Cluster Reserves: A Mechanism for Resource
Management in Cluster-based Network Servers -

Mohit Aron

Peter Druschel

Willy Zwaenepoel

Department of Computer
Science
Rice University

{aron,druschel,willy }@cs.rice.edu

ABSTRACT

In network (e.g., Web) servers, it is often desirable to isolate
the performance of different classes of requests from each
other. That is, one seeks to achieve that a certain minimal
proportion of server resources are available for a class of
requests, independent of the load imposed by other requests.
Recent work demonstrates how to achieve this performance
isolation in servers comsisting of a single, centralized node;
however, achieving performance isolation in a distributed,
cluster based server remains a problem.

This paper introduces a new abstraction, the cluster reserve,
which represents a resource principal in a cluster based net-
work server. We present a design and evaluate a prototype
implementation that extends existing techniques for perfor-
mance isolation on a single node server to cluster based
servers.

In our design, the dynamic cluster-wide resource manage-
ment problem is formulated as a constrained optimization
problem, with the resource allocations on individual ma-
chines as independent variables, and the desired cluster-wide
resource allocations as constraints. Periodically collected re-
source usages serve as further inputs to the problem.

Experimental results show that cluster reserves are effective
in providing performance isolation in cluster based servers.
We demonstrate that, in a number of different scenarios,
cluster reserves are effective in ensuring performance isola-
tion while enabling high utilization of the server resources.

1. INTRODUCTION

Web servers based on clusters of commodity PCs or work-
stations offer a cost-effective and scalable solution to the in-

*Appears in Proceedings of the ACM Sigmetrics 2000 In-
ternational Conference on Measurement and Modeling of
Computer Systems, Santa Clara, CA, June 2000.

creasing performance demands placed on popular Web sites.
As the volume, variety and sophistication of services offered
on the World Wide Web (WWW) increases, such servers
must host a rich set of services on a common hardware plat-
form. Examples of such services are the retrieval of static
and dynamic Web pages, online databases for information
retrieval and electronic commerce, and search engines.

It is often desirable that individual services hosted by a Web
site be performance isolated from each other. That is, a
minimal proportion of server resources is reserved for a ser-
vice, independent of the present demand for other services.
Similarly, sites often wish to ensure that a minimal frac-
tion of server resources be available to serve requests from a
certain client community, independent of load generated by
other clients. The need for performance isolation arises, for
instance, when different services are being paid for by dif-
ferent content providers (e.g., Web hosting), when services
have different priorities (e.g., purchasing versus browsing
in an e-commerce site), or when an organization wishes to
preferentially serve certain client communities (e.g., internal
versus external clients).

In this paper, we use the term “service class” to refer to a set
of requests for which the server wishes to reserve a certain
minimal amount of resources. Each incoming request can be
classified as belonging to exactly one service class. Requests
can be classified based on the requested resource (i.e., the
requested URI), the originator of the request (as indicated
by the client network address or some stronger form of client
authentication), or both.

State of the art Web sites typically achieve performance iso-
lation by providing separate server nodes for each service
class. For example, the various Yahoo! services (search,
email, etc.) are hosted on dedicated and separate sets of
server cluster nodes. Similarly, organizations often run sepa-
rate server nodes for internal clients and for external clients.
While this approach achieves performance isolation, it typi-
cally results in lower average utilization of cluster resources
and higher average request latencies, because resources that
are not currently utilized by one service class cannot be used
by other service classes.

Recent advances in operating systems research [17, 10, 25, 7,
9] allow effective performance isolation in single node Web
servers. In this paper, we address the problem of perfor-

mance isolation in cluster-based network servers. We pro-
pose a new cluster-wide abstraction called cluster reserve
that is capable of achieving performance isolation between
service classes that share the cluster nodes. Cluster re-
serves act as cluster-wide resource principals by extending
the resource management facilities in individual nodes to the
cluster. A cluster resource manager is responsible for map-
ping the resources assigned to a cluster reserve to individual
nodes in the cluster. The mapping is dynamically adjusted
based on prevailing load conditions and is independent of
the request distribution strategy employed in the cluster.

We use a set of benchmarking scenarios to evaluate per-
formance isolation in cluster-based Web servers and present
performance results based on a prototype implementation of
cluster reserves under synthetic and trace-based workloads.
The results show that (1) hosting multiple service classes on
a joint set of server nodes affords higher average resource
utilization and higher average throughput when compared
to the state-of-the-art approach of dedicating cluster nodes
to service classes; and, (2) cluster reserves are capable of
achieving effective performance isolation when different ser-
vice classes share a common set of cluster nodes.

The rest of the paper is organized as follows. Section 2
presents some background information used in the rest of
the paper. In Section 3 we propose the cluster reserves ab-
straction. Section 4 discusses our prototype implementation
and Section 5 presents performance results obtained with
the prototype in a number of benchmark scenarios. Related
work is covered in Section 6 and Section 7 presents our con-
clusions.

2. BACKGROUND

This section presents some technical background on cluster-
based servers and resource management in individual server
nodes.

2.1 Cluster-based Servers

A cluster-based server consists of a number of commodity
workstations or PCs connected by a network. Typically, the
server nodes are connected by a high-speed LAN [14], but
sub-clusters might be geographically distributed and com-
municate over the Internet. A geographically distributed
cluster aims to place sub-clusters in closer proximity to the
clients so as to reduce the client perceived latencies and min-
imize network load.

One or more nodes in the cluster act as front-ends; these
nodes act as point(s) of contact for the clients. Client ma-
chines send requests to one of the front-end nodes across the
Internet. The choice of a front-end node to contact is made
either via DNS round-robin®, or by asking the user which
“mirror” server to contact.

