Lecture 7: Intro to recognition and linear ML

COS 429: Computer Vision

Slides adapted from D. Fouhey

Terminology

- ML is incredibly messy terminology-wise.
- Most things have at lots of names.
- I will try to write down multiple of them so if you see it later you'll know what it is.

Pointers

Useful book (Free too!): The Elements of Statistical Learning Hastie, Tibshirani, Friedman <u>https://</u> web.stanford.edu/~hastie/ElemStatLearn/

Useful set of data:

UCI ML Repository

https://archive.ics.uci.edu/ml/datasets.html

A lot of important and hard lessons summarized: https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Machine Learning (ML)

- Goal: make "sense" of data
- Overly simplified version: transform vector x into vector y=T(x) that's somehow better
- Potentially you fit T using pairs of datapoints and desired outputs (x_i,y_i), or just using a set of datapoints (x_i)
- Always are trying to find some transformation that minimizes or maximizes some objective function or goal.

Machine Learning

Input: **x**

Output: y

Feature vector/Data point:

Vector representation of datapoint. Each dimension or "feature" represents some aspect of the data.

Label / target:

Fixed length vector of desired output. Each dimension represents some aspect of the output data

Supervised: we are given y. **Unsupervised**: we are not, and make our own ys.

Intuitive objective function: Want our prediction of age to be "close" to true age.

Intuitive objective function: Want to find K groups that explain the data we see.

Intuitive objective function: Want to K dimensions (often two) that are easier to understand but capture the variance of the data.

Example – Credit Card Fraud

Example – Computer Vision

Example – Computer Vision

Input: **x** in R^N

Example – Computer Vision

Abstractions

- Throughout, assume we've converted data into a fixed-length feature vector. There are welldesigned ways for doing this.
- But remember it could be big!
 - Image (e.g., 224x224x3): 151K dimensions
 - Patch (e.g., 32x32x3) in image: 3072 dimensions

ML Problems in Vision

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output Classification/ Categorization

Continuous Output

Credit: D. Fouhey Slide adapted from J. Hays

Categorization/Classification Binning into K mutually-exclusive categories

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output Classification/ Categorization

Continuous Output

Regression

Regression Estimating continuous variable(s)

Credit: D. Fouhey Image credit: Wikipedia

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output Classification/ Categorization

Clustering

Continuous Output

Regression

Credit: D. Fouhey Slide adapted from J. Hays

Clustering

Given a set of cats, automatically discover clusters or *cat*egories.

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output Classification/ Categorization

Clustering

Continuous Output

Regression

Dimensionality Reduction

Dimensionality Reduction Find dimensions that best explain the whole image/input

Cat size in image

For ordinary images, this is currently a totally hopeless task. For certain images (e.g., faces, this works reasonably well)

Practical Example

- ML has a tendency to be mysterious
- Let's start with:
 - A simple model (a line)
 - A simple fitting method
- One thing to remember:
 - N eqns, <N vars = overdetermined (will have errors)
 - N eqns, N vars = exact solution
 - N eqns, >N vars = underdetermined (infinite solns)

Let's make the world's worst weather model

Data:
$$(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$$

Model: $(m,b) y_i = mx_i + b$
Or $(w) y_i = w^T x_i$
Objective function:
 $(y_i - w^T x_i)^2$

World's Worst Weather Model

Given latitude (distance above equator), predict temperature in October by fitting a line

<u>City</u>	<u>Latitude (°)</u>	<u>Temp (F)</u>
Princeton	40	66
Boston, MA	42	62
Austin, TX	30	82
Mexico City	19	75
Vancouver	49	57

$$\sum_{i=1}^{k} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2 \longrightarrow \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}\|_2^2$$

Output: Inputs: Model/Weights:
Temperature Latitude, 1 Latitude, "Bias"

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix} \qquad \boldsymbol{X} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_k & 1 \end{bmatrix} \qquad \boldsymbol{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

$$\sum_{i=1}^{k} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2 \longrightarrow \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \|_2^2$$
Output:
Inputs:
Temperature
Latitude, 1
Latitude, 1
Latitude, "Bias"
y = \begin{bmatrix} 66 \\ \vdots \\ 57 \end{bmatrix}
X = \begin{bmatrix} 40 & 1 \\ \vdots & \vdots \\ 49 & 1 \end{bmatrix}
w = \begin{bmatrix} m \\ b \end{bmatrix}

Intuitively why do we add a one to the inputs?

Loss function/objective: evaluates correctness. Here: Squared L2 norm / Sum of Squared Errors

Training/Learning/Fitting: try to find model that *optimizes/minimizes* an objective / loss function

Recall: optimal **w*** is
$$w^* = (X^T X)^{-1} X^T y$$

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \left\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \right\|_{2}^{2} \text{ or }$$
$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \left\| \boldsymbol{w}^{T} \boldsymbol{x}_{i} - \boldsymbol{y}_{i} \right\|^{2}$$

Inference (x):
$$\boldsymbol{w}^T \boldsymbol{x} = w_1 x_1 + \dots + w_F x_F$$

Testing/Inference: Given a new output, what's the prediction?

