COS 423 Splay Trees
Spring 2010

Tarjan

These notes discuss the splay tree, a form of self-adjusting search tree in which the amortized time for an access, insertion, or deletion
[image: image1.wmf]O(log).

n

 A splay tree adapts to its access pattern, and one can prove good bounds for a variety of biased access patterns. Whether the splay tree is competitive with the optimum off-line binary search tree update strategy is an open question, perhaps the most interesting open problem in the study of data structures.

“Splay” as a verb means “spread out.” A splay operation on a binary search tree moves a designated node to the root of the tree by doing a sequence of rotations along the path from the node to the root. The rotations occur in pairs, mostly but not completely bottom-up. We denote by p(x) the parent of node x. A rotation at x replaces p(x) by x and makes the old p(x) a child of x, the right (left) child if x was a left (right) child. If x was a left (right) child, its old right (left) child becomes the new left (right) child of the old p(x). To splay at a node x, repeat the following splay step until x is the root:

Splay Step: Apply the appropriate one of the following three cases:

Zig: If p(x) is the root, rotate at x and stop: x is now the root.

Zig-zag: If x is a left child and p(x) is a right child, or x is a right child and p(x) is a left child, rotate at x twice.

Zig-zig: If x and and p(x) are both left or both right children, rotate at p(x) and then rotate at x.
Note that the rotations are bottom-up except for zig-zig steps, in which a rotation at p(x) precedes the next rotation at x.

To access an item in a splay tree, we search for it by following the search path down from the root until locating the node x containing it. Then we splay at x, making it the root. To insert an item, we search for the insertion position, attach a new leaf x containing the item to be inserted, and splay at x. To delete an item, we search for the node x containing it. If x is a leaf or has one child, we delete it, replace it by its child if it had one, and splay at its old parent. If x has two children, we find the node y containing its successor, swap the items in x and y, delete y, replace it by its child if it had one, and splay at the old parent of y. An access, insertion, or deletion takes time proportional to the time taken for the splay, which is O(1) plus O(1) per splay step (each consisting of one or two rotations).

We shall derive an amortized time bound for splaying by using an appropriate potential function. This function is in turn a function of node weights, which must be positive but can otherwise be chosen arbitrarily. By choosing various sets of weights, we can obtain various useful bounds.

Given a positive individual weight w(x) for each node x, we define the total weight t(x) of node x to be the sum of the individual weights of all descendants of x, including x itself. Whereas the individual eight of a node depends only on the node, its total weight depends on the structure of the tree: splaying can change it. We define the potential of a node x to be
[image: image2.wmf]()1g(),

xtx

f

=

where
[image: image3.wmf]1g

is the base-two logarithm. Finally, we define the potential of the tree to be the sum of the potentials of its nodes.

As the most important special case, suppose all individual weights are one. Then each node has a total weight between one (a leaf) and n (the root). The node potentials are between zero and
[image: image4.wmf]1g,

n

and the tree potential is between zero and
[image: image5.wmf]1g.

nn

The potential of the initial (empty) tree is zero. As long as the individual weights are at least one, the tree potential is non-negative, so the total amortized time of an arbitrary sequence of intermixed accesses, insertions, and deletions is an upper bound on the total actual time, as desired. If the initial tree is not empty or we choose weights that are less than one, we must take into account in our analysis difference between the initial and final potentials of the tree.
For a splay we charge one unit of time plus one per splay step. We shall show that the amortized time of a splay step is at most
[image: image6.wmf]3(()())

xx

ff

¢

-

 if the step is a zig-zag or zig-zig, at most
[image: image7.wmf]3(()())1

xx

ff

¢

-+

 if the step is a zig. Here primed values are after the step, unprimed values are before the step. If we sum these bounds over all the steps of a splay, the sum telescopes. Since there is at most one zig step, we obtain a bound on the amortized time of the entire splay of at most
[image: image8.wmf]3(())2,

x

f

F-+

 where
[image: image9.wmf]F

 is the potential of the root, which is unchanged by the splay (why?), and
[image: image10.wmf]()

x

f

is the potential of x before the splay. If W is the sum of all the node weights, this gives the following lemma:

Splay Lemma: The amortized time to splay at x is at most
[image: image11.wmf]31g(())2.

Wwx

+

Let us analyze the amortized time for each kind of splay step. We denote by y and z, respectively, the parent and grandparent of x just before the step. The only nodes whose potential changes as a result of the step are x, y, and z; the total weights of all other nodes remain the same.

