Reach for A*: an Efficient Point-to-Point Shortest Path Algorithm

Andrew V. Goldberg

Microsoft Research – Silicon Valley

www.research.microsoft.com/ \sim goldberg/

Joint with Haim Kaplan and Renato Werneck

Einstein Quote _____

Everything should be made as simple as possible, but not simpler

_____ Shortest Paths with Preprocessing _____

Variants

- Nonnegative and arbitrary arc lengths.
- Point to point, single source, all pairs.
- Directed and undirected.

Here we study

- Point to point, nonnegative length, directed problem.
- Allow preprocessing with limited (linear) space.

Many applications, both directly and as a subroutine.

____ Shortest Path Problem ____

Input: Directed graph G = (V, A), nonnegative length function $\ell : A \to \mathbb{R}^+$, origin $s \in V$, destination $t \in V$.

Preprocessing: Limited space to store results.

Query: Find a shortest path from s to t.

Interested in exact algorithms that search a (small) subgraph.

Related work: reach-based routing [Gutman 04], hierarchical decomposition [Schultz, Wagner & Weihe 02], [Sanders & Schultes 05, 06], geometric pruning [Wagner & Willhalm 03], arc flags [Lauther 04], [Köhler, Möhring & Schilling 05], [Möhring et al. 06].

____ Motivating Application ____

Driving directions

- Run on servers and small devices.
- Typical production codes \approx 5 years ago:
 - Use base graph or other heuristics based on road categories; needs hand-tuning.
 - Runs (bidirectional) Dijkstra or A* with Euclidean bounds on "patched" graph.
 - Non-exact and no performance guarantee.
- We are interested in exact and very efficient algorithms.
- New results finding their way into products.

This talk is not about modeling ... but exact algorithms help.

___ Outline ____

- Scanning method and Dijkstra's algorithm.
- Bidirectional Dijkstra's algorithm.
- A* search.
- ALT Algorithm
- Definition of reach
- Reach-based algorithm
- Reach for A*
- Demo.

____ Scanning Method ____

- For each vertex v maintain its distance label $d_s(v)$ and status $S(v) \in \{\text{unreached}, \text{labeled}, \text{scanned}\}.$
- Unreached vertices have $d_s(v) = \infty$.
- If $d_s(v)$ decreases, v becomes labeled.
- To scan a labeled vertex v, for each arc (v, w), if $d_s(w) > d_s(v) + \ell(v, w)$ set $d_s(w) = d_s(v) + \ell(v, w)$.
- Initially for all vertices are unreached.
- Start by decreasing $d_s(s)$ to 0.
- While there are labeled vertices, pick one and scan it.
- Different selection rules lead to different algorithms.

Dijkstra's Algorithm _____

[Dijkstra 1959], [Dantzig 1963].

- At each step scan a labeled vertex with the minimum label.
- Stop when t is selected for scanning.

Work almost linear in the visited subgraph size.

Reverse Algorithm: Run algorithm from t in the graph with all arcs reversed, stop when t is selected for scanning.

Bidirectional Algorithm

- ullet Run forward Dijkstra from s and backward from t.
- Maintain μ , the length of the shortest path seen: when scanning an arc (v, w) such that w has been scanned in the other direction, check if the corresponding s-t path improves μ .
- ullet Stop when about to scan a vertex x scanned in the other direction.
- ullet Output μ and the corresponding path.

Bidirectional Algorithm: Pitfalls _____

The algorithm is not as simple as it looks.

The searches meat at x, but x is not on the shortest path.

Example Graph _____

1.6M vertices, 3.8M arcs, travel time metric.

Dijkstra's Algorithm ____

Searched area

Bidirectional Algorithm ___

forward search/ reverse search

[Doran 67], [Hart, Nilsson & Raphael 68]

Similar to Dijkstra's algorithm but:

- Domain-specific estimates $\pi_t(v)$ on dist(v,t) (potentials).
- At each step pick a labeled vertex with the minimum $k(v) = d_s(v) + \pi_t(v)$.

Best estimate of path length.

• In general, optimality is not guaranteed.

Feasibility and Optimality _____

Potential transformation: Replace $\ell(v, w)$ by $\ell_{\pi_t}(v, w) = \ell(v, w) - \pi_t(v) + \pi_t(w)$ (reduced costs).

Fact: Problems defined by ℓ and ℓ_{π_t} are equivalent.

Definition: π_t is *feasible* if $\forall (v, w) \in A$, the reduced costs are nonnegative. (Estimates are "locally consistent".)

Optimality: If π_t is feasible, the A* search is equivalent to Dijkstra's algorithm on transformed network, which has nonnegative arc lengths. A* search finds an optimal path.

Different order of vertex scans, different subgraph searched.

Fact: If π_t is feasible and $\pi_t(t) = 0$, then π_t gives lower bounds on distances to t.

____ Computing Lower Bounds ____

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick & Vitter 86].

For graph embedded in a metric space, use Euclidean distance. Limited applicability, not very good for driving directions.

We use triangle inequality

 $dist(v, w) \ge dist(v, b) - dist(w, b)$; $dist(v, w) \ge dist(a, w) - dist(a, v)$.

