
Optimizing Compilers

Effective optimizing compilers need to gather information about the structure and the
flow of control through programs.

� Which instructions are always executed before a given instruction

� Which instructions are always executed after a given instruction

� Where the loops in a program are

– 90% of any computation is normally spent in 10% of the code: the inner loops

� We’ve already seen how construction of a control-flow graph can help give us some
of this information

� In this lecture, we’ll show how to analyze the control-flow graph to detect more
refined control-flow information.
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Basic Blocks
� Basic Block - run of code with single entry and exit.

� Control flow graph of basic blocks more convenient.

� Determine by the following:

1. Find leaders:

(a) First statement
(b) Targets of conditional and unconditional branches
(c) Instructions that follow branches

2. Basic blocks are leader up to, but not including next leader.
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Basic Block Example

r1 = 0

LOOP:
r1 = r1 + 1
r2 = r1 & 1
BRANCH r2 == 0, ODD

r3 = r3 + 1
JUMP NEXT

ODD:
r4 = r4 + 1

NEXT:
BRANCH r1 <= 10, LOOP
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Domination Motivation

Constant Propagation:

r2 = r1 + 5

r1 = 4

r1 = 4

r2 = r1 + 5 r2 = 9

r2 = 9
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Domination
� Assume every Control Flow Graph (CFG) has start node �� with no predecessors.

� Node � dominates node � if every path of directed edges from �� to � must go
through �.

� Every node dominates itself.

� Consider:
d

n

...
........

p_kp_3p_2p_1

� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.
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Dominator Analysis
� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.

� ������ = set of nodes that dominate node �.

� � = set of all nodes.

� Computation:

1. ������� � ����.

2. for � � � � ���� do ������ � �
3. while (changes to any ������ occur) do

4. for � � � � ���� do

5. ������ � ��� �
�

����������������
�

.
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Dominator Analysis Example

1

2

3 4

5 6

7

11

8

9

10 12

Node ������ ������ 	������

1 1
2 1-12
3 1-12
4 1-12
5 1-12
6 1-12
7 1-12
8 1-12
9 1-12
10 1-12
11 1-12
12 1-12
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Immediate Dominator
� Immediate dominator used in constructing dominator tree.

� Dominator Tree:

– efficient representation of dominator information

– used for other types of analysis (e.g. control dependence)

� �� is root of dominator tree.

� Each node � dominates only its descendants in tree.

� Every node � (� �� ��) has exactly one immediate dominator 	������.

� 	������ �� �

� 	������ dominates �

� 	������ does not dominate any other dominator of �.

� Last dominator of � on any path from �� to � is 	������.
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Immediate Dominator Example

1

2

3 4

5 6

7

11

8

9

10 12

Node ������ 	������

1 1
2 1,2
3 1,2,3
4 1,2,4
5 1,2,5
6 1,2,4,6
7 1,2,7
8 1,2,5,8
9 1,2,5,8,9
10 1,2,5,8,9,10
11 1,2,7,11
12 1,2,12
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Post-Domination
� Assume every Control Flow Graph (CFG) has exit node 
 with no successors.

� Node � post-dominates node � if every path of directed edges from � to 
 must go
through �.

� Every node post-dominates itself.

� Derivation of post-dominator and immediate post-dominator analysis analogous to
dominator and immediate dominator analysis.

� Post-dominators will be useful in computing control dependence.

� Control dependence will be useful in many future optimizations.
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Loop Optimizations
� First step in loop optimization 	 find the loops.

� A loop is a set of CFG nodes � such that:

1. there exists a header node � in � that dominates all nodes in �.

– there exists a path of directed edges from � to any node in �.
– � is the only node in � with predecessors not in �.

2. from any node in �, there exists a path of directed edges to �.

� A loop is a single entry, multiple exit region.
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Examples of Loops
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Back Edges

1

2

3 4

5 6

7

11

8

9

10 12

� Back-edge - flow graph edge from node � to node � such
that � dominates �

� Each back-edge has a corresponding natural loop.
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Natural Loops

1

2

3 4

5 6

7

11

8

9

10 12

� Natural loop of back-edge 
�
 ��:

– has a loop header �.

– set of nodes � such that � dominates 
 � � and there
is a path from 
 to � not containing �.

� A node � may be header of more than one natural loop.

� Natural loops may be nested.
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Loop Optimization
� Compiler should optimize inner loops first.

