

Greatest Common Divisor

Find largest integer d that evenly divides into p and q.

Example:

- Suppose $p=32$ and $q=24$
- Integers that evenly divide both p and $q: 1,2,4,8$
- So d=8 (the largest)

What is recursion?

- When one function calls ITSELF directly or indirectly.

Why learn recursion?

- New mode of thinking.
- Powerful programming tool.
- Divide-and-conquer paradigm.

Many computations are naturally self-referential.

- A directory contains files and other directories.
- Euclid's gcd algorithm.
- Quicksort.
- Linked data structures.

Drawing Hands M. C. Escher, 1948

Greatest Common Divisor

Find largest integer d that evenly divides into p and q.

$\operatorname{gcd}(p, q)=$	$\begin{cases}p & \text { if } q=0 \\ \operatorname{gcd}(q, p \% q) & \text { otherwise }\end{cases}$	\Leftrightarrow base case - reduction step, converges to base case
$\operatorname{gcd}(4032,1272)$	$)=\operatorname{gcd}(1272,216)$	
	$=\operatorname{gcd}(216,192)$	$4032=2^{6} \times 3^{2} \times 7^{1}$
	$=\operatorname{gcd}(192,24)$	$1272=2^{3} \times 3^{1} \times 53^{1}$
	$=\operatorname{gcd}(24,0)$	
	$=24$.	gcd $=2^{3} \times 3^{1}=24$

Euclid, 300 BCE

Greatest Common Divisor

Find largest integer d that evenly divides into p and q.

$$
\operatorname{gcd}(p, q)=\left\{\begin{array}{ll}
p & \text { if } q=0 \\
\operatorname{gcd}(q, p \% q) & \text { otherwise }
\end{array} \stackrel{\Leftarrow \text { base case }}{\text { reduction step, }} \begin{array}{l}
\text { converges to base case }
\end{array}\right.
$$

Koch Snowflake

Koch curve of order n.

- Draw curve of order n-1.
- Turn 60°.
\qquad

- Draw curve of order n-1.
- Turn-120․
- Draw curve of order n-1.

$n=1$

- Draw curve of order n-1.

```
public static void koch(int n, double size) (
    if (n == 0) StdDraw.goForward(size)
    else {
        koch(n-1, size);
        StdDraw. rotate (60)
        och(n-1, size)
        koch(n-1, size)
        koch(n-1, size)
        koch(n-1, size);
        StdDraw. rotate(60
        koch(n-1, size)
    }
}
```

Koch snowflake of order n.

- Draw Koch curve of order n.
- Turn - 120°.
- Draw Koch curve of order n.
- Turn - 120°.
- Draw Koch curve of order n.

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

Start

Finish

Edouard Lucas (1883)

Towers of Hanoi: Recursive Solution

Move N-1 smallest discs to pole

Move largest disc to pole C.

Move N-1 smallest discs to pole C.

Towers of Hanoi Legend

Is world going to end (according to legend)?

. 40 golden discs on 3 diamond pegs.

- World ends when certain group of monks accomplish task.

Will computer algorithms help?

```
public Class Hanoi
    public static void hanoi(int n, String from, String temp,
        String to) {
        if (n == 0) return;
        hanoi (n-1, from, to, temp)
        System.out.println("Move disc " + n +
        from " + from + " to " + to);
        hanoi(n-1, temp, from, to)
    }
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        hanoi(N, "A", "B", "C")
    }
```

\% java Hanoi 3
Move disc 1 from A to C Move disc 2 from A to B Move disc 1 from C to B Move disc 3 from A to C Move disc 1 from B to A Move disc 2 from B to C Move disc 1 from A to C
\% java Hanoi 4
Move disc 1 from A to B Move disc 2 from A to C Move disc 1 from B to C Move disc 3 from A to B Move disc 1 from C to A Move disc 2 from C to B Move disc 1 from A to B Move disc 4 from A to C Move disc 4 from A to C Move disc 1 from B to C Move disc 2 from B to A Move disc 1 from C to A Move disc 3 from B to C Move disc 1 from A to B Move disc 2 from A to C Move disc 1 from B to C

Towers of Hanoi: Recursion Tree

Properties of Towers of Hanoi Solution

Remarkable properties of recursive solution.

