
Optimizing Compilers

Effective optimizing compilers need to gather information about the structure and the
flow of control through programs.

� Which instructions are always executed before a given instruction

� Which instructions are always executed after a given instruction

� Where the loops in a program are

– 90% of any computation is normally spent in 10% of the code: the inner loops

� We’ve already seen how construction of a control-flow graph can help give us some
of this information

� In this lecture, we’ll show how to analyze the control-flow graph to detect more
refined control-flow information.

Computer Science 320
Prof. David Walker

- 1 -

Basic Blocks
� Basic Block - run of code with single entry and exit.

� Control flow graph of basic blocks more convenient.

� Determine by the following:

1. Find leaders:

(a) First statement
(b) Targets of conditional and unconditional branches
(c) Instructions that follow branches

2. Basic blocks are leader up to, but not including next leader.

Computer Science 320
Prof. David Walker

- 2 -

Basic Block Example

r1 = 0

LOOP:
r1 = r1 + 1
r2 = r1 & 1
BRANCH r2 == 0, ODD

r3 = r3 + 1
JUMP NEXT

ODD:
r4 = r4 + 1

NEXT:
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 3 -

Domination Motivation

Constant Propagation:

r2 = r1 + 5

r1 = 4

r1 = 4

r2 = r1 + 5 r2 = 9

r2 = 9

Computer Science 320
Prof. David Walker

- 4 -

Domination
� Assume every Control Flow Graph (CFG) has start node �� with no predecessors.

� Node � dominates node � if every path of directed edges from �� to � must go
through �.

� Every node dominates itself.

� Consider:
d

n

...
........

p_kp_3p_2p_1

� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.
Computer Science 320
Prof. David Walker

- 5 -

Dominator Analysis
� If � dominates each of the ��, then � dominates �.

� If � dominates �, then � dominates each of the ��.

� ������ = set of nodes that dominate node �.

� � = set of all nodes.

� Computation:

1. ������� � ����.

2. for � � � � ���� do ������ � �
3. while (changes to any ������ occur) do

4. for � � � � ���� do

5. ������ � ��� �
�

����������������
�

.

Computer Science 320
Prof. David Walker

- 6 -

Dominator Analysis Example

1

2

3 4

5 6

7

11

8

9

10 12

Node ������ ������ 	������

1 1
2 1-12
3 1-12
4 1-12
5 1-12
6 1-12
7 1-12
8 1-12
9 1-12
10 1-12
11 1-12
12 1-12

Computer Science 320
Prof. David Walker

- 7 -

Immediate Dominator
� Immediate dominator used in constructing dominator tree.

� Dominator Tree:

– efficient representation of dominator information

– used for other types of analysis (e.g. control dependence)

� �� is root of dominator tree.

� Each node � dominates only its descendants in tree.

� Every node � (� �� ��) has exactly one immediate dominator 	������.

� 	������ �� �

� 	������ dominates �

� 	������ does not dominate any other dominator of �.

� Last dominator of � on any path from �� to � is 	������.

Computer Science 320
Prof. David Walker

- 8 -

Immediate Dominator Example

1

2

3 4

5 6

7

11

8

9

10 12

Node ������ 	������

1 1
2 1,2
3 1,2,3
4 1,2,4
5 1,2,5
6 1,2,4,6
7 1,2,7
8 1,2,5,8
9 1,2,5,8,9
10 1,2,5,8,9,10
11 1,2,7,11
12 1,2,12

Computer Science 320
Prof. David Walker

- 9 -

Post-Domination
� Assume every Control Flow Graph (CFG) has exit node
 with no successors.

� Node � post-dominates node � if every path of directed edges from � to
 must go
through �.

� Every node post-dominates itself.

� Derivation of post-dominator and immediate post-dominator analysis analogous to
dominator and immediate dominator analysis.

� Post-dominators will be useful in computing control dependence.

� Control dependence will be useful in many future optimizations.

Computer Science 320
Prof. David Walker

- 10 -

Loop Optimizations
� First step in loop optimization 	 find the loops.

� A loop is a set of CFG nodes � such that:

1. there exists a header node � in � that dominates all nodes in �.

– there exists a path of directed edges from � to any node in �.
– � is the only node in � with predecessors not in �.

2. from any node in �, there exists a path of directed edges to �.

� A loop is a single entry, multiple exit region.

Computer Science 320
Prof. David Walker

- 11 -

Examples of Loops

Computer Science 320
Prof. David Walker

- 12 -

Back Edges

1

2

3 4

5 6

7

11

8

9

10 12

� Back-edge - flow graph edge from node � to node � such
that � dominates �

� Each back-edge has a corresponding natural loop.

Computer Science 320
Prof. David Walker

- 13 -

Natural Loops

1

2

3 4

5 6

7

11

8

9

10 12

� Natural loop of back-edge
� ��:

– has a loop header �.

– set of nodes � such that � dominates
 � � and there
is a path from
 to � not containing �.

� A node � may be header of more than one natural loop.

� Natural loops may be nested.

Computer Science 320
Prof. David Walker

- 14 -

Loop Optimization
� Compiler should optimize inner loops first.

