COS 423 Problem Set 2

 Due Mon. 3/1/2010
Spring 2010

Collaboration allowed. Cite all collaborators and all sources. Write up your own solutions.
1. This problem is designed to illustrate one of the differences between red-black trees (as described in CLRS) and rank-balanced trees (as described in the class notes), and to make sure that you understand how insertions work in each data structure.

a) Suppose the items 1, 2, 3,…, n are inserted in increasing order into an initially empty red-black tree. What is the height of the tree after n insertions? What is the length of the path from the root to the node containing n?

b) Suppose the items 1, 2, 3,…, n are inserted in increasing order into an initially empty rank-balanced tree. What is the height of the tree after n insertions? What is the length of the path from the root to the node containing n?

In both a) and b), your answers should be functions of n, accurate to within O(1). Prove the correctness of your answers.

Hint: in each case, do enough insertions (by hand or by computer) to be able to determine the structure of the tree after n insertions, for arbitrary n.

2. (Redundant binary numbers)
a) Consider a counter implemented as a number represented in binary. Suppose that the cost of incrementing it (adding one) or decrementing it (subtracting one) is defined to be the number of bits that change in the binary representation. Chapter 17 Section 1 of CLRS shows that if the counter is initially zero and it is incremented n times, then the total number of bit changes is O(n), or O(1) amortized per increment. But CLRS Exercise 17.1-2 observes that if the counter starts at zero and an arbitrary intermixed sequence of increments and decrements is performed, then the total number of bit changes can be super-linear in n. How big can it be as a function of n? Your answer should be accurate to within a constant factor. Assume that the counter uses as many bits as needed to represent the current count (unlike CLRS, in which the number of bits is fixed at k.)
b) To make intermixed increments and decrements more efficient, we introduce “redundant” binary numbers, which are just like binary numbers except that each bit (trit?) has three possible values,
[image: image1.wmf]1,

-

0, and 1 (instead of just 0 and 1). The integer represented by the sequence
[image: image2.wmf],

k

b

 EMBED Equation.DSMT4 [image: image3.wmf]1

,...,

k

b

-

 EMBED Equation.DSMT4 [image: image4.wmf]0

b

is
[image: image5.wmf]0

2.

k

j

j

j

b

=

å

 Thus for example
[image: image6.wmf]1,0,1

-

 represents the integer three. Give an example of two different redundant binary numbers that represent the same integer. Give an easy (O(1)-time) way to test whether the integer represented by a redundant binary number is positive, negative, or zero. Describe algorithms for incrementing and decrementing redundant binary numbers so that an intermixed sequence of n increments and decrements starting from zero changes O(n) trits in total.

c) The result in b) is nice, but amortized. Our goal now is to make it worst-case. That is, we would like to be able to increment and decrement redundant binary numbers in O(1) trit changes per increment or decrement, worst-case. To that end, we say a redundant binary number is “normal” if it satisfies the following invariant: between every pair of 1’s there is a
[image: image7.wmf]1

-

 (and any number of zeros), and between any pair of
[image: image8.wmf]1's

-

there is a 1 (and any number of zeros). That is,
[image: image9.wmf]1

s

¢

and
[image: image10.wmf]1

s

¢

-

alternative, ignoring
[image: image11.wmf]0s.

¢

 Give algorithms for incrementing and decrementing a normal redundant binary number so that an increment or decrement changes O(1) bits, worst-case.

_1327922931.unknown

_1327923141.unknown

_1327923142.unknown

_1327928988.unknown

_1327922989.unknown

_1327736899.unknown

_1327743035.unknown

_1327743083.unknown

_1327742893.unknown

_1327393413.unknown

_1327393464.unknown

