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Abstract A “large dataset” is here defined as one that cannot be analyzed using
some particular desired combination of hardware and software because
of computer memory constraints. DuMouchel et al. (1999) defined “data
squashing” as the construction of a substitute smaller dataset that leads
to approximately the same analysis results as the large dataset. For-
mally, data squashing is a type of lossy compression that attempts to
preserve statistical information. To be efficient, squashing must improve
upon the common strategy of taking a random sample from the large
dataset. Three recent papers on data squashing are summarized and
their results are compared.
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1. Introduction: The need for general-purpose
data summaries of large datasets

One of the chief obstacles to effective data mining is the clumsiness of
managing and analyzing data in very large files. The process of model
search and model fitting often require many passes over a large dataset,
or random access to the elements of a large dataset. Many statistical
fitting algorithms assume that the entire dataset being analyzed fits into
computer memory, restricting the number of feasible analyses. Here we
define “large dataset” as one that cannot be analyzed using some partic-
ular desired combination of hardware and software because of computer
memory constraints. There are two basic approaches to this problem:
either switch to a different hardware/software/analysis strategy or else
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substitute a smaller dataset for the large one. Here we assume that the
former strategy is unavailable or undesirable and consider ways of con-
structing a smaller substitute dataset. This latter approach was named
data squashing by DuMouchel et al. (1999). Formally, data squashing is
a form of lossy compression that attempts to preserve statistical informa-
tion. Suppose that the original or “mother” dataset is a matrix Y having
N rows or entities and n columns or variables. The squashed dataset is
a matrix X having M rows and n + 1 columns, where M << N. The
extra column in X is a column of weights, w;,7 = 1,..., M, where w; > 0
and >, w; = N. It is assumed that M is small enough so that X can be
processed by the desired hardware/software, and that the software can
make appropriate use of the weight variable. The n-dimensional distri-
bution of the rows of X weighted by the w; is intended to approximate
the distribution of the rows of Y well enough that statistical analysis of
X is an acceptable substitute for the desired analysis of Y.

There are two trivial forms of data squashing that can often be used as
comparison or baseline methods. The first is simple random sampling,
in which X consists of a random sample of M rows of Y, each given
weight w; = N/M. The biggest disadvantage of this strategy is the
inaccuracy introduced by sampling variance. Dividing a sample size
by 100 multiplies most variances of estimates by 100 as well. With
very large initial sample sizes, this may not be a problem for simple
estimates such as overall means or proportions or sample correlations.
However, for many business purposes, the detection of small differences,
or the detection of trends in a small subset of the overall population,
is crucial to the success of the data mining project. In such cases the
equivalent of throwing away 99% of the data will be unacceptable. The
second trivially easy data squashing method might be called unique row
extraction, in which X consists of the set of unique rows of Y, and w;
is the multiplicity of the i-th row of X in Y. If the resulting X is small
enough to fit in memory, then we have what might be called perfect
or lossless squashing. (One might round each quantitative element of YV’
slightly before extracting the unique rows, so that the rounded values are
still considered fully informative for the purposes of statistical analyses,
thereby reducing M, the number of unique rows, and thus X.) For a
nontrivial application of squashing, we must have a situation where the
X from unique row extraction is too large to analyze with the desired
hardware and software and where also the analysis results from simple
random samples of size small enough to be so analyzed are deemed to
be too variable for the purposes of the analyses.

This chapter summarizes the results of three recent papers on data
squashing. In addition to DuMouchel et al. (1999), we consider Madi-
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gan et al. (1999) and Owen (1999). All these papers are experimental in
nature, and none of them make a conclusive case that the data squash-
ing concept is a significant contribution to the practice of data mining.
But they do show that for certain analysis goals data squashing can be
at least two orders of magnitude more efficient than random sampling.
The three papers describe very different methodologies and theoretical
rationales for data squashing. Comparing and contrasting them helps to
define the limits of data squashing and to suggest future directions for
data squashing research.