A zig is the simplest to analyze. The amortized time is
[image: image12.wmf]1()()()()1()(),

xyxyyx

ffffff

¢¢¢

++--=+-

 since
[image: image13.wmf]()()

xy

ff

¢

=

(why?). This is at most
[image: image14.wmf]1()(),

xx

ff

¢

+-

 since
[image: image15.wmf]()()

yx

ff

¢¢

£

(why?), which in turn is at most
[image: image16.wmf]13(()())

xx

ff

¢

+-

(why?), as desired.
In both a zig-zig and a zig-zag,
[image: image17.wmf]()()

xz

ff

¢

=

(why?), so the amortized time of such a step is
[image: image18.wmf]1()()()().

yzyx

ffff

¢¢

++--

 These cases are the interesting ones: we must show that the change in potential is enough to cover the actual time (one unit) required by the step. For a zig-zag,
[image: image19.wmf]()()(),

tytztx

¢¢¢

+£

since after the step y and z have no common descendants and all of their descendants are descendants of x. Thus either
[image: image20.wmf]()()/2,

tytx

¢¢

£

implying
[image: image21.wmf]()()1,

yx

ff

¢¢

£-

 or
[image: image22.wmf]()()/2,

tztx

¢¢

£

 implying
[image: image23.wmf]()()1.

zx

ff

¢¢

£-

 We conclude that
[image: image24.wmf]()()2()1.

yzx

fff

¢¢¢

+£-

 Also
[image: image25.wmf]()().

yx

ff

³

 (Why?) It follows that the amortized time of the step is at most than
[image: image26.wmf]12()12()2(()())3(()()),

xxxxxx

ffffff

¢¢¢

+--=-£-

as desired.
For a zig-zig,
[image: image27.wmf]()()()

txtztx

¢¢

+£

(why?), implying
[image: image28.wmf]()()2()1,

xzx

fff

¢¢

+£-

 or equivalently
[image: image29.wmf]()2()1().

zxx

fff

¢¢

£--

 Also,
[image: image30.wmf]()()

yx

ff

¢¢

£

and
[image: image31.wmf]()().

yx

ff

³

 (Why?) It follows that the amortized time of the step is at most
[image: image32.wmf]1()2()1()()()3(()()),

xxxxxxx

fffffff

¢¢¢

++----=-

as desired. The splay lemma follows by summing over all the splay steps as discussed above.
Now we apply the splay lemma. As the simplest application, let all node weights be one. Then the splay lemma gives an amortized time for a splay of
[image: image33.wmf]O(log).

n

 Thus the amortized time for an access is
[image: image34.wmf]O(log).

n

 This is also true of a deletion: deleting a node cannot increase the potential, and the subsequent splay takes
[image: image35.wmf]O(log)

n

 amortized time. This is true of an insertion as well, but to show this we must bound by
[image: image36.wmf]O(log)

n

the potential increase caused by adding a leaf. The new leaf has potential zero. If the ancestors of the new leaf are
[image: image37.wmf]12

,,....,

k

xxx

 from bottom to top, then the potential increase caused by the addition of the new leaf (before the splay) is
[image: image38.wmf]1

(lg(()1)lg()).

k

jj

j

txtx

=

+-

å

 Since
[image: image39.wmf]1

()()1,

j

j

txtx

+

³+

 this sum is bounded by a telescoping sum and is at most
[image: image40.wmf])

1

1g(()1)1g(1g.

k

txtxn

£

+-

 We conclude that the amortized time of an insertion is
[image: image41.wmf]O(log).

n

 Thus splay trees are as efficient in the amortized case as balanced search trees are in the worst case, an efficiency they achieve without maintaining any explicit balance information.

By choosing different weights, we can obtain several more-specialized results. To simplify matters we shall henceforth assume that the set of items in the tree is fixed and that only accesses occur, no insertions or deletions. Since the initial tree is not empty, we must add the initial potential minus the final potential to the sum of amortized times to obtain a bound on the sum of actual times.

Consider an arbitrary sequence of accesses. Let m be the total number of accesses, and let
[image: image42.wmf]k

f

 be the number of times the item in node k is accessed. If we let
[image: image43.wmf],

kk

wf

=

 the splay lemma gives an amortized time of
[image: image44.wmf]O(log(/))

k

mf

 to access the item in node k, and a total time for all the accesses of
[image: image45.wmf]1

O({log(/)0}).