- Takes $2^{N}-1$ steps to solve N disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Smallest disc always moves in same direction.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
- move smallest disc to right (left) if N is even (odd)
- make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 348 centuries for $N=40$, assuming rate of 1 disc per second.
- Reassuring fact: ANY solution takes at least this long!

Divide-and-Conquer

Divide-and-conquer paradigm.

- Break up problem into one or more smaller subproblems of similar structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

Historical origins.

- Julius Caesar (100 BCE - 44 BCE).
. "Divide et impera."
- "Veni, vidi, vici."

Many problems have elegant divide-and-conquer solutions.

- Adaptive quadrature.
- Sorting. quicksort (stay tuned)

Numerical Integration

Integrate a smooth function $f(x)$ from $x=a$ to b.

- Quadrature: subdivide interval from a to b into tiny pieces, approximate area under curve in each piece, and compute sum.
- Rectangle rule: approximate using constant functions.
- Trapezoid rule: approximate using linear functions.

Rectangle Rule

Trapezoid Rule

Trapezoid Rule

```
public class Integration {
    static double f(double x) {
        return Math.exp(-\mathbf{x*x / 2) / Math.sqrt(2 * Math.PI)}
    }
        for (int k = 1; k < N; k++)
            sum = sum + h * f(a + h*k)
            return sum;
    }
```

```
public static void main(String[] args) {
            System.out.println(trapezoid(-3.0, 3.0, 1000));
    }
```

\}

Adaptive Quadrature

Numerical quadrature: approximate area under a curve from a to b.

- Subdividing into subintervals and approximate area in each piece.
- Trapezoid: fixed number of equally spaced subintervals.
- Adaptive quadrature: variable number of subintervals that adapt to shape of curve.

Fibonacci Numbers

Infinite series: $0,1,1,2,3,5,8,13,21,34, \ldots$

- A natural for recursion.

Fibonacci Rabbits:

L. P. Fibonacci (1170-1250)

Adaptive Quadrature

To approximate area of curve from a to b

- Approximate area from a to b using two quadrature methods.
- If nearly equal, return area.

Otherwise

- subdivide interval into two equal pieces
- compute area of each piece recursively
return sum

```
static double adaptive(double a, double b)
    double area = trapezoid(a , b , 10)
    double check = trapezoid(a, b, 5);
    if (Math.abs(area - check) > 0.000000000001) {
        double m = (a + b) / 2
        area = adaptive(a,m) + adaptive(m, b);
    }
    return area
}
```


Possible Pitfalls With Recursion

Is recursion fast?

- Yes. We produced remarkably efficient program for gcd
- No. Can easily write remarkably inefficient programs.

Fibonacci numbers
$0,1,1,2,3,5,8,13,21,34, \ldots$

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { otherwise }\end{cases}
$$

Observation: it takes a really long time to compute $F(40)$.

```
static int F(int n) {
    if (n == 0 || n == 1) return n
    else return F(n-1) +F(n-2);
}
```

Spectacularly inefficient Fibonacci

Possible Pitfalls With Recursion
$F(39)$ is computed once.
$F(38)$ is computed 2 times
$F(37)$ is computed 3 times
$F(36)$ is computed 5 times
$F(35)$ is computed 8 times

$F(0)$ is computed $165,580,141$ times.
$331,160,281$ function calls for $F(40)$.

> static int $F($ int $n)\{$
> if $(n=0 \quad| | n==1)$ return n; else return $F(n-1)+F(n-2) ;$
\}

Spectacularly inefficient Fibonacci

Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute intermediate results.

- Dynamic programming solution.
- save away intermediate results in a table
- stay tuned: genetic sequence alignment assignment