Upon receiving a request, a front-end node decides which
server node should serve the request by contacting the dis-
patcher. In making its decision, the dispatcher takes into ac-
count the current load and capabilities of the various server

'With DNS round-robin, the server host-name is dynami-
cally mapped into one of the IP addresses of the front-end
nodes.

nodes, and/or locality of reference considerations [20, 4].
The chosen server node generates the content.

2.2 Resource Containers

It is well-known that the resource management facilities
found in general-purpose operating systems are not effective
in ensuring performance isolation for server applications [13,
7]. Recent research has addressed this problem [17, 10, 25,
7, 9]. Resource containers [7], for instance, can be used to
ensure effective performance isolation in single-node Web
servers. The cluster reserves proposed in the next section
build upon this prior work and achieve cluster-wide perfor-
mance isolation between service classes by using resource
containers on individual nodes.

Resource containers are a first-class operating system ab-
straction for resource principals, which is independent of
processes and threads. Using resource containers, a Web
server can associate, for instance, a client network connec-
tion, a server thread, and a CGI process with a single re-
source principal that represents the client request being served.
This principal competes with other principals representing
other client requests for server resources. Resource contain-
ers allow accurate accounting and scheduling of resources
consumed on behalf of a single client request or a class of
client requests, and enable performance isolation and differ-
entiated quality of service when combined with an appropri-
ate resource scheduler.

3. CLUSTER RESERVES

This section presents cluster reserves, a facility for achieving
performance isolation between service classes hosted on a
cluster. Cluster reserves are cluster-wide resource principals
obtained by logically combining the resource principals on
individual cluster nodes. Resources can then be allocated
to this cluster-wide resource principal and get translated
into allocations for the resource principals (e.g., resource
containers) on the individual cluster nodes. Performance
isolation on individual cluster nodes, thus, is extended into
performance isolation for the cluster.

We begin by defining some terminology:

e Service class: A service class defines a set of requests,
such that the resources used in serving the requests are
accounted for and scheduled separately from resources
used to serve requests in different service classes. The
notion of a service class, thus, coincides with that of
a resource principal in the cluster. Service classes can
be defined in terms of sets of requested content (i.e.,
URIs), in term of the client issuing the request, or a
combination thereof.

e Resource: A resource is any shared system entity needed
for execution by a service and multiplexed by the sys-
tem between the various services it hosts. CPU time,
memory, disk and network bandwidth are all exam-
ples of resources. This paper is primarily concerned
with the CPU time resource. However, the proposed
techniques can be applied to manage other resources
as well.

e Performance isolation: A system is said to be capa-
ble of affording performance isolation between service
classes hosted on it if (1) the system permits its re-
sources to be proportioned between the service classes
hosted on it, and (2) given sufficient request load, a ser-
vice class receives at least as much resources as were
assigned to it irrespective of the load on other service
classes. A desirable third property is that resources
not used by some service class may be distributed
amongst other services classes.

As we will show, cluster reserves afford effective performance
isolation for multiple service classes hosted on a joint set
of cluster server nodes. Furthermore, this approach allows
unused resources from one service class to be utilized by
other service classes. This sharing yields increased utiliza-
tion and increased throughput when compared to the cur-
rent approach of hosting different service classes on separate
server nodes.

Cluster Reserve
Resource Container

T
— .'

Node 1 Node 2 Node 3

Figure 1: Cluster Reserves

Figure 1 depicts the hierarchical relationship between cluster
reserves (cluster resource principals) and resource containers
(node resource principals). The figure shows a cluster with
three nodes and two cluster reserves A and B. Resources
assigned to A and B are dynamically split into resource as-
signments for the corresponding resource containers on each
node. Resource allocations to corresponding resource con-
tainers on each node add up to the desired allocation for the
associated cluster reserve. For example, resources assigned
to A1, A2 and As add up to the desired allocation for cluster
reserve A.

The partitioning of the resources allocated to a cluster re-
serve amongst the corresponding resource containers is de-
termined by a cluster resource manager. In general, such
a partitioning can be made in an infinite number of ways.
For example, an allocation of 50% to cluster reserves A
and B in Figure 1 can be achieved with the partitioning
(Al = By = Ay = By = A3 = B3 = 50%) or with
(A1 = By = 100%, B1 = Ay = 0%, As = Bz = 50%). A
good partitioning depends upon the resource usage on the
individual nodes. For example, the first partitioning is suit-
able in situations when all nodes are equally loaded with
requests from service classes associated with reserves A and
B. However, the second partitioning is more suitable when
Node 1 and Node 2 only get requests associated with service
classes A and B, respectively.

To compute the partitioning, the cluster resource manager
collects resource usage statistics from the cluster nodes and
maps the allocation problem to an equivalent constrained
optimization problem. The resource usage statistics and the
target cluster allocations form the constraints for the prob-
lem and the solution yields the individual per-node resource
allocations. This method is independent of the request dis-
tribution strategy deployed in the cluster.

‘We now formally show how to map the cluster resource man-
agement problem to a constrained optimization problem.
First, we describe the inputs and outputs of the problem
and state the goal. Then we outline the steps involved in
formulating and solving the problem.

We first define the notion of a resource sink. A node is con-
sidered a resource sink with respect to a particular service
class if all resources allocated to the corresponding resource
container at that node are being fully utilized by the service
class. Intuitively, a resource sink for a particular service
class can potentially make use of an increase in resource
allocation to the corresponding container.

Goal: Let the cluster consist of N nodes and S service
classes. Each service class is associated with a distinct clus-
ter reserve and a distinct resource container at each cluster
node. Let r and w be INxS matrices such that r;; and w;;
denote the percentage resource allocation and resource us-
age respectively at node 4 for service class j. Let D be a
vector composed of S elements such that D; gives the de-
sired percentage resource allocation for the cluster reserve
corresponding to service class j. Given input matrices r and
u and the vector D, the resource manager computes a NxS
matrix R such that R;; gives the new percentage resource
allocation for service class j on node 1.