2. Three data squashing methods

DuMouchel et al. (1999) presents a theoretical framework and justi-
fication for data squashing involving a Taylor series representation for
the likelihood function from an arbitrary modeling problem. The Taylor
series describes the local behavior of the log likelihood function for each
fixed parameter value as the continuous variables in X vary. As such,
the theory assumes that each column of X must have a restricted range
to achieve an accurate approximation, leading to a strategy of defining
multivariate bins in every dimension and repeating the data squashing
independently within each bin. The conclusion is that if a low-order Tay-
lor series can approximate the contribution to the log likelihood within
each bin, then a strategy of choosing X and w; to match low-order mo-
ments within each bin will allow the squashed dataset to approximately
duplicate the corresponding analysis of Y. See DuMouchel et al. (1999)
for details of this theoretical justification. An implementation of this
method involves separate construction of a weighted set of points for
each region of Y defined by fixed values of the categorical variables and
fixed ranges of all continuous variables. These points might be con-
structed to match, for example, the means and covariance matrix of
the points in the corresponding rows of Y. The construction involves a
search in the constrained m(@Q + 1)-dimensional space defined by the m
weights and m@ variable values if there are m points to construct and @
continuous variables. The constraints come about because the weights
should be positive and the continuous variable values should lie within
their respective fixed ranges.

The model likelihood-based method of Madigan et al. (1999) attempts
to build a squashed dataset that approximates a specific likelihood func-
tion directly, rather than rely on the general Taylor series argument for
approximating all possible likelihood functions. In (Madigan et al. 1999)
the authors choose logistic regression for a fixed response variable as the
specific model around which the squashing is structured. The resulting
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squashed dataset may not be as useful as a generically squashed dataset
for all possible analyses, but may be more accurate for analysis models
similar to logistic regression, for example other classification methods
involving the same response variable. The method of approximation in-
volves matching a likelihood profile, that is a vector of values of the log
likelihood function at K values in the p-dimensional parameter space of
the logistic regression coefficients. The K parameter vectors must be
chosen so that a smooth function of p variables can be approximately
identified by the corresponding K function values. This is achieved by
using the techniques of quadratic response surface estimation from the
theory of statistical design of experiments. Whereas DuMouchel et al.
(1999) explicitly partitions the data space into bins based on compact
regions of the original variables, Madigan et al. (1999) partitions the
same data space into regions defined by clustering the likelihood pro-
file vectors contributed by each data point in the mother dataset. Data
points having very similar likelihood profiles are deemed equivalent and
are merged into a single squashed data point by taking their mean. The
corresponding w; is the number of points so merged. The computations
require two one-pass algorithms involving the mother dataset, one to get
an approximate estimate of the all-data logistic regression coefficients,
and one to perform an approximate clustering of the N likelihood pro-
files.

In spite of the use of the word “likelihood”, the empirical likelihood
method of Owen (1999) has more in common with the moment matching
method of DuMouchel et al. (1999) than with the model likelihood-
based method of Madigan et al. (1999). The methodology of Owen
(1999) also directly matches moments of the original variables in the Y
dataset to moments in the X dataset. However, Owen (1999) avoids
the computationally intensive constrained nonlinear optimizations that
Madigan et al. (1999) uses to find solutions. Instead, Owen (1999) starts
out with a simple random sample to get the X-values and reweights
these sampled points to fit the required moments. The estimation of the
w; involves the maximization of the product of the wi among all weight
vectors that satisfy the moment equalities, an algorithm called empirical
likelihood estimation and described in Owen (1990). The result is a
greatly reduced computational effort. The corresponding downside is
primarily that a simple random sample is not an efficient choice of rows
of X, so that M must necessarily be large to match a given number of
moments.
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For example, Owen (1999) reports an example in which it was not
possible to reweight a sample of 500 points to match just 78 moments
using the empirical likelihood algorithm. Perhaps because of this prob-
lem, Owen (1999) chooses to estimate only very low-order moments and
also only estimates M points globally, rather than repeat the estimation
and moment matching separately within many disjoint regions of the
n-dimensional space.