– Programs typically spend most time in inner loops.

– Optimizations may be more effective 	 loop invariant code removal.

� Convenient to merge natural loops with same header.

� These merged loops are not natural loops.

� Not all cycles in CFG are loops of any kind (more later).
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Loop Optimization

Loop invariant code motion

� An instruction is loop invariant if it computes the same value in each iteration.

� Invariant code may be hoisted outside the loop.

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP
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Loop Optimization
� Induction variable analysis and elimination - � is an induction variable if only

definitions of � within loop increment/decrement � by loop-invariant value.

� Strength reduction - replace expensive instructions (like multiply) with cheaper
ones (like add).

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP
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Non-Loop Cycles

Examples:
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Non-Loop Cycles
� Loops are instances of reducible flow graphs.

– Each cycle of nodes has a unique header.

– During reduction, entire loop becomes a single node.

� Non-Loops are instances of irreducible flow graphs.

– Analysis and optimization is more efficient on reducible flow graphs.

– Irreducible flow graphs occur rarely in practice.

� Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads
to reducible flow graphs.

� Use of goto’s may lead to irreducible flow graphs.

– Fortunately, Tiger and ML don’t have gotos.

Computer Science 320
Prof. David Walker

- 19 -



Loop Preheaders

Recall:

� A loop is a set of CFG nodes � such that:

1. there exists a header node � in � that dominates all nodes in �.

– there exists a path of directed edges from � to any node in �.
– � is the only node in � with predecessors not in �.

2. from any node in �, there exists a path of directed edges to �.

� A loop is a single entry, multiple exit region.

Loop Preheaders:

� Some loop optimizations (loop invariant code removal) need to insert statements
immediately before loop header.

� Create a loop preheader - a basic block before the loop header block.
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Loop Preheader Example
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Loop Invariant Computations
� Given statements in loop �: t = �� op ��:

– � is loop-invariant if ��, �� have same value each loop iteration.

– may sometimes be possible to hoist � outside loop.

� Cannot always tell whether � will have same value each iteration 	 conservative
approximation.

� �: t = �� op �� is loop-invariant within loop � if for each ��:

1. �� is constant, or

2. all definitions of �� that reach � are outside �, or

3. only one definition of �� reaches �, and is loop-invariant.
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Loop Invariant Computation: Algorithm

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands
- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
mark "invariant" all definitions whose operands
- are constant,
- whose reaching definitions are outside loop, or
- which have a single reaching definition in loop
marked invariant.
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Loop Invariant Code Motion

After detecting loop-invariant computations, perform code motion.
1:

2:

r1 = 0

r2 = 5

Preheader:

3:

4:

5:

6:

7:

r3 = r3 + 1

r1 = r2 + 10

M[r3] = r1

branch r3 < N

r4 = r1

Subject to some constraints.
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Loop Invariant Code Motion: Constraint 1

�: t = a op b

� must dominate all loop exit nodes where t is live out.
1:

2:

r1 = 0

r2 = 5

Preheader:

r3 = r3 + 1

r1 = r2 + 10

branch r3 < N

r4 = r1

M[r3] = r1

jump

3:

4:

5:

6:

7:

8:
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Loop Invariant Code Motion: Constraint 2

�: t = a op b
there must be only one definition of t inside loop.

1:

2:

r1 = 0

r2 = 5

Preheader:

3: r3 = r3 + 1

M[r3] = r1

4:

5:

r1 = r2 + 10

M[r3] = r1

6:

7:

r1 = 0

branch r3 < N8:

9:
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Loop Invariant Code Motion: Constraint 3

�: t = a op b

� must not be live-out of loop preheader node (live-in to loop)
1:

2:

r1 = 0

r2 = 5

Preheader:

3:

4:

5:

6:

7:

8:

M[r3] = r1

r3 = r3 + 1

r1 = r2 + 10

M[r3] = r1

branch r3 < N

r4 = r1
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Loop Invariant Code Motion

Algorithm for code motion:

� Examine invariant statements of � in same order in which they were marked.

� If invariant statement � satisfies three criteria for code motion, remove � from �, and
insert into preheader node of �.
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Induction Variables

Variable i in loop � is called induction variable of � if each time i changes value in �,
it is incremented/decremented by loop-invariant value.

i = i + a

j = i * c + d

Assume a, c loop-invariant.