The constraints for the problem are formulated using two
distinct steps, each of which solves a constrained optimiza-
tion problem. The first step computes the least feasible
deviation between the desired and actual allocations. The
second step computes the new resource allocations such that
(1) the deviation computed in the first step is achieved, and
(2) the computed resource allocations are close to the ser-
vice class usage on each node. Finally, a third step is used to
distribute unassigned cluster resources to idle service classes
whose allocations fall below their desired cluster-wide allo-
cation.

Step 1: The objective in this step is to choose the matrix R
such that the cluster-wide allocation deviates the least from
its desired allocation. This can be stated formally as:

S N

Minimize Z | Z R;j — N * D] (1)

j=1 i=1

Additionally, the problem is constrained as follows:

e The resource allocations on any cluster-node should
sum to no more than 100. That is,

S
Vili Y Rij <100

j=1

e On any node, the new allocation should be no more
than the usage if the node is not a resource sink i.e. if
the previous allocation exceeds the usage.

Vi,j Rij < wij if rij > wij

e A minimum allocation of 1% is imposed so as to allow
some progress to requests whose service classes happen
to have the minimal allocation.

Vi,j Ri; >1

The above problem can have infinitely many solutions (i.e.
many different matrices R) each of which, however, yields
the same value V for equation 1. In this step, we are pri-
marily interested in the value V. Intuitively, V reflects the
minimum feasible deviation of the new allocations from the
desired ones. The purpose of Step 2 is to choose a solution
R, that is the most desirable while still yielding the value V'
for equation 1.

The value of V' computed from this step shall be zero if the
resources can be assigned such that the desired cluster-wide
allocation is met for all service classes. V can be greater
than zero due to the presence of nodes that are not resource
sinks with respect to some service classes. A simple example
where V will be greater than zero is when no node is a
resource sink with respect to a particular service class.

Step 2: A desirable solution matrix R is such that it de-
viates minimally from the reported resource usage values,
while still yielding the minimal feasible value V for equa-
tion 1 in Step 1. For this reason, we formulate another
constrained optimization problem that adds the following
constraint to the constraints for the problem in Step 1:

S N
j=1 i=1

The objective can be stated as:

N S
Minimize Z Z(Rij — (uij + kij))? (2)

i=1 j=1

The term k;; is a small offset (not more than 5 in absolute
value) that is intended to bias the solution towards equal
allocation to any service class across all the nodes. The
small offset, if positive, serves to probe whether a particular
service can make use of more resources on a node that is a
resource sink with respect to that service?.

ki; = min(5, 500 * (D;j — ui;)/Dj) if wij < Dj
kij = max(—5,500 * (D; — u;;)/D;) otherwise

The solution to this problem yields the matrix R whose el-
ements R;; are further processed in Step 3.

Step 3: The solution from Step 2 might still result in some
service classes whose allocations do not add up to their de-
sired cluster-wide allocation (the value V from Step 1 shall
be non-negative). This is possible only if some of the nodes
are not resource sinks with respect to such service classes

2 A resource sink can potentially make use of more resources;
however, the absolute resource demand is not known a priori.

and hence would have unallocated resources in the solution
matrix R. These unassigned resources are allocated to such
service classes so as to bring up their aggregate cluster-wide
allocation to the desired allocation level. This makes these
resources immediately available to these service classes if
needed. Any unused resources not used are proportioned
amongst other service classes dynamically by the resource
container mechanism. The resulting matrix R, therefore, is
such that all cluster resources are fully assigned (all alloca-
tions on any node sum to 100). The values of R;; are then
used to set the allocation of service class j on node 4.

Constrained optimization problems are well understood and
commercial tools are available for solving problems with
thousands of variables and constraints. However, due to the
relatively small problem size that needs to be solved by the
resource manager, we used a freely available software tool
called LOQO[24]. It is also possible to write a hand-tuned
solver for our specific problem, but owing to the satisfactory
speed afforded by LOQO, we did not adopt this approach.

In the following subsection we show a simple example that
demonstrates the resource allocations computed by the re-
source manager after collecting usage statistics for the ser-
vices from the various cluster nodes.

3.1 Dynamics of the resource manager

Our example consists of a cluster with two nodes that each
host two service classes (Svc 1 and Svc 2). Each service class
reserves 50% of the cluster capacity.

Call # % usage (sink) % allocation
Sve 1 Svc 2 Svel Svc?2
1 Node 1 | 50 (1) 50 (1) 50 50
Node 2 | 50 (1) 50 (1) 50 50
2 | Nodel| 40 (0) 60(1) | 40 60
Node2 | 50 (1) 50(1) | 60 40
3 | Nodel| 40 (1) 60 (1) || 41 59
Node2 | 60 (1) 40(1) || 59 41
4 [Nodel| 41 (1) 59(1) || 42 58
Node 2 | 59 (1) 41 (1) 58 42
5 | Nodel | 40 (0) 60 (1) | 40 60
Node 2 | 58 (1) 42 (1) 60 40
6 | Nodel| 40 (1) 60 (1) | 41 59
Node 2 | 60 (1) 40 (1) 59 41
27 Node 1 | 48.9 (1) 51.1 (1) 49 51
Node 2 | 51.1 (1) 48.9 (1) | 51 49

Table 1: Dynamics of the Resource Manager

Table 1 shows a series of successive calls invoking the opti-
mizer. Every invocation uses the current resource usages for
the two services on each node as input. Also used as input
is the information whether a node is a sink with respect to
a service (this is given in parenthesis along with the usage).
Each call computes the corresponding allocations for each
service on each node.

The resource manager is assumed to start at a time when
the allocations for each service on all the nodes are 50%
each. The reported usage in Call 1 is consistent with the
previous allocations and the new allocations are computed
to have the same values.