Lower Bounds (cont.)

Maximum (minimum, average) of feasible potentials is feasible.

- Select landmarks (a small number).
- For all vertices, precompute distances to and from each landmark.
- For each s, t, use max of the corresponding lower bounds for $\pi_t(v)$.

Why this works well (when it does)

$$\ell_{\pi_t}(x,y) = 0$$

_____ Bidirectional Lowerbounding _____

Forward reduced costs: $\ell_{\pi_t}(v, w) = \ell(v, w) - \pi_t(v) + \pi_t(w)$.

Reverse reduced costs: $\ell_{\pi_s}(v,w) = \ell(v,w) + \pi_s(v) - \pi_s(w)$.

What's the problem?

_____ Bidirectional Lowerbounding _____

Forward reduced costs: $\ell_{\pi_t}(v, w) = \ell(v, w) - \pi_t(v) + \pi_t(w)$.

Reverse reduced costs: $\ell_{\pi_s}(v,w) = \ell(v,w) + \pi_s(v) - \pi_s(w)$.

Fact: π_t and π_s give the same reduced costs iff $\pi_s + \pi_t = \text{const.}$

[Ikeda et al. 94]: use $p_s(v) = \frac{\pi_s(v) - \pi_t(v)}{2}$ and $p_t(v) = -p_s(v)$.

Other solutions possible. Easy to loose correctness.

 ALT algorithms use A^* search and landmark-based lower bounds.

_____ Landmark Selection _____

Preprocessing

- Random selection is fast.
- Many heuristics find better landmarks.
- Local search can find a good subset of candidate landmarks.
- We use a heuristic with local search.

Preprocessing/query trade-off.

Query

- ullet For a specific s,t pair, only some landmarks are useful.
- Use only active landmarks that give best bounds on dist(s,t).
- If needed, dynamically add active landmarks (good for the search frontier).

Allows using many landmarks with small time overhead.

_ Bidirectional ALT Example ____

____ Experimental Results ____

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing		query		
method	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra		28	518723	1 197 607	340.74
ALT	4	132	16 276	150 389	12.05

____ Related Systems Work ____

Network delay estimation:

Use delays to beacons to estimate arbitrary node delays. E.g., IDMaps [Francis et al. 01].

Theoretical analysis [Kleinberg, Slivkins & Wexler 04]: for random beacons and bounded doubling dimension graphs, get good bounds for most node pairs.

Good bounds are not enough to prove bounds on ALT.

Reach Intuition _____

Identify local intersections and prune them when searching far from s and t.

[Gutman 04]

- Consider a vertex v that splits a path P into P_1 and P_2 . $r_P(v) = \min(\ell(P_1), \ell(P_2))$.
- $r(v) = \max_{P}(r_{P}(v))$ over all shortest paths P through v.

Using reaches to prune Dijkstra:

If $r(w) < \min(d(v) + \ell(v, w), LB(w, t))$ then prune w.

____ Obtaining Lower Bounds ____

Can use landmark lower bounds if available.

Bidirectional search gives implicit bounds (R_t below).

Reach-based query algorithm is Dijkstra's algorithm with pruning based on reaches. Given a lower-bound subroutine, a small change to Dijkstra's algorithm.

Computing Reaches _____

- A natural exact computation uses all-pairs shortest paths.
- Overnight for 0.3M vertex graph, years for 30M vertex graph.
- Have a heuristic improvement, but it is not fast enough.
- Can use reach upper bounds for query search pruning.

Iterative approximation algorithm: [Gutman 04]

- Use partial shortest path trees of depth $O(\epsilon)$ to bound reaches of vertices v with $r(v) < \epsilon$.
- Delete vertices with bounded reaches, add penalties.
- Increase ϵ and repeat.

Query time does not increase much; preprocessing faster but still not fast enough.

___ Reach Algorithm ____

____ Experimental Results ____

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing		query		
method	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra		28	518723	1 197 607	340.74
ALT	4	132	16 276	150 389	12.05
Reach	1 100	34	53 888	106 288	30.61

____ Shortcuts ____

- Consider the graph below.
- Many vertices have large reach.

____ Shortcuts ____

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.

___ Shortcuts ____

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.

____ Shortcuts ____

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.

___ Shortcuts ____

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.
- A small number of shortcuts can greatly decrease many reaches.

____ Shortcuts ____

[Sanders & Schultes 05, 06]: similar idea in hierarchy-based algorithm; similar performance.

- During preprocessing we shortcut small-degree vertices every time ϵ is updated.
- Shortcut replaces a vertex by a clique on its neighbors.
- A constant number of arcs is added for each deleted vertex.
- Shortcuts greatly speed up preprocessing.
- Shortcuts speed up queries.

Reach with Shortcuts _____

____ Experimental Results ____

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing		query		
method	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra		28	518723	1 197 607	340.74
ALT	4	132	16 276	150 389	12.05
Reach	1 100	34	53888	106 288	30.61
Reach+Short	17	100	2804	5877	2.39

Reaches and ALT _____

- ALT computes transformed and original distances.
- ALT can be combined with reach pruning.
- Careful: Implicit lower bounds do not work, but landmark lower bounds do.
- Shortcuts do not affect landmark distances and bounds.