3. Detailed comparison of the three squashing
investigations

Table 1.1 provides a comparison of the three squashing methodologies
for each of 15 characteristics. This section discusses each row of Table 1.1
in turn.

1. Response-variable specific? As discussed above, the original algo-
rithm (DuMouchel et al. 1999) makes no assumption as to which variable
is a response, although the example evaluations of squashing’s accuracy
all use the same response variable. It is assumed but not proven that
similar accuracy would be attained for models using other response vari-
ables with the same squashed dataset. On the other hand, the algorithm
in (Madigan et al. 1999) is very clearly tuned to the particular response
variable defined by the likelihood function used to create likelihood pro-
files. It is assumed that analyses of the squashed dataset involving other
response variables would match those of the mother dataset much more
poorly. Owen’s discussion in (Owen 1999) focuses on a particular re-
sponse variable, in particular the way preliminary data transformations
and imputation of missing values are carried out, and in his choice of mo-
ments to match. However, the empirical likelihood squashing method-
ology seems perfectly general. If the moments and cross-moments being
matched are symmetrically defined as to all the variables, there is no
reason to think that the squashing would preferentially work better for
any one response variable.

2. Type of functions matched. As discussed above, DuMouchel et al.
(1999) and Owen (1999) match moments of the raw data, while Madigan
et al. (1999) operates in a sort of dual parameter space, matching points
with similar likelihood profiles.

3. No. of matched functions. As discussed in more detail in the
paper, the algorithm of DuMouchel et al. (1999) estimates weighted
pseudopoints separately within each of many bins. The number of pseu-
dopoints constructed within each bin rises proportional to the log of the
number of mother data points in the bin. For more populated bins, the
number of moments that the construction attempts to match rises to
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“use up” the degrees of freedom available within the bin. The result is
that a bin having only one pseudopoint will match the means of each
variable only, while bins with many pseudopoints may involve higher or-
der moments even including all 4th-order moments and cross moments.
As a rough approximation, the number of moments is about Mn, if
there are M pseudopoints and n variables. Since the implementation
described by Owen (1999) does not involve separate estimations within
bins, and further focuses on estimating the moments that naive Bayes
classifiers would use, there are only 2n moments being fit, irrespective
of M. In the Madigan et al. (1999) method, there are K values per like-
lihood profile and the clustering attempts to match them separately for
each of M pseudopoints. The product MK is often about Mp2, since
it takes about p2 design points to estimate a quadratic response surface
in p dimensions. In their 10-parameter example, Madigan et al. (1999)
uses K = 149.

4. Achieve exact match? While the DuMouchel et al. (1999) and
Madigan et al. (1999) methods involve a great many functions of the
data in the matching process, there is no attempt to achieve an exact
or globally optimal solution to the matching equations. On the other
hand, Owen (1999) requires an exact solution to its specified optimiza-
tion problem, and therefore requires a much larger M to match a given
number of functions. The results in rows 11 and 12 of Table 1.1 seem to
indicate that the former strategy is more effective.

5. Generate pseudovalues and weights for rows? As discussed above,
DuMouchel et al. (1999) and Madigan et al. (1999) estimate both the
values of X and the weights, while Owen (1999), obtains the values of
X from a random sample and estimates the weights only. Although this
may be inefficient in requiring a larger M, it saves much computation
and also ensures that only actual mother data values enter into the
squashed dataset. (No families with 2.2 children!)