– Programs typically spend most time in inner loops.

– Optimizations may be more effective 	 loop invariant code removal.

� Convenient to merge natural loops with same header.

� These merged loops are not natural loops.

� Not all cycles in CFG are loops of any kind (more later).

Computer Science 320
Prof. David Walker

- 15 -

Loop Optimization

Loop invariant code motion

� An instruction is loop invariant if it computes the same value in each iteration.

� Invariant code may be hoisted outside the loop.

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 16 -

Loop Optimization
� Induction variable analysis and elimination - � is an induction variable if only

definitions of � within loop increment/decrement � by loop-invariant value.

� Strength reduction - replace expensive instructions (like multiply) with cheaper
ones (like add).

ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
MUL r4 = r3 * r1
ADD r5 = r2 + r4
STORE M[r5] = r6

ADDI r1 = r1 + 1
BRANCH r1 <= 10, LOOP

Computer Science 320
Prof. David Walker

- 17 -

Non-Loop Cycles

Examples:

Computer Science 320
Prof. David Walker

- 18 -

Non-Loop Cycles
� Loops are instances of reducible flow graphs.

– Each cycle of nodes has a unique header.

– During reduction, entire loop becomes a single node.

� Non-Loops are instances of irreducible flow graphs.

– Analysis and optimization is more efficient on reducible flow graphs.

– Irreducible flow graphs occur rarely in practice.

� Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads
to reducible flow graphs.

� Use of goto’s may lead to irreducible flow graphs.

– Fortunately, Tiger and ML don’t have gotos.

Computer Science 320
Prof. David Walker

- 19 -

Loop Preheaders

Recall:

� A loop is a set of CFG nodes � such that:

1. there exists a header node � in � that dominates all nodes in �.

– there exists a path of directed edges from � to any node in �.
– � is the only node in � with predecessors not in �.

2. from any node in �, there exists a path of directed edges to �.

� A loop is a single entry, multiple exit region.

Loop Preheaders:

� Some loop optimizations (loop invariant code removal) need to insert statements
immediately before loop header.

� Create a loop preheader - a basic block before the loop header block.

Computer Science 320
Prof. David Walker

- 20 -

Loop Preheader Example

Computer Science 320
Prof. David Walker

- 21 -

Loop Invariant Computations
� Given statements in loop �: t = �� op ��:

– � is loop-invariant if ��, �� have same value each loop iteration.

– may sometimes be possible to hoist � outside loop.

� Cannot always tell whether � will have same value each iteration 	 conservative
approximation.

� �: t = �� op �� is loop-invariant within loop � if for each ��:

1. �� is constant, or

2. all definitions of �� that reach � are outside �, or

3. only one definition of �� reaches �, and is loop-invariant.

Computer Science 320
Prof. David Walker

- 22 -

Loop Invariant Computation: Algorithm

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands
- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
mark "invariant" all definitions whose operands
- are constant,
- whose reaching definitions are outside loop, or
- which have a single reaching definition in loop
marked invariant.

Computer Science 320
Prof. David Walker

- 23 -

Loop Invariant Code Motion

After detecting loop-invariant computations, perform code motion.
1:

2:

r1 = 0

r2 = 5

Preheader:

3:

4:

5:

6:

7:

r3 = r3 + 1

r1 = r2 + 10

M[r3] = r1

branch r3 < N

r4 = r1

Subject to some constraints.

Computer Science 320
Prof. David Walker

- 24 -

Loop Invariant Code Motion: Constraint 1

�: t = a op b

� must dominate all loop exit nodes where t is live out.
1:

2:

r1 = 0

r2 = 5

Preheader:

r3 = r3 + 1

r1 = r2 + 10

branch r3 < N

r4 = r1

M[r3] = r1

jump

3:

4:

5:

6:

7:

8:

Computer Science 320
Prof. David Walker

- 25 -

Loop Invariant Code Motion: Constraint 2

�: t = a op b
there must be only one definition of t inside loop.

1:

2:

r1 = 0

r2 = 5

Preheader:

3: r3 = r3 + 1

M[r3] = r1

4:

5:

r1 = r2 + 10

M[r3] = r1

6:

7:

r1 = 0

branch r3 < N8:

9:

Computer Science 320
Prof. David Walker

- 26 -

Loop Invariant Code Motion: Constraint 3

�: t = a op b

� must not be live-out of loop preheader node (live-in to loop)
1:

2:

r1 = 0

r2 = 5

Preheader:

3:

4:

5:

6:

7:

8:

M[r3] = r1

r3 = r3 + 1

r1 = r2 + 10

M[r3] = r1

branch r3 < N

r4 = r1

Computer Science 320
Prof. David Walker

- 27 -

Loop Invariant Code Motion

Algorithm for code motion:

� Examine invariant statements of � in same order in which they were marked.

� If invariant statement � satisfies three criteria for code motion, remove � from �, and
insert into preheader node of �.

Computer Science 320
Prof. David Walker

- 28 -

Induction Variables

Variable i in loop � is called induction variable of � if each time i changes value in �,
it is incremented/decremented by loop-invariant value.

i = i + a

j = i * c + d

Assume a, c loop-invariant.

