Optimizing Compilers

Effective optimizing compilers need to gather information about the structure and the flow of control through programs.

- Which instructions are always executed before a given instruction
- Which instructions are always executed after a given instruction
- Where the loops in a program are
 - 90% of any computation is normally spent in 10% of the code: the inner loops
- We've already seen how construction of a control-flow graph can help give us some of this information
- In this lecture, we'll show how to analyze the control-flow graph to detect more refined control-flow information.

Basic Blocks

- *Basic Block* run of code with single entry and exit.
- Control flow graph of basic blocks more convenient.
- Determine by the following:
 - 1. Find *leaders*:
 - (a) First statement
 - (b) Targets of conditional and unconditional branches
 - (c) Instructions that follow branches
 - 2. Basic blocks are leader up to, but not including next leader.

Basic Block Example

r1 = 0LOOP: r1 = r1 + 1r2 = r1 & 1 BRANCH r2 == 0, ODD r3 = r3 + 1JUMP NEXT ODD: r4 = r4 + 1NEXT: BRANCH r1 <= 10, LOOP

Domination Motivation

Computer Science 320 Prof. David Walker

3

Domination

- Assume every Control Flow Graph (CFG) has *start* node s_0 with no predecessors.
- Node d dominates node n if every path of directed edges from s_0 to n must go through d.
- Every node dominates itself.
- Consider:

- If d dominates each of the p_i , then d dominates n.
- If d dominates n, then d dominates each of the p_i .

Dominator Analysis

- If d dominates each of the p_i , then d dominates n.
- If d dominates n, then d dominates each of the p_i .
- Dom[n] = set of nodes that dominate node n.
- N = set of all nodes.
- Computation:
 - 1. $Dom[s_0] = \{s_0\}.$
 - **2.** for $n \in N \{s_0\}$ do Dom[n] = N
 - 3. while (changes to any Dom[n] occur) do
 - 4. for $n \in N \{s_0\}$ do
 - 5. $Dom[n] = \{n\} \cup (\bigcap_{p \in pred[n]} Dom[p]).$

Dominator Analysis Example

3

Immediate Dominator

- Immediate dominator used in constructing *dominator tree*.
- Dominator Tree:
 - efficient representation of dominator information
 - used for other types of analysis (e.g. control dependence)
- s_0 is root of dominator tree.
- Each node d dominates only its descendants in tree.
- Every node $n \ (n \neq s_0)$ has exactly one immediate dominator IDom[n].
- $\bullet \ IDom[n] \neq n$
- IDom[n] dominates n
- IDom[n] does not dominate any other dominator of n.
- Last dominator of n on any path from s_0 to n is IDom[n].

Immediate Dominator Example

3

Post-Domination

- Assume every Control Flow Graph (CFG) has *exit* node x with no successors.
- Node *p* post-dominates node *n* if every path of directed edges from *n* to *x* must go through *p*.
- Every node post-dominates itself.
- Derivation of post-dominator and immediate post-dominator analysis analogous to dominator and immediate dominator analysis.
- Post-dominators will be useful in computing control dependence.
- Control dependence will be useful in many future optimizations.

Loop Optimizations

- First step in loop optimization \rightarrow find the loops.
- A *loop* is a set of CFG nodes S such that:
 - 1. there exists a *header* node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - -h is the only node in S with predecessors not in S.
 - 2. from any node in S, there exists a path of directed edges to h.
- A loop is a single entry, multiple exit region.

Examples of Loops

Back Edges

- *Back-edge* flow graph edge from node *n* to node *h* such that *h* dominates *n*
- Each back-edge has a corresponding *natural loop*.

Natural Loops

- Natural loop of back-edge $\langle n, h \rangle$:
 - has a loop header h.
 - set of nodes X such that h dominates $x \in X$ and there is a path from x to n not containing h.
- A node h may be header of more than one natural loop.
- Natural loops may be nested.

Loop Optimization

- Compiler should optimize inner loops first.
 - Programs *typically* spend most time in inner loops.
 - Optimizations may be more effective \rightarrow loop invariant code removal.
- Convenient to merge natural loops with same header.
- These merged loops are not natural loops.
- Not all cycles in CFG are loops of any kind (more later).

Loop Optimization

Loop invariant code motion

- An instruction is loop invariant if it computes the same value in each iteration.
- Invariant code may be hoisted outside the loop.

ADDI	r1	=	r0	+	0
LOAD	r2	=	M[E	P	+ a]
ADDI	r3	=	r0	+	4
LOAD	rб	=	M[E	۳P	+ x]
LOOP:					
MUL	r4	=	r3	*	r1
ADD	r5	=	r2	+	r4
STORE	M[1	:5]	=	re	5
ADDI	r1	=	r1	+	1
BRANCH	r1	<=	= 10),	LOOP
BRANCH	r1	<=	= 10),	LOOP

Loop Optimization

- Induction variable analysis and elimination i is an induction variable if only definitions of i within loop increment/decrement i by loop-invariant value.
- **Strength reduction** replace expensive instructions (like multiply) with cheaper ones (like add).