6. Computational techniques. As discussed above, the DuMouchel
et al. (1999) method must collect very many moments and cross mo-
ments from the binned mother data and then solve constrained nonlinear
least squares problems to match the moments. The Owen (1999) algo-
rithm collects fewer moments and uses the empirical likelihood method
to match these moments by reweighting a random sample. The likeli-
hood profile method of Madigan et al. (1999) avoids iterative computa-
tions entirely with two one-pass algorithms, the more laborious second
one requiring the computation of a likelihood profile for each point and
then immediately assigning it to one of M clusters.



7. Computational effort. For the same size M and n, we estimate
that DuMouchel et al. (1999) requires the most computational effort to
produce the squashed dataset, while Owen (1999) requires the least.

8. Largest Y-matriz used in the ezamples. DuMouchel et al. (1999)
and Madigan et al. (1999) each use the same dataset having about
745,000 rows and 8 columns. The dataset in (Owen 1999) has 92,000
rows and 39 columns. All three squashing methods scale up linearly
with respect to the number of rows. Scaling up with the number of
columns is more problematical. In unreported preliminary calculations,
the efficiency of the DuMouchel et al. (1999) and the Madigan et al.
(1999) methods drops off as n increases up to 8, so that, for example,
one cannot say how well a 39-column implementation of either of these
two squashing methods would work.

9. Analyses investigated. All three papers use logistic regression as the
primary analysis for examples. DuMouchel et al. (1999) provides results
for both a main-effects model having 10 coefficients and a second-order
model having 48 coefficients. Madigan et al. (1999) uses two main-effects
models having 5 and 10 coefficients, respectively. In addition, Madigan
et al. (1999) investigates the behavior of all-subsets logistic regression
variable selection for simulated datasets having 100,000 rows and 5 co-
efficients, as well as the behavior of a neural network (Venables and
Ripley 1997), having two input units, one hidden layer with three units,
and a single dichotomous output unit. In their neural network example,
the squashed dataset is constructed using a logistic regression profile
likelihood, after which its ability to duplicate the neural network of the
mother dataset is evaluated. Owen (1999) presents a main-effects logistic
regression with 39 coefficients. It also uses the same squashed datasets to
estimate boosted decision trees (Friedman 1999a;b) and compare them
to those estimated from the mother dataset.

10. Reduction factor (range). The reduction factor is the ratio N/M
of the number of rows in Y to the number of rows in X. Examples
in DuMouchel et al. (1999) range from 43 to 341, and in Owen (1999)
the reduction factor ranges from 11.5 to 92. All the examples in Madi-
gan et al. (1999) have reduction factor equal 100, except for the neural
network example reduction factor, which is 10.

11. Efficiency vs. SRS for Log. Regr. coefs. The statistical efficiency
achieved for the purpose of estimating p regression coefficients, compared
to that expected from random sampling, is defined as

p
eff = Np/(M Zb—ﬁ] /a)
j=1
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where b; is the estimate of the j-th regression coefficient based on the
squashed dataset, 3; is the estimated coefficient from the mother dataset,
and o; is the standard error of the coefficient based on estimation from
the mother dataset. If the squashed dataset is a random sample from the
mother dataset, the expected value of eff is 1. Each of the three papers
presents various results with various values of eff, depending on different
reduction factors, binning algorithms, likelihood profile settings, and so
forth. The values in row 11 of Table 1.1 are the maximum reported
efficiencies for the indicated value of p. Here we see dramatic differences
in the accuracy of the three methods of creating squashed datasets. The
model likelihood-based squashing of Madigan et al. (1999) is far more
accurate for logistic regression coefficients than the other two methods,
and the moment matching within bins of DuMouchel et al. (1999) is more
accurate than the empirical likelihood method of Owen (1999). However,
in general accuracy decreases with increasing number of coefficients p,
and dataset dimension 7, so caution in interpreting these numbers is
warranted. It is probable that the likelihood profile method benefits
“unfairly” from being based on the very model that it is being evaluated
on.