� i is an induction variable

� j is an induction variable

– j = i * c is equivalent to
j = j + a * c

– compute e = a * c outside loop:
j = j + e strength reduction

– may not need to use i in loop induction
variable elimination

Computer Science 320
Prof. David Walker

- 29 -

Induction Variable Detection

Scan loop � for two classes of induction variables:

� basic induction variables - variables (i) whose only definitions within � are of the
form i = i + c or i = i - c, c is loop invariant.

� derived induction variables - variables (j) defined only once within �, whose value
is linear function of some basic induction variable �.

Associate triple (i, a, b) with each induction variable j

� i is basic induction variable; a and b are loop invariant.

� value of j at point of definition is a + b * i

� j belongs to the family of i

Computer Science 320
Prof. David Walker

- 30 -

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

� Scan statements of � for basic induction variables i

– for each i, associate triple (i, 0, 1)

– i belongs to its own family.

� Scan statements of � for derived induction variables k:

1. there must be single assignment to k within � of the form k = j * c or
k = j + d, j is an induction variable; c,d loop-invariant, and

2. if j is a derived induction variable belonging to the family of i, then:

– the only definition of j that reaches k must be one in �, and
– no definition of imust occur on any path between definition of j and definition

of k

� Assume j associated with triple (i, a, b): j = a + b * i at point of defi-
nition.

� Can determine triple for k based on triple for j and instruction defining k:
Computer Science 320
Prof. David Walker

- 31 -

– k = j * c	 (i, a*c, b*c)

– k = j + d	 (i, a + d, b)

Computer Science 320
Prof. David Walker

- 32 -

Induction Variable Detection: Example

s = 0;
for(i = 0; i < N; i++)

s += a[i];

Computer Science 320
Prof. David Walker

- 33 -

1:

2:

r1 = 0

r2 = 0

3:

4:

5:

6:

Preheader:

branch r2 >= N

r3 = r2 * 4

r4 = r3 + a

r5 = M[r4]

10:

7: r1 = r1 + r5

8:

9: jump

r2 = r2 + 1

Computer Science 320
Prof. David Walker

- 34 -

Strength Reduction

1. For each derived induction variable j with triple (i, a, b), create new j’.

� all derived induction variables with same triple (i, a, b) may share j’

2. After each definition of i in �, i = i + c, insert statement:
j’ = j’ + b * c

� b * c is loop-invariant and may be computed in preheader or during compile
time.

3. Replace unique assignment to j with j = j’.

4. Initialize j’ at end of preheader node:

j’ = b * i
j’ = j’ + a

� Strength reduction still requires multiplication, but multiplication now performed
outside loop.

� j’ also has triple (i, a, b)

Computer Science 320
Prof. David Walker

- 35 -

Strength Reduction: Example

1:

2:

r1 = 0

r2 = 0

3:

4:

5:

6:

Preheader:

branch r2 >= N

r3 = r2 * 4

r4 = r3 + a

r5 = M[r4]

10:

7: r1 = r1 + r5

8:

9: jump

r2 = r2 + 1

Computer Science 320
Prof. David Walker

- 36 -

Strength Reduction: Example
1:

2:

r1 = 0

r2 = 0

Preheader: r33 = r2 * 4

r33 = r33 + 0

r44 = r2 * 4

r44 = r44 + a

3:

4:

5:

6:

branch r2 >= N

r5 = M[r4]

10: r3 = r33

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

9: jump

8’:

8’’:

r33 = r33 + 4

r44 = r44 + 4

Computer Science 320
Prof. David Walker

- 37 -

Induction Variable Elimination

After strength reduction has been performed:

� some induction variables are only used in comparisons with loop-invariant values.

� some induction variables are useless

– dead on all loop exits, used only in definition of itself.

– dead code elimination will not remove useless induction variables.

Computer Science 320
Prof. David Walker

- 38 -

Induction Variable Elimination: Example
1:

2:

r1 = 0

r2 = 0

5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

9: jump

8’:

8’’:

r33 = r33 + 4

r44 = r44 + 4

Preheader:

3: branch r2 >= N

10:

r44 = a

r33 = 0

Computer Science 320
Prof. David Walker

- 39 -

Induction Variable Elimination
� Variable k is almost useless if it is only used in comparisons with loop-invariant

values, and there exists another induction variable t in the same family as k that is
not useless.

� Replace k in comparison with t

	 k is useless

Computer Science 320
Prof. David Walker

- 40 -

Induction Variable Elimination: Example

Preheader:

3: branch r2 >= N

10: 5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

1:

2:

r1 = 0

r2 = 0

9: jump

8’’: r44 = r44 + 4

r44 = a

Computer Science 320
Prof. David Walker

- 41 -

Induction Variable Elimination: Example

Preheader:

3:

10: 5:

6: r5 = M[r4]

r4 = r44

7: r1 = r1 + r5

8: r2 = r2 + 1

1:

2:

r1 = 0

r2 = 0

9: jump

8’’: r44 = r44 + 4

r44 = a

r100 = 4 * N

r101 = r100 + a

branch r44 >= r101

Computer Science 320
Prof. David Walker

- 42 -