Call 2 reports that node 1 is no longer a resource sink with
respect to service 1 and that the usage for service 1 has fallen
to 40% on node 1 while it has increased to 60% for service
2. To equalize cluster-wide usage for the two services, the
resource manager computes allocations such that the share
for service 1 is raised to 60% on Node 2 while the share for
service 2 is lowered to 40%.

Calls 3 and 4 report usages that are consistent with the
previous allocations. Therefore, the resource manager com-
putes the new allocations by offsetting the usages by a small
amount in hope of ultimately equalizing the allocations for
each service across all nodes.

Call 5, however, is similar to call 2 and reports node 1 to
be no longer a resource sink with respect to service 1. The
new allocations are similar to those for call 2. Call 6 again
is similar to call 3.

From call 6 onwards, all nodes are reported to be resource
sinks with respect to each service. The results are shown for
call 27 — the allocations for each service have nearly equal-
ized across all the nodes.

4. PROTOTYPE IMPLEMENTATION

In this section, we briefly describe our prototype implemen-
tation of cluster reserves. Experimental results obtained
with this prototype are presented in Section 5.

The prototype cluster nodes consist of 300MHz Pentium
IT machines configured with 128 MB of RAM and run the
FreeBSD-2.2.6 operating system. For achieving performance
isolation on individual cluster nodes, we implemented re-
source containers [7] on this platform. The lottery schedul-
ing [26] policy was employed for implementing proportional
share CPU scheduling amongst resource containers. Lot-
tery scheduling manages resources using tickets and curren-
cies where each principal gets resources proportional to the
number of tickets it possesses. Thus, to allocate a fixed
percentage of a machine’s CPU to a resource container, a
proportional number of tickets are associated with it.

Cluster reserves are implemented by a resource manager
that runs as a user process on a separate cluster node. For
the purpose of communicating with the resource manager,
each node in the cluster runs a user process called tracker
that is capable of (1) collecting usage statistics from the ker-
nel and sending them to the resource manager, (2) setting
resource allocations once they are computed by the resource
manager, and (3) sending requests to the resource manager
for recomputing resource allocations. The resource man-
ager communicates with the tracker on each back-end node
through a persistent TCP connection.

In the event of a failure of the cluster resource manager, the
cluster continues to serve requests, albeit with potentially
suboptimal resource allocations (graceful degradation). As
soon as a new resource manager is started, the resource al-
locations will be adjusted.

For our experiments, two different cluster configurations were
employed. Figure 2 shows the first configuration where the
cluster consists of a front-end machine that receives client

Clients Back-Ends

|:|f

Front End

N

Figure 2: LAN configuration

Resource Mgr

Clients Cluster Nodes

] —
]

Resource Mgr

]

Figure 3: Geographically Distributed Nodes

requests and distributes them to the back-end nodes in the
cluster. The second configuration shown in Figure 3 emu-
lates a geographically distributed cluster where clients di-
rectly send requests to specific nodes.

The requests were generated by a client program based on
the S-client architecture [6]. The program generates HTTP
requests as fast as the Web server can handle them. Seven
166 MHz Pentium Pro machines were used as client ma-
chines. The client machines and all cluster nodes are con-
nected via switched 100Mbps Ethernet. The Apache-1.3.9 [2]
Web server was used at the server nodes.

As mentioned in Section 3, we used the freely available
LOQO tool for solving the constrained optimization prob-
lem in the resource manager.

Time (ms)
4 nodes 5 services | 32 nodes 8 services
300 MHz PII 160 510
500 MHz PIII 85 290

Table 2: Computation time

Table 2 shows the computation time on some platforms for
typical problems. For all the experimental results reported
in Section 5, a 300 MHz Pentium II machine was used to
run the resource manager.

5. RESOURCE MANAGEMENT IN CLUS-
TERS

In this section, we use a set of benchmarking scenarios to
(1) demonstrate the need for performance isolation in Web
servers, (2) demonstrate cases where cluster-wide resource
management (as opposed to per-node resource management)

is needed to achieve effective performance isolation, and (3)
show that cluster reserves are an effective solution for pro-
viding performance isolation in cluster-based Web servers
that run multiple service classes on a common set of cluster
nodes.

5.1 Performance isolation via node separation
As mentioned earlier, the inadequate resource management
facilities available in general-purpose operating systems ren-
der performance isolation between different service classes
ineffective, even in single node Web servers. For this reason,
state-of-the-art servers that host multiple service classes on
individual nodes are not capable of affording performance
isolation between the service classes.

For example, Internet Service Providers (ISPs) tend to host
small Webs from different organizations on a common hard-
ware platform. In the absence of performance isolation be-
tween service classes (i.e., requests for content from different
organizations in this example) higher request loads for any
one organization’s web pages can unfairly steal server re-
sources paid for by other organizations. That is, high load
for one organization’s Web can cause high latency for other
customer’s Webs.

Many state-of-the-art cluster-based servers achieve perfor-
mance isolation by reserving a disjoint subset of the cluster
nodes for each service class. While this approach is capa-
ble of achieving performance isolation, it can result in poor
resource utilization and lower performance. First, every ser-
vice requires a set of distinct cluster nodes specifically re-
served for the service and enough hardware must be pro-
vided to cover the peak load expected for the service class.
This can increase the capital and maintenance costs of the
cluster. Second, this approach does not permit resource
sharing—requests for an overloaded service cannot utilize
idle cluster resources reserved for other service classes. For
example, the nodes dedicated for running a database server
might be idle even though the nodes serving static content
might be fully saturated at a given time.

Our first experiment evaluates the performance advantages
of using a shared cluster as opposed to using disjoint clus-
ter nodes for different service classes. The setup consists
of a front-end node that distributes incoming requests to
four back-end nodes. Three front-end request distribution
strategies are considered:

1. The front-end assigns requests for any resource class
to a specific back-end node that is reserved for serving
requests only for this class.

2. The WRR strategy (see Appendix A.1) is used for re-
quest distribution and requests for a service can be
given to any cluster node. The strategy is unaware of
service classes and resource management.