12. Efficiency for alternate analyses. For the two papers that pre-
sented analyses other than logistic regression, the efficiency of squashing
drops dramatically. Owen was unable to detect any consistent estimation
advantage of empirical likelihood squashing over simple random sam-
pling for the boosted decision tree analyses. The efficiency of boosting
in a three-dimensional neural network simulated dataset with a reduc-
tion factor of 10 was about 16 using the likelihood profile method. The
definition of efficiency for the ability to replicate a neural network was
not based on coefficients but was based on the average squared difference
in predictions between the neural network based on the mother dataset
and that from the squashed dataset.

13. Investigate/discuss classification accuracy? DuMouchel et al.
(1999) and Madigan et al. (1999) focus almost entirely on evaluating
data squashing based on accuracy of parameter estimation or compari-
son of predictions based on Y versus those based on X. This corresponds
with the stated goal of data squashing of being able to duplicate the re-
sults of an analysis of the large dataset, as opposed to how well one can
predict or classify new data. In a high noise environment, prediction or
classification error may be quite large even if there is no error in esti-
mating model parameters. Owen (1999) emphasizes this point and the
related one that in such cases there may be diminishing returns in any
improvement over a simple random sample, if the only goal is to predict
or classify new data. The paper shows that ROC curves, for example,
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may hardly change even though squashing provides a 4 to 1 improvement
in the efficiency of parameter estimation compared to a simple random
sample.

14. Simulation-based choice of tuning constants? Madigan et al.
(1999) includes the results of preliminary experiments comparing ways
of choosing the configuration of parameter values at which the likelihood
profile is evaluated. This may have enabled that method to be better
tuned than the other two methods.

15. Factors investigated. DuMouchel et al. (1999) reports results
from several choices of bin definitions, number of moments fitted, and
reduction factor, for both the main effects and second-order logistic re-
gression model. However, these factors were not set up in a factorial
design as were the likelihood profile settings comparisons reported in
Madigan et al. (1999). Ouly the reduction factor was varied in Owen
(1999).

4. Discussion

The good performance of the model likelihood-based squashing is im-
pressive, making us eager to better understand its limits. Can it scale
up to larger numbers of parameters and variables? The length of a like-
lihood profile vector would need to be greatly increased to handle either
the 48-parameter model of DuMouchel et al. (1999) or the 39-parameter
model of Owen (1999). Would the one-pass clustering of the profile vec-
tors still work so well? It is remarkable that replacing each cluster by
its average data vector leads to very accurate squashing. DuMouchel
et al. (1999) assessed the seemingly similar strategy of replacing each
Y -matrix bin by the mean of all the data falling in the bin. The results
were horrible (far worse than for simple random samples) for both par-
titions used, one having 394 bins and the other having 3,710 bins in the
eight-dimensional data space. This failure is presumably because the
set of bin means has much reduced variance for each variable compared
to Y, resulting in some severely biased regression coefficients. Yet even
crude one-pass clusters in the 149-dimensional likelihood profile space
allow the use-the-mean rule to retain almost full accuracy for coefficient
estimation. An important question for future research is whether the
likelihood profile method can be extended to models for the joint distri-
bution of all variables, avoiding the need to specify a response variable.

Although the method of Owen (1999) seemed to be inefficient com-
pared to the other squashing methods, perhaps it can be modified to
improve performance and still retain the benefits of quick computation
and having the elements of X be legitimate elements of Y. Reweighting
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a stratified sample from Y may greatly improve the performance of the
empirical likelihood method. Some as yet unpublished experimentation
of our own indicates that taking a random point from each Y-data bin
works much better than taking the bin means. The initial weights are
the bin sizes, and these weights can be iteratively improved to allow
matching of moments or other functions, either by empirical likelihood
estimation or by quadratic programming methods. Along these same
lines, a method similar to stratified sampling and having about the same
goals as data squashing is called delegate sampling, proposed by Breiman
and Friedman (1984).