Reach with Shortcuts and ALT _____

____ Experimental Results ____

Northwest (1.6M vertices), random queries, 16 landmarks.

	preproce	ssing	query			
method	minutes	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra		28	518723	1 197 607	340.74	
ALT	4	132	16 276	150 389	12.05	
Reach	1 100	34	53888	106 288	30.61	
Reach+Short	17	100	2804	5 877	2.39	
Reach+Short+ALT	21	204	367	1513	0.73	

____ Further Improvements ____

- Improved locality (sort by reach).
- For RE, factor of 3-12 improvement for preprocessing and factor of 2-4 for query times.
- Reach-aware landmarks: time/space trade-off.
- Idea: maintain landmark distances for a small fraction of high-reach vertices only.
- Can use more landmarks and improve both time and space.

Practical even for large (USA, Europe) graphs

- ullet pprox 1 ms. query time on a server.
- $\bullet \approx$ 5sec. query time on a Pocket PC with 2GB flash card.
- Better for local queries.

____ The USA Graph ____

USA: 24M vertices, 58M arcs, time metric, random queries.

	preprocessing		query		
method	min	KB	avgscan	maxscan	ms
Dijkstra		536	11 808 864		5 440.49
ALT(16)	17.6	2563	187 968	2183718	295.44
Reach	impra	actical			
Reach+Short	27.9	893	2 405	4813	1.77
Reach+Short+ALT(16,1)	45.5	3 0 3 2	592	2 668	0.80
Reach+Short+ALT(64,16)	113.9	1579	538	2 5 3 4	0.86

____ The USA Graph ____

USA: 24M vertices, 58M arcs, distance metric, random queries.

	preprocessing		query		
method	min	KB	avgscan	maxscan	ms
Dijkstra		536	11 782 104		4 576.02
ALT(16)	15.2	2417	276 195	2910133	410.73
Reach	impra	ictical			
Reach+Short	46.4	918	7311	13886	5.78
Reach+Short+ALT(16,1)	61.5	2 923	905	5 5 1 0	1.41
Reach+Short+ALT(64,16)	120.5	1 575	670	3 4 9 9	1.22

____ Europe Graph ____

Europe: 18M vertices, 43M arcs, time metric, random queries.

	preprocessing			query		
method	min	KB	avgscan	maxscan	ms	
Dijkstra		393	8 984 289		4 365.81	
ALT(16)	12.5	1 597	82 348	993015	120.09	
Reach	impractical					
Reach+Short	45.1	648	4 371	8 486	3.06	
Reach+Short+ALT(16,1)	57.7	1869	714	3 387	0.89	
Reach+Short+ALT(64,16)	102.6	1 037	610	2998	0.91	

____ Grid Graphs ____

Grid with uniform random lengths (0.5M vertices), 16 landmarks. No highway structure.

	prepre	ocessing	query			
method	min	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra		18.0	174 150	416 925	160.14	
ALT	0.26	96.6	6 0 5 7	65 664	6.28	
Reach+Short	7.77	27.7	6 458	10 049	4.75	
Reach+Short+ALT(16,1)	8.03	106.3	558	3 189	0.89	
Reach+Short+ALT(64,16)	9.14	49.2	2823	3711	2.67	

Reach preprocessing expensive, but helps queries. (64,16) significantly slower that (16,1).

____ Contraction Hierarchies ____

[Geisberget et al. 08] Based on vertex ordering and shortcuts. Fast and simple!

Shortcuts review:

A shortcut arc can be omitted if redundant (alternative path exists).

____ CH Preprocessing ____

- (1) Heuristically order vertices.
- (2) Shortcut vertices in that order.
- (3) To the original graph, add all shortcuts introduced in step 2.

Do not need to add redundant shortcuts. Use an efficient heuristic to check for redundancy.

For road networks, a good heuristic ordering increases the number of arcs by a small constant factor. Preprocessing is faster than that for reach.

____ CH Query ____

Let G_A be the graph augmented by shortcuts, recall that the vertices are ordered. Let G_f be the subgraph induced by (v, w): v < w and G_r — by (v, w): v > w.

Given a query, run a modified bidirectional Dijkstra's algorithm, with the forward search in G_f and the reverse search in G_r . $d(s,t) = \min_v (d(s,v) + d(v,t))$.

For road networks and with simple heuristic improvements, queries are faster than those for reach.

____ Concluding Remarks ____

- Our heuristics work well on road networks.
- Other improvements, e.g., [Bast et al. 07].
- How to select good shortcuts? (Road networks/grids.)
- For which classes of graphs do these techniques work?
- Need theoretical analysis for interesting graph classes.
- Interesting problems related to reach, e.g.
 - Is exact reach as hard as all-pairs shortest paths?
 - \circ Constant-ratio upper bounds on reaches in $\tilde{O}(m)$ time.
- Dynamic graphs (real-time traffic).
- Impact of ALT work.

_____ Thank You! _____