3. The LARD [20, 4] strategy (see Appendix A.2) is used
for request distribution and requests for a service can
be given to any cluster node. The strategy is unaware
of service classes and resource management.

A trace obtained by merging logs of four different Rice Uni-
versity departmental Web servers was used to generate re-
quests for the cluster. This trace spans a two-month pe-
riod and its dataset consists of about 31000 different doc-
uments covering 1.015 GB of space. Our results show that
this trace needs 526/619/ 745 MB of memory cache to cover
97/98/99% of all requests, respectively.

Four service classes were hosted on the cluster. Each service
class provides resources for requests from one of the four
original Web server logs. With shared use of the cluster
(i.e., with WRR and LARD strategies), cluster reserves were
employed and each service class was allotted a cluster-wide
allocation of 25%.

Disjoint Shared
WRR | LARD
Xput (conn/s) || 252 (1.0) | 517 (2.0) | 1214 (4.8)
CPU util. (%) 15 35 60

Table 3: Disjoint vs shared cluster use

Table 3 shows the results for the three different front-end
request distribution strategies employed. The results show
that disjoint use of the cluster nodes results in relatively low
performance because of load imbalance when requests for
some services exceed those of others. Substantially higher
CPU utilization and throughput is achieved when the ser-
vice classes are allowed to share the cluster nodes (WRR
and LARD). The use of LARD yields an additional im-
provement in utilization and throughput, because it also
aggregates the total cluster memory available for caching
the documents [20, 4].

In summary, clusters that permit different service classes to
share cluster nodes running general-purpose operating sys-
tems are incapable of achieving performance isolation. On
the other hand, statically dedicating distinct sets of server
nodes for different services can result in low utilization of
server resources and lower throughput.

5.2 Performance isolation via per-node resource
allocations

‘We next consider a scenario where static per-node resource
assignments are used. This can be accomplished with an
operating system mechanism for fine-grained resource man-
agement, like resource containers.

Resource containers afford performance isolation between
service classes hosted on a single cluster node. We will show
that statically assigning equal resources to each cluster node
for every service class is sufficient for achieving performance
isolation between services on a cluster-wide basis if, and only
if, requests for all service classes are load balanced across the
cluster nodes. More generally, static resource assignments
to services on each node is sufficient for cluster-wide perfor-
mance isolation if the load for each service class is always
perfectly distributed in proportion to the resources assigned
to it on each cluster node.

Our next experiment emulates conditions where the request
load is balanced across all the cluster nodes for all service

classes. For this purpose, we use a single front-end node
in the cluster that employs the WRR request distribution
strategy. The WRR strategy statistically balances the load
for each service class on every cluster node. The cluster hosts
five service classes configured on four back-end nodes. Each
service is assigned a CPU allocation of 20% on each of the
four back-end nodes. Seven client machines issue requests
to the front-end node from a synthetic trace that contains a
repeated set of five requests, one for each service class. The
content size requested by each request is 6 KBytes. This
value was chosen because the typical size of HT'TP transfers
has been observed to range between 5-13 KBytes [3, 18].

5—=8 servicel
sol G—o service2 |
—= service3
:\.? *—* serviced
78)’ 60y +—+ services |
8
>S5
2 4or]
o
O n n n n n n n
5 10 15 20 25 30 35
Time (secs)
Figure 4: Typical node usage
100 ; ; ; ; ; ; ;
5—8 servicel
80} 0—6 service2 |
&—= service3d
;\? *—* serviced
o 601 +—+ service5 |
i
2 —
o
20t & &= @ =G
O n n n n n n n

5 10 15 20 25 30 35
Time (secs)

Figure 5: Cluster-wide usage

Figure 4 shows the resource usage for each of the five services
on a typical back-end node. Figure 5 shows the cluster-wide
resource usage for each service class. The results show that
with a balanced request load, static allocation of per-node
resources is sufficient to ensure cluster-wide performance iso-
lation.

Unfortunately, a static assignment of per-node resources is
not sufficient in situations where perfect load balance among
each server node cannot be achieved for each service class. In
the following subsections, we cover different scenarios where
perfect load balance is not attainable and, therefore, cluster-
wide resource management is needed.

5.3 Geographically distributed clusters

One case where it is not generally possible to balance request
loads for each service class arises when the cluster nodes
are geographically distributed. To emulate this scenario, we
used a configuration consisting of four cluster nodes hosting
five service classes. Only the first two nodes receive requests
for the first service class, while all nodes receive requests for
all other service classes. The CPU allocation for each service
class at any cluster node is set to 20%.

8ol +—+ noded |
&— node3

;\? 6—© node2
o 601 x— nodel]
i
2 o !
o

20

100 ; ; ; ; ; ; ;
+—+ serviceb
80} *—* serviced |
&—= service3d
;\? 6—o service2
o 601 c—a servicel |
i
5 ’
20

Figure 7: Cluster-wide usage

Figure 6 shows the resource usage of service class 2 on all
the four nodes. The resource utilization on nodes 3 and 4 is
more than that on nodes 1 and 2 because this service class
is able to steal the un-utilized CPU allocated to service class
1. Figure 7 shows the cluster-wide resource usage for all the
services classes. While service class 1 only gets 10% of the
cluster CPU, all other service classes are able to get nearly
23% by utilizing unused cycles from service class 1 on nodes
3 and 4.

‘We next repeated the above experiment with cluster reserves
for attaining performance isolation. To observe the effect the
resource manager has on resource utilization, it was started
after eight seconds from the beginning of the experiment.
Further, the resource manager was made to recompute the
resource allocations on the cluster nodes every five seconds.
An alternative strategy of recomputing resource allocations

upon demand is considered in experiments in the following
subsections.