DuMouchel et al. (1999) and Owen (1999) did not address the problem
of missing data, while Owen (1999) addressed it in an ad-hoc manner,
dropping some variables having lots of missing data, and devising an im-
putation scheme for filling in missing values in the other variables. For
some purposes, it might be desired to have the same distribution of miss-
ing data in the squashed data set as in the mother dataset, for example if
one wanted to be able to build models for missingness. The original con-
cept of data squashing in DuMouchel et al. (1999) was as a generic data
description module, independent of whatever subsequent analyses are
planned. It is assumed that an analyst exploring the squashed dataset
wants to see everything, warts and all, including the prevalence and pat-
terns of missing data. This highlights the need for squashing techniques
that smoothly handle both categorical and continuous variables. The
likelihood profile method has a potential weakness here, in that Madi-
gan et al. (1999) does not state what should be done if the clustering of
likelihood profiles leads to a pooling of data having different categorical
values. (It never happened in their examples.)

Concerning the general research methodology of all three papers, they
all used logistic regression as their primary analysis example. This is not
because the authors felt a great need for new ways to fit logistic regres-
sion to huge datasets. To the contrary, widely available programs like
SAS proc logistic (SAS Institute 1998) can handle very large datasets
because they do not keep the entire dataset in memory and quickly
compute the coefficients in just a few passes over the data. This is con-
venient for data squashing research, since it allows easy computation of
the results on the large dataset to evaluate each squashing technique.
Logistic regression, especially a second-order logistic regression that es-
timates quadratic and interaction terms such the 48-coefficient model
in DuMouchel et al. (1999) is viewed as an easy-to-work-with proxy for
other highly nonlinear methods for which there may be no available soft-
ware that avoids the need to keep all the data in memory. To evaluate
the performance of data squashing on such latter methods, we must
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necessarily restrict the mother dataset to be of manageable size. An
interesting research question is how to extrapolate the efficiency mea-
surements in a squashing evaluation. If, for a certain squashing method,
eff = 100 when N = 105 and M = 103, what does that say about eff
when N = 107 and M = 1047 Of course, there can be many alternative
definitions of efficiency besides eff as defined in the discussion of row
11 of Table 1.1. Regression coefficients from multiparameter models are
very sensitive to near collinearities in the data, making the value of eff
somewhat unstable in such datasets. Such instability could be viewed as
a proper challenge for a good squashing technique to meet, since many
of the nonlinear techniques such as neural networks or decision trees
that one might want to apply to the squashed dataset also have similar
instabilities due to their dependence on local properties of the data. A
more stable and also more generally applicable measure of squashing
efficiency is one that focuses on stability of predictions:

Yr (pf RS — p))?
b
(o) —p))?

where each p; denotes a prediction of the mean response for row ¢ of the
mother dataset, and the subscripts X, Y, and SRS denote predictions
based on parameters estimated from the squashed dataset of size M, the
mother dataset, and a simple random sample of size M, respectively. For
further accuracy in estimating pred.eff, the numerator and denominator
could each be estimated from the mean of several samples. Note that
this measure focuses on the ability of the squashed data to replicate
analyses of the mother data, not the ability to predict new data. There
will be a different value of pred.eff for each combination of predictive
method and response variable that is evaluated.

In summary, these papers show that data squashing can be a great
improvement over random sampling when the number of variables is
not too great or the response variable is fixed. Unfortunately, the need
for squashed datasets is greatest when there are tens, hundreds or even
thousands of variables. In such diverse datasets usually there are many
potential modeling projects involving many choices of response variables.
It would be extremely valuable to have a single dataset of manageable
size, produced by an enterprise-wide data warehouse resource but avail-
able for easy analysis throughout the organization, with the assurance
that even reasonably complex relationships among the variables are quite
likely to be replicable in the original dataset. We can only hope that the
papers reviewed here stimulate more research into extending the reach
of data squashing methods.

pred.eff =
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