ADDI	r1	=	r0	+	0	
LOAD	r2	=	M[E	P	+	a]
ADDI	r3	=	r0	+	4	
LOAD	rб	=	M[E	P	+	x]
LOOP:						
MUL	r4	=	r3	*	r]	L
ADD	r5	=	r2	+	r4	1
STORE	M[1	:5]] =	re	5	
ADDI	r1	=	r1	+	1	
BRANCH	r1	<=	= 10),	LC	DOP

Non-Loop Cycles

Examples:

Non-Loop Cycles

- Loops are instances of *reducible* flow graphs.
 - Each cycle of nodes has a unique header.
 - During reduction, entire loop becomes a single node.
- Non-Loops are instances of *irreducible* flow graphs.
 - Analysis and optimization is more efficient on reducible flow graphs.
 - Irreducible flow graphs occur rarely in practice.
 - * Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads to reducible flow graphs.
 - * Use of goto's *may* lead to irreducible flow graphs.
 - Fortunately, Tiger and ML don't have gotos.

Loop Preheaders

Recall:

- A *loop* is a set of CFG nodes S such that:
 - 1. there exists a *header* node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - -h is the only node in S with predecessors not in S.
 - 2. from any node in S, there exists a path of directed edges to h.
- A loop is a single entry, multiple exit region.

Loop Preheaders:

- Some loop optimizations (loop invariant code removal) need to insert statements immediately before loop header.
- Create a loop *preheader* a basic block before the loop header block.

Loop Preheader Example

Loop Invariant Computations

- Given statements in loop s: t = a_1 op a_2 :
 - s is loop-invariant if a_1 , a_2 have same value each loop iteration.
 - may sometimes be possible to hoist *s* outside loop.
- Cannot always tell whether a will have same value each iteration \rightarrow conservative approximation.
- d: t = a_1 op a_2 is loop-invariant within loop L if for each a_i :
 - 1. a_i is constant, or
 - 2. all definitions of a_i that reach d are outside L, or
 - 3. only one definition of a_i reaches d, and is loop-invariant.

Loop Invariant Computation: Algorithm

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands

- are constant, or

- whose reaching definitions are outside loop.

WHILE (changes have occurred)
mark "invariant" all definitions whose operands
- are constant,

- whose reaching definitions are outside loop, or
- which have a single reaching definition in loop marked invariant.

Loop Invariant Code Motion

After detecting loop-invariant computations, perform code motion.

Subject to some constraints.

Loop Invariant Code Motion: Constraint 1

d: t = a op b

d must dominate all loop exit nodes where t is live out.

Loop Invariant Code Motion: Constraint 2

d: t = a op bthere must be only one definition of t inside loop.

Loop Invariant Code Motion: Constraint 3

d:t = a op b t must not be live-out of loop preheader node (live-in to loop) 1: r1 = 0 $r^2 = 5$ 2: Ŵ Preheader: ٧. 3: M[r3] = r14: r3 = r3 + 1Ŵ r1 = r2 + 105:

Loop Invariant Code Motion

Algorithm for code motion:

- Examine invariant statements of L in same order in which they were marked.
- If invariant statement s satisfies three criteria for code motion, remove s from L, and insert into preheader node of L.

Induction Variables

Variable i in loop L is called induction variable of L if each time i changes value in L, it is incremented/decremented by loop-invariant value.

Assume a, c loop-invariant.

- i is an induction variable
 - j is an induction variable

$$j = j + e \Rightarrow$$
 strength reduction

- may not need to use i in loop \Rightarrow induction variable elimination

Induction Variable Detection

Scan loop L for two classes of induction variables:

- basic induction variables variables (i) whose only definitions within L are of the form i = i + c or i = i c, c is loop invariant.
- *derived* induction variables variables (j) defined only once within L, whose value is linear function of some basic induction variable L.

Associate triple (i, a, b) with each induction variable j

- i is basic induction variable; a and b are loop invariant.
- value of j at point of definition is a + b * i
- j belongs to the family of i

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
 - for each i, associate triple (i, 0, 1)
 - i belongs to its own family.
- Scan statements of L for derived induction variables k:
 - 1. there must be single assignment to k within L of the form k = j * c or k = j + d, j is an induction variable; c,d loop-invariant, and
 - 2. if j is a derived induction variable belonging to the family of i, then:
 - the only definition of j that reaches k must be one in L, and
 - no definition of i must occur on any path between definition of j and definition of k
- Assume j associated with triple (i, a, b): j = a + b * i at point of definition.
- Can determine triple for k based on triple for j and instruction defining k:

$$-k = j * c \rightarrow (i, a*c, b*c)$$

 $-k = j + d \rightarrow (i, a + d, b)$

Induction Variable Detection: Example

```
s = 0;
for(i = 0; i < N; i++)
s += a[i];
```


Strength Reduction

- 1. For each derived induction variable j with triple (i, a, b), create new j'.
 - all derived induction variables with same triple (i, a, b) may share j'
- 2. After each definition of i in L, i = i + c, insert statement:

j′ = j′ + b * c

- b * c is loop-invariant and may be computed in preheader or during compile time.
- 3. Replace unique assignment to j with j = j'.
- 4. Initialize j' at end of preheader node:

```
j' = b * i
j' = j' + a
```

- Strength reduction still requires multiplication, but multiplication now performed outside loop.
- j' also has triple (i, a, b)

Strength Reduction: Example

Strength Reduction: Example

Computer Science 320 Prof. David Walker

3

Induction Variable Elimination

After strength reduction has been performed:

- some induction variables are only used in comparisons with loop-invariant values.
- some induction variables are *useless*
 - dead on all loop exits, used only in definition of itself.
 - dead code elimination will not remove useless induction variables.

Induction Variable Elimination: Example

Induction Variable Elimination

- Variable k is *almost useless* if it is only used in comparisons with loop-invariant values, and there exists another induction variable t in the same family as k that is not useless.
- Replace k in comparison with t
 → k is useless

Induction Variable Elimination: Example

Induction Variable Elimination: Example