Figure 8 again shows the resource usage of service class 2. As
can be observed, the resource manager decreases the CPU
allocation on nodes 1 and 2 and increases it on nodes 3
and 4 so as to allow service class 1 to effectively utilize its
cluster-wide resources. Figure 9 shows that after the re-
source manager is started, service class 1 is able to utilize
its cluster-wide share of CPU allocation (20%).

100 : : : : : : :
g0l +—+ node4 |
&— node3
g 6—o node2
o 60f »— nodel]
(=)
8
=}
2 4of]
o %me
20— Xy

5 10 15 20 25 30 35
Time (secs)

Figure 8: Typical service usage

100 ; ; ; ; ; ; ;
+—+ serviceb
sol *—* serviced |
—= service3
:\.? 6—o service2
© 60y =—8 servicel]
i
g 401 4

5 10 15 20 25 30 35
Time (secs)

Figure 9: Cluster-wide usage

This experiment demonstrates that geographically distributed
clusters require dynamic, global resource allocation for per-
formance isolation and that static per-node allocation is in-
sufficient in achieving effective performance isolation. The
results also indicate that cluster reserves are effective in pro-
viding performance isolation and can redistribute resources
to meet the desired allocations within 1 second.

5.4 Sparse, resource intensive requests

Our next experiment emulates a situation where a service
class hosted on the cluster has a sparse incidence of com-
pute intensive requests. Examples of services with this be-
havior include document translation services and rendering
of maps in services that provide driving directions. These
services are demanding of the resource manager, because

the sparseness of requests prevents load balancing among
nodes, and minimizing response time requires that reserved
cluster resources are shifted quickly to a node that receives
a request.

The experimental setup consists of five cluster nodes in a
LAN environment. One of the nodes acts as a front-end,
distributing requests to the four other back-end nodes. The
request strategy employed at the front-end is WRR. Five
services are hosted on the cluster and the desired resource
allocation for each of them is 20%.

All requests for service class 1 access a CGI script that runs
for 10 seconds before returning a 140 byte result to the client.
Requests for all other service classes access a 6 KByte static
document and are balanced across the cluster by the WRR
policy employed at the front-end®. At any time, there is
only one outstanding request for service class 1 and a new
request is initiated as soon as the previous one finishes.

100 i i i i i i i
g0l +—+ node4 |
— node3
g 6—>o node2
o 60y »—= nodel |
(o))
8
>S5
2 4or 1
O
5 10 15 20 25 30 35
Time (secs)

Figure 10: Usage for service 1

100 ; ; ; ; ; ; ;
+—+ serviceb
80} *—* serviced |
&—= service3d
;\? 6—o service2
o 601 c—a servicel |
i
5 ’
20f

Figure 11: Cluster-wide usage

Figure 11 shows the cluster-wide resource usage of the five
service classes with a static per-node resource allocation of
20% to each service class. Service class 1 gets only 5% of

3A small modification was made to the WRR policy that
ensured that every request for service class 1 is assigned to
a different node than the last one.

the cluster resources while all other service classes get nearly
24%. This is because the CGI script is only able to use
the fractional capacity allocated to its service class on the
node that serves the request; it cannot utilize the capacity
allocated to its service class at other nodes, which is then
used by other service classes. This is depicted in Figure 10.

100
80
S
5
=}
2 4o
o
20t
O A A A & =N PN PN
5 10 15 20 25 30 35
Time (secs)
Figure 12: Usage for service 1
100
+—+ serviceb
80} * * serviced |
&—= service3
;\? 6—o service2
o 60 o—o servicel |
i
2 4o
o
20k

Figure 13: Cluster-wide usage

We next repeated the experiment with cluster reserves. Re-
source allocation decisions by the resource manager are made
on an on-demand basis. A back-end requests a reallocation
of cluster resources when (1) the node ceases to be a sink
for any service, or conversely, (2) the CPU usage of a ser-
vice falls significantly (more than 20% of its last measured
usage) on that node.

Figure 12 shows that the resource manager is capable of
dynamically assigning resources to service class 1 such that
its cluster-wide usage meets its allocation. The dips in the
graph correspond to the intervals between the instant when
a CGI request finishes on one node, and the time when the
resource manager reallocates resources to the node that just
received the next CGI request.

Our results show that the time for re-allocation of resources
ranges from 300ms to 1 second. This variation is the re-
sult of three factors: (1) the usage statistics at each node
are computed every 250ms as a weighted mean of both the

past and present usage; (2) the computation time taken by
the resource manager ranges from 100-200ms; and, (3) new
requests for resource allocation are sent to the resource man-
ager only after the usage transients resulting from the last
reallocation have stabilized (i.e., after 250ms).

Figure 13 shows the cluster-wide usage of all service classes
with cluster reserves. The results show that resource usage
corresponds to the allocation, except for the short intervals
when a new request arrives at a different node and resources
need to be reallocated.

5.5 Content-based request distribution

Our final experiment demonstrates cluster resource manage-
ment with content-based request distribution schemes. The
experimental setup consists of a front-end node distributing
requests to four back-end nodes. The LARD [4, 20] request
distribution strategy was employed at the front-end to dis-
tribute requests. The cluster hosts three service classes, each
of which are allocated 33% of the cluster’s CPU resources.
In order to realistically reflect the resource usage across the
cluster nodes with content-based request distribution, the
requests for each service classes are played from actual web
logs from three different departmental web servers. The logs
corresponding to service classes 1, 2 and 3 consist of datasets
of 358 MB, 24 MB and 193 MB respectively and need 248
MB, 16 MB and 67 MB respectively of memory cache to
satisfy 98% of their requests from main memory.

100
801 1
— service3
;\? 6—o service2
o 601 c—a servicel |
i
2 40|
o
201
0

5 10 15 20 25 30 35
Time (secs)

Figure 14: No Cluster Reserves

Figure 14 shows the cluster wide CPU usage of the three
service classes when cluster reserves are not used. The re-
sults show that service class 1 is able to obtain more than
its fair share (33%) of cluster CPU time while service class
2 gets less than its share. The high variation in the usage is
mainly due to disk activity that is needed when requested
documents are not found in the main memory cache. Fig-
ure 15 shows the results when cluster reserves are being used.
With cluster reserves, all service classes achieve their allo-
cated resource usage.

