
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 7: Recursion

Start

Finish

Overview

What is recursion?

! When one function calls ITSELF directly or indirectly.

Why learn recursion?

! New mode of thinking.

! Powerful programming tool.

! Divide-and-conquer paradigm.

Many computations are naturally self-referential.

! A directory contains files and other directories.

! Euclid's gcd algorithm.

! Quicksort.

! Linked data structures.

Drawing Hands
M. C. Escher, 1948

Greatest Common Divisor

Find largest integer d that evenly divides into p and q.

Example:

! Suppose p = 32 and q = 24

! Integers that evenly divide both p and q: 1, 2, 4, 8

– So d = 8 (the largest)

How would you compute gcd ?

Greatest Common Divisor

Find largest integer d that evenly divides into p and q.

Applications.

! Simplify fractions: 1272/4032 = 53/168.

! RSA cryptosystem. stay tuned

! History of algorithms.

Euclid, 300 BCE

gcd(4032, 1272) = gcd(1272, 216)

= gcd(216, 192)

= gcd(192, 24)

= gcd(24, 0)

= 24.

4032 = 26 ! 32 ! 71

 1272 = 23 ! 31 ! 531

 gcd = 23 ! 31 = 24

base case

reduction step,
converges to base case

!
"
=

=
otherwise)%,gcd(

0 if
),gcd(

qpq

qp
qp

Greatest Common Divisor

Find largest integer d that evenly divides into p and q.

p

p % qq

x x x x x x x x

p = 8x
q = 3x
gcd(p, q) = x

base case

reduction step,
converges to base case

!
"
=

=
otherwise)%,gcd(

0 if
),gcd(

qpq

qp
qp

q

gcd

Greatest Common Divisor

Find largest integer d that evenly divides into p and q.

Java implementation.

base case

reduction step

!
"
=

=
otherwise)%,gcd(

0 if
),gcd(

qpq

qp
qp

base case

reduction step,
converges to base case

static int gcd(int p, int q) {

 if (q == 0) return p;

 else return gcd(q, p % q);

}

Koch Snowflake

Koch curve of order n.

! Draw curve of order n-1.

! Turn 60º.

! Draw curve of order n-1.

! Turn -120º.

! Draw curve of order n-1.

! Turn 60º.

! Draw curve of order n-1.

n = 0 n = 1

n = 2 n = 3

public static void koch(int n, double size) {

 if (n == 0) StdDraw.goForward(size);

 else {

 koch(n-1, size);

 StdDraw.rotate(60);

 koch(n-1, size);

 StdDraw.rotate(-120);

 koch(n-1, size);

 StdDraw.rotate(60);

 koch(n-1, size);

 }

}

Koch Curve: Recursion Tree

2

L

n

1

R L

0 000

L R L

1

0 000

L R L

1

0 000

L R L

1

0 000

L R L

L R LRLLRLLRL LRLL

L: Rotate 60º

R: Rotate -120º

Koch Snowflake

Koch snowflake of order n.

! Draw Koch curve of order n.

! Turn -120º.

! Draw Koch curve of order n.

! Turn -120º.

! Draw Koch curve of order n.

Koch Snowflake in Java

!
"
=

=
otherwise)%,gcd(

0 if
),gcd(

nmn

nm
nm

public class Koch {

 public static void koch(int n, double size) { }

 public static void main(String args[]) {

 int N = Integer.parseInt(args[0]);

 int width = 512;

 int height = (int) (2 * width / Math.sqrt(3));

 double size = width / Math.pow(3.0, N);

 StdDraw.create(width, height);

 StdDraw.go(0, width * Math.sqrt(3) / 2);

 StdDraw.penDown();

 koch(N, size);

 StdDraw.rotate(-120);

 koch(N, size);

 StdDraw.rotate(-120);

 koch(N, size);

 StdDraw.show();

 }

}

compute
parameters

draw it

just did this

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

! Only one disc may be moved at a time.

! A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

Start Finish

Edouard Lucas (1883)

Towers of Hanoi: Recursive Solution

Move N-1 smallest discs to pole B. Move largest disc to pole C.

Move N-1 smallest discs to pole C.

A B C

Towers of Hanoi Legend

Is world going to end (according to legend)?

! 40 golden discs on 3 diamond pegs.

! World ends when certain group of monks accomplish task.

Will computer algorithms help?

Towers of Hanoi: Recursive Solution

public class Hanoi {

 public static void hanoi(int n, String from, String temp,

 String to) {

 if (n == 0) return;

 hanoi(n-1, from, to, temp);

 System.out.println("Move disc " + n +

 " from " + from + " to " + to);

 hanoi(n-1, temp, from, to);

 }

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 hanoi(N, "A", "B", "C");

 }

}

Towers of Hanoi: Recursive Solution

% java Hanoi 4

Move disc 1 from A to B

Move disc 2 from A to C

Move disc 1 from B to C

Move disc 3 from A to B

Move disc 1 from C to A

Move disc 2 from C to B

Move disc 1 from A to B

Move disc 4 from A to C

Move disc 1 from B to C

Move disc 2 from B to A

Move disc 1 from C to A

Move disc 3 from B to C

Move disc 1 from A to B

Move disc 2 from A to C

Move disc 1 from B to C

% java Hanoi 3

Move disc 1 from A to C

Move disc 2 from A to B

Move disc 1 from C to B

Move disc 3 from A to C

Move disc 1 from B to A

Move disc 2 from B to C

Move disc 1 from A to C

subdivisions of ruler

Towers of Hanoi: Recursion Tree

3, ABC

2, ACB

1, ABC 1, CAB

2, BAC

1, BCA 1, ABC

0, ACB 0, BAC

move 1 from

A to C

move 3 from

A to C

move 2 from

A to B
move 2 from

B to C

0, ACB 0, BAC

move 1 from

A to C

0, ACB 0, ACB

move 1 from

C to B

0, BAC 0, CBA

move 1 from

B to A

1 2 1 3 2 11

n from, temp, to

Properties of Towers of Hanoi Solution

Remarkable properties of recursive solution.