m

kkk

k

fmff

=

>

å

 This is within a constant factor of the total access time for any fixed search tree, including the optimum tree for the given access frequencies. That is, on any sequence of accesses, splaying is competitive with the use of the static search tree for the given access sequence, even though it does not know the access sequence in advance and does not keep track of access frequencies.
Counting global access frequencies is only one way to measure bias in an access sequence. We consider two other kinds of bias, locality in space and locality in time. To show that splaying exploits spatial locality, assume that there are no insertions, only an initial tree containing n nodes and an arbitrary sequence of accesses. Let the nodes be numbered from 1 in symmetric order (so that the node containing the smallest item is numbered 1, the second-smallest is numbered 2, and so on. Assign to node k a weight of
[image: image46.wmf]2

1/.

k

 Then the total weight is O(1) (why?), and the splay lemma gives an amortized time of
[image: image47.wmf]O(log1)

k

+

 to access node k. To get a valid bound we must take into account the difference in potential between the initial tree and the final tree. The potential of the tree is non-positive and at least
[image: image48.wmf]O(lg),

nn

-

 so if we assign an amortized time of
[image: image49.wmf]O(log(/)log1)

knmn

++

 to each access of node k, the sum of the amortized access times is an upper bound on the sum of their actual times. This is a special case of what is called the static finger theorem: for any fixed position, the amortized time to access a node d away from the fixed position is
[image: image50.wmf]O(log),

d

 if there are enough accesses. There is a dynamic version of this theorem that shows that the amortized time for an access is logarithmic in the number of items between the current access position and the previous one, but proving such a result seems to require a MUCH more complicated analysis.

To show that splaying exploits locality in time, again assume that there are no insertions, only accesses. Number the accesses from 1 to m. Let
[image: image51.wmf]k

i

be the item accessed by access k. Let
[image: image52.wmf],

k

d

 the distance of access k, be the number of different items accessed since the previous access of item
[image: image53.wmf]k

i

(including
[image: image54.wmf]k

i

), or since the beginning of the sequence if this is the first access of
[image: image55.wmf].

k

i

 Assign the weights 1, 1/4, 1/9,…, 1/
[image: image56.wmf]2

n

 to the items in order by first access. After access k, shuffle the weights by giving weight 1 to item
[image: image57.wmf]k

i

 and giving weight
[image: image58.wmf]2

1/

j

 to the item that had weight
[image: image59.wmf]2

(1),

j

-

 for
[image: image60.wmf]2,...,

j

=

l

where the weight of
[image: image61.wmf]k

i

just before the access is
[image: image62.wmf]2

1/.

l

 Such a shuffling cannot increase the tree potential, since
[image: image63.wmf]k

i

 is in the root. The total weight is O(1). The initial weight assignment and the shuffling guarantee that the weight of
[image: image64.wmf]k

i

 just before access k is at least
[image: image65.wmf]2

1/

k

d

 (why?), so the splay lemma gives an amortized time bound of
[image: image66.wmf]O(log1)

k

d

+

 for access k. The tree potential is non-negative and at least
[image: image67.wmf]O(lg),

nn

-

 so accounting for the difference in potential between the initial and final tree gives an amortized time of
[image: image68.wmf](

O(log/)log1)

k

dnmn

+

+

 for access k. This result is called the working set theorem.

Exploration: Extend the results of the last two paragraphs to apply to an intermixed sequence of insertions and accesses starting from an empty tree.

1

_1327916092.unknown

_1327922046.unknown

_1327922166.unknown

_1327922233.unknown

_1327922345.unknown

_1327922620.unknown

_1327922655.unknown

_1327922557.unknown

_1327922309.unknown

_1327922189.unknown

_1327922207.unknown

_1327922177.unknown

_1327922114.unknown

_1327922138.unknown

_1327922155.unknown

_1327922126.unknown

_1327922087.unknown

_1327922103.unknown

_1327922067.unknown

_1327916948.unknown

_1327917204.unknown

_1327917609.unknown

_1327917756.unknown

_1327917871.unknown

_1327917910.unknown

_1327917770.unknown

_1327917657.unknown

_1327917286.unknown

_1327917054.unknown

_1327917067.unknown

_1327916968.unknown

_1327916116.unknown

_1327916173.unknown

_1327916140.unknown

_1327916103.unknown

_1327838197.unknown

_1327839629.unknown

_1327840395.unknown

_1327915823.unknown

_1327916060.unknown

_1327902598.unknown

_1327915813.unknown

_1327840482.unknown

_1327840371.unknown

_1327840384.unknown

_1327839803.unknown

_1327840336.unknown

_1327839772.unknown

_1327839381.unknown

_1327839597.unknown

_1327839465.unknown

_1327839525.unknown

_1327839135.unknown

_1327839350.unknown

_1327838257.unknown

_1327837561.unknown

_1327837592.unknown

_1327838153.unknown

_1327837575.unknown

_1327837544.unknown

_1327835843.unknown

_1327837514.unknown