6. RELATED WORK

Network servers based on clusters of workstations are now
widely used [14]. Several commercial products are avail-
able for use as front-end nodes in cluster servers [11, 16].

100
801 1
— service3d

;\? 6—o service2
o 601 c—-a servicel |
i
2 40|
o

201

5 10 15 20 25 30 35
Time (secs)

Figure 15: With Cluster Reserves

Most request distribution strategies employed are variations
of WRR (described in Appendix A.1). The LARD |20, 4,
5] strategy is based on content-based request distribution
and affords scalable performance by simultaneously achiev-
ing better cache locality and load balance. The Dispatch
product by Resonate, Inc. supports a strategy that is also
based on content-based request distribution [21]. Loosely-
coupled distributed servers are also widely deployed in the
Internet and use various techniques for load balancing in-
cluding DNS round-robin [8], HT'TP client re-direction [1],
Smart clients [27], source-based forwarding [12] and hard-
ware translation of network addresses [11]. Load balancing
strategies that seek to satisfy response time based perfor-
mance criteria are discussed in [22] and the citations therein.
Our work focuses on resource management in cluster-based
servers and our methodology can be applied independently
of the request distribution scheme employed in the cluster.

Fox et al. [14] report on the cluster server technology used
in the Inktomi search engine. The work focuses on the reli-
ability and scalability aspects of the system and is comple-
mentary to our work, which instead focuses on the resource
management aspects.

Banga et al. [7] proposed the resource container abstrac-
tion that separates the notion of a resource principal from
threads or processes and provides support for fine-grained
resource management in the operating system. Coupled
with LRP [13], resource containers are capable of affording
performance isolation on a single node. Other related ab-
stractions are Activities [17] in the Rialto real-time operat-
ing system, software performance units (SPU) [25] proposed
in the context of shared-memory multiprocessors, reserva-
tion domains in the Eclipse operating system [10, 9] and
paths in Scout [23].

Our proposed cluster reserves are cluster-wide resource prin-
cipals that extend performance isolation on individual clus-
ter nodes into performance isolation for the cluster. Our
implementation uses resource containers to achieve perfor-
mance isolation on individual cluster nodes. However, in
principal any other abstraction capable of affording perfor-
mance isolation on a single node can be used.

Various scheduling algorithms for achieving fixed share re-
source allocation have been discussed in past literature. Lot-
tery scheduling [26] proposes to manage resources using tick-
ets and currencies where each service class gets resources
proportional to the number of tickets it possesses. Start
time fair queuing [15] applies the weighted fair queuing algo-
rithm developed for network switches to CPU scheduling for
achieving fixed CPU allocations. The SMART [19] multime-
dia scheduler integrates priorities and weighted fair queuing
to meet real-time constraints while simultaneously support-
ing non real-time applications. Our resource container im-
plementation employs the Lottery scheduling algorithm to
achieve proportional share CPU allocation.

7. CONCLUSIONS

This paper presents and evaluates cluster reserves, a re-
source management facility for cluster based Web servers
that affords effective performance isolation in the presence
of multiple Web services that share a server cluster. Cluster
reserves extend existing mechanisms for performance isola-
tion in single-node servers to a cluster environment.

Using a set of benchmark scenarios and both synthetic and
trace based workloads, we evaluate a prototype implementa-
tion of cluster reserves. The results show that hosting multi-
ple Web services on a joint set of cluster nodes can result in
higher resource utilization and improved performance than
the state-of-the-art approach of hosting different services on
dedicated server nodes. The results also demonstrate that
cluster-wide (as opposed to per-node) resource management
is needed to achieve effective performance isolation among
services that share a set of clusters.

Finally, our results show that cluster reserves are an effective
solution for providing performance isolation in cluster-based
Web servers. Cluster reserves afford performance isolation
among multiple service classes, which can be defined based
on the requested content, the client who issues the request,
or both.

While we evaluate our implementation for the CPU time
resource, cluster reserves can be extended to also provide
performance isolation for other operating system resources
like memory, disk and network bandwidth etc.

8. REFERENCES
[1] D. Andresen et al. SWEB: Towards a Scalable WWW
Server on MultiComputers. In Proccedings of the 10th
International Parallel Processing Symposium, Apr.
1996.

[2] Apache. http://www.apache.org/.

[3] M. F. Arlitt and C. L. Williamson. Web Server
Workload Characterization: The Search for Invariants.
In Proceedings of the ACM SIGMETRICS 96
Conference, Philadelphia, PA, Apr. 1996.

[4] M. Aron, P. Druschel, and W. Zwaenepoel. Efficient
Support for P-HTTP in Cluster-based Web Servers. In
Proceedings of the USENIX 1999 Annual Technical
Conference, Monterey, CA, June 1999.

[5]

[6]

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

M. Aron, D. Sanders, P. Druschel, and

W. Zwaenepoel. Scalable Content-aware Request
Distribution in Cluster-based Network Servers. In
Proceedings of the USENIX 2000 Annual Technical
Conference, San Diego, CA, June 2000.

G. Banga and P. Druschel. Measuring the capacity of
a Web server under realistic loads. World Wide Web
Journal (Special Issue on World Wide Web

Characterization and Performance Evaluation), 1999.

G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management in
server systems. In Proceedings of the 3rd USENIX
Symposium on Operating Systems Design and
Implementation, Feb. 1999.

T. Brisco. DNS Support for Load Balancing. RFC
1794, Apr. 1995.

J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and

A. Silberschatz. Retrofitting Quality of Service into a
Time-Sharing Operating System. In Proceedings of the
USENIX 1999 Annual Technical Conference,
Monterey, CA, June 1999.