! Takes 2N - 1 steps to solve N disc problem.

! Sequence of discs is same as subdivisions of ruler.

! Smallest disc always moves in same direction.

Recursive algorithm yields non-recursive solution!

! Alternate between two moves:

– move smallest disc to right (left) if N is even (odd)

– make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

! Takes 348 centuries for N = 40, assuming rate of 1 disc per second.

! Reassuring fact: ANY solution takes at least this long!

Divide-and-Conquer

Divide-and-conquer paradigm.

! Break up problem into one or more smaller subproblems of similar

structure.

! Solve subproblems recursively using same method.

! Combine results to produce solution to original problem.

Historical origins.

! Julius Caesar (100 BCE - 44 BCE).

! "Divide et impera."

! "Veni, vidi, vici."

Many problems have elegant divide-and-conquer solutions.

! Adaptive quadrature.

! Sorting. quicksort (stay tuned)

Numerical Integration

Integrate a smooth function f(x) from x = a to b.

! Quadrature: subdivide interval from a to b into tiny pieces,

approximate area under curve in each piece, and compute sum.

! Rectangle rule: approximate using constant functions.

! Trapezoid rule: approximate using linear functions.

Trapezoid RuleRectangle Rule

[]

N
ab

k

NNN

hhkax

xfxfxfxfxfhS

!

!

=+=

+++++=

,

)()()()()(
2
1

12102
1

K

x0 x1 xNa b

Trapezoid Rule

public class Integration {

 static double f(double x) {

 return Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI);

 }

 static double trapezoid(double a, double b, int N) {

 double h = (b - a) / N;

 double sum = 0.5 * h * (f(a) + f(b));

 for (int k = 1; k < N; k++)

 sum = sum + h * f(a + h*k);

 return sum;

 }

 public static void main(String[] args) {

 System.out.println(trapezoid(-3.0, 3.0, 1000));

 }

}

number of interval

subdivisions

a function to integrate

Adaptive Quadrature

Numerical quadrature: approximate area under a curve from a to b.

! Subdividing into subintervals and approximate area in each piece.

! Trapezoid: fixed number of equally spaced subintervals.

! Adaptive quadrature: variable number of subintervals that adapt

to shape of curve.

Adaptive Quadrature

To approximate area of curve from a to b:

! Approximate area from a to b using two quadrature methods.

! If nearly equal, return area.

Otherwise

– subdivide interval into two equal pieces

– compute area of each piece recursively

– return sum

static double adaptive(double a, double b) {

 double area = trapezoid(a , b , 10);

 double check = trapezoid(a , b , 5);

 if (Math.abs(area - check) > 0.00000000001) {

 double m = (a + b) / 2;

 area = adaptive(a, m) + adaptive(m, b);

 }

 return area;

}

Fibonacci Numbers

Infinite series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

! A natural for recursion.

!
"

!
#

$

+

=

=

=

%% otherwise

1 if1

0 if0

21 nn

n

FF

n

n

F

Fibonacci Rabbits:

L. P. Fibonacci
(1170 - 1250)

Possible Pitfalls With Recursion

Is recursion fast?

! Yes. We produced remarkably efficient program for gcd.

! No. Can easily write remarkably inefficient programs.

Fibonacci numbers:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Observation: it takes a really long time to compute F(40).

static int F(int n) {

 if (n == 0 || n == 1) return n;

 else return F(n-1) + F(n-2);

}

Spectacularly inefficient Fibonacci

!
"

!
#

$

+

=

=

=

%% otherwise

1 if1

0 if0

21 nn

n

FF

n

n

F

Possible Pitfalls With Recursion

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

331,160,281 function calls for F(40).

F(39) is computed once.

F(38) is computed 2 times.

F(37) is computed 3 times.

F(36) is computed 5 times.

F(35) is computed 8 times.

...

F(0) is computed 165,580,141 times.

static int F(int n) {

 if (n == 0 || n == 1) return n;

 else return F(n-1) + F(n-2);

}

Spectacularly inefficient Fibonacci

Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute

intermediate results.

! Dynamic programming solution.

– save away intermediate results in a table

– stay tuned: genetic sequence alignment assignment

Summary

How to write simple recursive programs?

! Base case, reduction step.

! Trace the execution of a recursive program.

! Use pictures.

Why learn recursion?

! New mode of thinking.

! Powerful programming tool.

Many problems have elegant divide-and-conquer solutions.

! Adaptive quadrature.

! Quicksort.

! Integer arithmetic for RSA cryptography.

! Polynomial multiplication for signal processing.

! Quad-tree for efficient N-body simulation.

