 2,1-node to a 1,1-node, increasing its potential by 
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 In any of these cases the decrease of 
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 in the potential of p covers the increase in the potential of its parent.  In any other case the total potential actually decreases.  In particular, if p is the root, which is the only case in which the rank of the root can increase, the potential drops by 
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Exercise: Verify that the single and double rotation cases do not increase the potential.

Let r be the maximum rank of the root.  Since the available potential is m (one per insertion), and since the increase in the root rank from 
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 to r decreases the potential by 
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  Taking logarithms gives 
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 Thus the tree height is at most logarithmic in the number of insertions. This argument can be strengthened to eliminate the “+1” by observing that for the rank to become r, it must increase from 
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 to r, resulting in a potential drop of at least 
[image: image52.wmf].

12

r

rr

FFF

+=

++


By truncating the exponential potential, we can show that insertions propagate above rank r exponentially infrequently in r.  Specifically, fix k.  Let the potential of a node of rank r be as defined above if 
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 and 0 if 
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 It remains true that an insertion can increase the potential by at most 1 and that each rebalancing step does not increase the potential, but in addition each promotion of a node from rank k to rank 
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 decreases the potential by 
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 Thus the number of such promotions, and hence of insertions that propagate above rank k, is at most 
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