J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz.
The Eclipse Operating System: Providing Quality of
Service via Reservation Domains. In Proceedings of the
USENIX 1998 Annual Technical Conference, Berkeley,
CA, June 1998.

Cisco Systems Inc. LocalDirector.
http://www.cisco.com.

O. P. Damani, P.-Y. E. Chung, Y. Huang, C. Kintala,
and Y.-M. Wang. ONE-IP: Techniques for hosting a
service on a cluster of machines. Computer Networks
and ISDN Systems, 29:1019-1027, 1997.

P. Druschel and G. Banga. Lazy receiver processing
(LRP): A network subsystem architecture for server
systems. In Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and
Implementation, Seattle, WA, Oct. 1996.

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. In Proceedings of the Sizteenth ACM
Sympostum on Operating System Principles, San
Malo, France, Oct. 1997.

P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU
Scheduler for Multimedia Operating System. In
Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation,
Seattle, WA, Oct. 1996.

IBM Corporation. IBM interactive network dispatcher.
http://www.ics.raleigh.ibm.com/ics/isslearn.htm.

M. B. Jones, P. J. Leach, R. P. Draves, and J. S.
Barrera. Modular real-time resource management in
the Rialto operating system. In Proceedings of the
Fifth Workshop on Hot Topics in Operating Systems
(HotOS-V), Orcas Island, WA, May 1995.

[18] J. C. Mogul. The Case for Persistent-Connection
HTTP. In Proceedings of the ACM SIGCOMM ’95
Symposium, 1995.

[19] J. Nieh and M. S. Lam. The Design, Implementation
and Evaluation of SMART: A Scheduler for
Multimedia Applications. In Proceedings of the 16th
Symposium on Operating Systems Principles
(SOSP-97), New York, Oct. 1997.

[20] V. S. Pai, M. Aron, G. Banga, M. Svendsen,
P. Druschel, W. Zwaenepoel, and E. Nahum.
Locality-Aware Request Distribution in Cluster-based
Network Servers. In Proceedings of the 8th Conference
on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, Oct. 1998.

[21] Resonate Inc. Resonate dispatch.
http://www.resonateinc.com.

[22] J. Sethuraman and M. S. Squillante. Optimal
stochastic scheduling in multiclass parallel queues. In
Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems,
Atlanta, GA, May 1999.

[23] O. Spatscheck and L. L. Peterson. Defending Against
Denial of Service Attacks in Scout. In Proceedings of
the 8rd USENIX Symposium on Operating Systems
Destgn and Implementation, Feb. 1999.

[24] R. Vanderbei. LOQO: An interior point code for
quadratic programming. Optimization Methods and
Software, 1999.

[25] B. Verghese, A. Gupta, and M. Rosenblum.
Performance Isolation: Sharing and Isolation in
Shared-Memory Multiprocessors. In Proceedings of the
8th Conference on Architectural Support for
Programming Languages and Operating Systems, San
Jose, CA, Oct. 1998.

[26] C. A. Waldspurger and W. E. Weihl. Lottery
Scheduling: Flexible Proportional-Share Resource
Management. In Proceedings of the 1st USENIX
Symposium on Operating Systems Design and
Implementation, Monterey, CA, Nov. 1994.

[27] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat,
T. Anderson, and D. Culler. Using Smart Clients to
Build Scalable Services. In Proceedings of the 1997
USENIX Technical Conference, Berkeley, CA, Jan.
1997.

APPENDIX

A. REQUESTDISTRIBUTIONSTRATEGIES
This section briefly describes the weighted round-robin (WRR)
and the locality-aware request distribution (LARD) strate-
gies employed by a front-end node to distribute requests to
back-end nodes in a cluster.

0
cost_balancing(target, server) =

cost_locality(target, server) = { L

0
cost_replacement(target, server) = 0

Infinity
Load(server) — Liqe

Load(server) < Lige
Load(server) > Loyerioad
otherwise

target is mapped to server

Miss Cost otherwise

Load(server) < Liqe
target is mapped to server

Miss Cost otherwise

Figure 16: LARD Cost Metrics

A.1l The WRR strategy

The WRR request distribution strategy aims to efficiently
utilize cluster resources by balancing the load across all the
back-end cluster nodes. The pseudo-code for this strategy
is given below:

while (true) {
fetch next request r;
chosen_backend < (chosen_backend+1) mod num backends;
min load < Load(chosen_backend);
cmp_backend < (chosen_backend+1) mod num_backends;
for (i+-1; i < num backends ;i++) {
if (min_load > Load(cmp_backend)) {
chosen_backend <+ cmp_backend;
min_load < Load(chosen_backend);

cmp_backend <+ (cmp_backend + 1) mod num_backends;

}

send r to chosen_backend;

}

A.2 The LARD strategy

The LARD [20, 4] strategy yields scalable performance by
achieving both load balancing and cache locality at the back-
end servers. For the purpose of achieving cache locality,
LARD maintains mappings between targets and back-end
nodes, such that a target is considered to be cached on its
associated back-end nodes. To achieve a balance between
load distribution and locality, LARD uses three cost metrics:
cost_balancing, cost_locality and cost_replacement.

The unit of cost (and also of load) is defined to be the delay
experienced by a request for a cached target at an other-
wise unloaded server. The load point L;4. defines a value
below which a back-end node is potentially underutilized.
Loyerioad is defined such that the difference in delay between
a back-end node operating at or above this load, compared
to a back-end node operating at the point L;gie, becomes
unacceptable.

The aggregate cost for sending the request to a particular
server is defined as the sum of the values returned by the
above three cost metrics. When a request arrives at the
front-end, the LARD policy assigns the request to the back-
end node that yields the minimum aggregate cost among
all nodes, and updates the mappings to reflect that the re-
quested target will be cached at that back-end node.