� i is an induction variable

� j is an induction variable

– j = i * c is equivalent to
j = j + a * c

– compute e = a * c outside loop:
j = j + e
 strength reduction

– may not need to use i in loop 
 induction
variable elimination
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Induction Variable Detection

Scan loop � for two classes of induction variables:

� basic induction variables - variables (i) whose only definitions within � are of the
form i = i + c or i = i - c, c is loop invariant.

� derived induction variables - variables (j) defined only once within �, whose value
is linear function of some basic induction variable �.

Associate triple (i, a, b) with each induction variable j

� i is basic induction variable; a and b are loop invariant.

� value of j at point of definition is a + b * i

� j belongs to the family of i
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Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

� Scan statements of � for basic induction variables i

– for each i, associate triple (i, 0, 1)

– i belongs to its own family.

� Scan statements of � for derived induction variables k:

1. there must be single assignment to k within � of the form k = j * c or
k = j + d, j is an induction variable; c,d loop-invariant, and

2. if j is a derived induction variable belonging to the family of i, then:

– the only definition of j that reaches k must be one in �, and
– no definition of imust occur on any path between definition of j and definition

of k

� Assume j associated with triple (i, a, b): j = a + b * i at point of defi-
nition.

� Can determine triple for k based on triple for j and instruction defining k:
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– k = j * c	 (i, a*c, b*c)

– k = j + d	 (i, a + d, b)
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Induction Variable Detection: Example

s = 0;
for(i = 0; i < N; i++)

s += a[i];
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1:

2:

r1 = 0

r2 = 0

3:

4:

5:

6:

Preheader:

branch r2 >= N

r3 = r2 * 4

r4 = r3 + a

r5 = M[r4]

10:

7: r1 = r1 + r5

8:

9: jump

r2 = r2 + 1

Computer Science 320
Prof. David Walker

- 34 -



Strength Reduction

1. For each derived induction variable j with triple (i, a, b), create new j’.

� all derived induction variables with same triple (i, a, b) may share j’

2. After each definition of i in �, i = i + c, insert statement:
j’ = j’ + b * c

� b * c is loop-invariant and may be computed in preheader or during compile
time.

3. Replace unique assignment to j with j = j’.

4. Initialize j’ at end of preheader node:

j’ = b * i
j’ = j’ + a

� Strength reduction still requires multiplication, but multiplication now performed
outside loop.

� j’ also has triple (i, a, b)
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Strength Reduction: Example

1:

2:

r1 = 0

r2 = 0

3:

4:

5:

6:

Preheader:

branch r2 >= N

r3 = r2 * 4

r4 = r3 + a

r5 = M[r4]

10:

7: r1 = r1 + r5

8:

9: jump

r2 = r2 + 1
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Strength Reduction: Example
1:

2:

r1 = 0

r2 = 0

Preheader: r33 = r2 * 4

r33 = r33 + 0

r44 = r2 * 4

r44 = r44 + a

3:

4:

5:

6:

branch r2 >= N

r5 = M[r4]

10: r3 = r33

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

9: jump

8’:

8’’:

r33 = r33 + 4

r44 = r44 + 4
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Induction Variable Elimination

After strength reduction has been performed:

� some induction variables are only used in comparisons with loop-invariant values.

� some induction variables are useless

– dead on all loop exits, used only in definition of itself.

– dead code elimination will not remove useless induction variables.
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Induction Variable Elimination: Example
1:

2:

r1 = 0

r2 = 0

5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

9: jump

8’:

8’’:

r33 = r33 + 4

r44 = r44 + 4

Preheader:

3: branch r2 >= N

10:

r44 = a

r33 = 0
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Induction Variable Elimination
� Variable k is almost useless if it is only used in comparisons with loop-invariant

values, and there exists another induction variable t in the same family as k that is
not useless.

� Replace k in comparison with t

	 k is useless
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Induction Variable Elimination: Example

Preheader:

3: branch r2 >= N

10: 5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

1:

2:

r1 = 0

r2 = 0

9: jump

8’’: r44 = r44 + 4

r44 = a
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Induction Variable Elimination: Example

Preheader:

3:

10: 5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

1:

2:

r1 = 0

r2 = 0

9: jump

8’’: r44 = r44 + 4

r44 = a

r100 = 4 * N

r101 = r100 + a

branch r44 >= r101
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