Least Squares: Learning

Data

Model

<u>City</u>	<u>Latitude</u>	<u> Temp</u>	
Princeton	40	66	
Boston, MA	42	62	Temn =
Austin, TX	30	82	0.7*I at 1.04
Mexico City	19	75	-0.7 Lat ± 94
Vancouver	49	57	

$$\boldsymbol{X}_{5x2} = \begin{bmatrix} 40 & 1 \\ 42 & 1 \\ 30 & 1 \\ 19 & 1 \\ 49 & 1 \end{bmatrix} \quad \boldsymbol{y}_{5x1} = \begin{bmatrix} 66 \\ 62 \\ 82 \\ 75 \\ 57 \end{bmatrix} \quad \boldsymbol{W}_{2x1} = \begin{bmatrix} -0.7 \\ 94 \end{bmatrix}$$

Credit: D. Fouhey

Let's Predict The Weather

			The Wea Cha	The COS429 Weather Channel		
<u>City</u>	<u>Latitude</u>	<u>Temp</u>	<u>Temp</u>	<u>Error</u>		
Princeton	40	66	65.5	0.5		
Boston, MA	42	62	64.1	2.1		
Austin, TX	30	82	72.7	9.3		
Mexico City	19	75	80.5	5.5		
Vancouver	49	57	59.1	2.1		

Is This a Minimum Viable Product?

The COS429 Weather Channel The Weather Channel

Washington, DC: Temp = -0.7*39 + 94 = 66.7 Actual in DC: 69

Atlanta, GA: Temp = -0.7*34 + 94 = 70.2

Actual in Atlanta: 74

Melbourne, Australia:Actual in Melbourne:Temp = $-0.7^*(-38) + 94 = 120.6$ 68

Won't do so well in the Australian market...

Where Can This Go Wrong?

Where Can This Go Wrong?

How well can we predict Princeton and Boston and why?

Always Need Separated Testing

Model might be fit data too precisely "*overfitting*" Remember: #datapoints = #params = perfect fit

Model may only work under some conditions (e.g., trained on northern hemisphere).

Melbourne: Temp = -0.7*(-38) + 94 = **121**

Training and Testing

Fit model parameters on **training** set; evaluate on *entirely unseen* **test** set. Training Test

Nearly any model can predict data it's seen. If your model can't accurately interpret "unseen" data, it's probably useless. We have no clue whether it has just memorized.

Let's Improve Things

If one feature does ok, what about more features!?

<u>City</u>	<u>Latitude</u>	<u>Avg March</u>	<u>Avg</u>		<u>Oct Temp</u>
<u>Name</u>	<u>(deg)</u>	<u>High (F)</u>	<u>Snowfall</u>		<u>(F)</u>
Princeton	40	51	24		66
Boston, MA	42	46	48		62
Austin, TX	30	73	0.6		82
Mexico City	19	79	0		75
Vancouver	49	51	17.2		57
					\checkmark
	X	$X_{5\alpha4}$ 4	feature	es + a feature	y_{5x1}
		O	f 1s for	intercept/bias	

Let's Improve Things

All the math works out!

Data
$$w^* = (X^T X)^{-1} X^T y$$
 Model X_{5x4} y_{5x1} w_{4x1}

New COS429 Weather Rule: w_1^{*} latitude + w_2^{*} (avg July high) + w_3^{*} (avg snowfall) + w_4^{*1}

In general called linear regression

Let's Improve Things More

If one feature does ok, what about **LOTS** of features!?

<u>City</u>	<u>Latitude</u>	<u>Avg March</u>	<u>Avg</u>	<u>Month</u>	<u>Elevation</u>	<u>% Letter</u>	<u>Oct Temp</u>
<u>Name</u>	<u>(deg)</u>	<u>High (F)</u>	<u>Snowfall</u>	<u>of Year</u>	<u>(ft)</u>	<u>P</u>	<u>(F)</u>
Princeton	40	51	24	10	203	100	66
Boston, MA	42	46	48	10	141	3	62
Austin, TX	30	73	0.6	10	489	2	82
Mexico City	19	79	0	10	7382	4	75
Vancouver	49	51	17.2	10	197	1	57
	\sim						$\checkmark \hspace{-1.5cm} \checkmark$
X_{5x7} 6 features + a feature						y_{5x1}	
of 1s for intercept/bias							

Let's Improve Things More

Data

$$X_{5x7}$$
 y_{5x1} $w^* = (X^T X)^{-1} X^T y$ Model
 w_{7x1}
 $w^* = (X^T X)^{-1} X^T y$

X^TX is a 7x7 matrix but is **rank deficient** (rank 5) *and has no inverse. There are an infinite number of solutions.*

Have to express some preference for which of the infinite solutions we want.

The Fix – Regularized Least Squares

Add **regularization** to objective that prefers some solutions:

Want model "smaller": pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too complex (low regularization). λ controls how much of each.

The Fix – Regularized Least Squares

X^TX+ λ **I** is full-rank (and thus invertible) for λ >0

Called *lots of things:* regularized least-squares, Tikhonov regularization (after Andrey Tikhonov), ridge regression, Bayesian linear regression with a multivariate normal prior.

The Fix – Regularized Least Squares

Training and Testing

Fit model parameters on training set; evaluate on *entirely unseen* test set.

How do we pick λ ?

Training and Testing

Fit model parameters on training set; find *hyperparameters* by testing on validation set; evaluate on *entirely unseen* test set.

Use these data points to fit w*=(X^TX+ λI)⁻¹X^Ty

Evaluate on these points for different λ, pick the best

Sample Function to Optimize

 $f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$

A Caveat

- Each point in the picture is a function evaluation
- Here it takes microseconds so we can easily see the answer
- Functions we want to optimize may take hours to evaluate

Model in your head: moving around a landscape with a teleportation device

Landscape diagram: Karpathy and Fei-Fei

Credit: D. Fouhey

Option #1A – "Grid Search"

#systematically try things
best, bestScore = None, Inf
for dim1Value in dim1Values:

for dimNValue in dimNValues: **w** = [dim1Value, ..., dimNValue] if L(**w**) < bestScore: best, bestScore = **w**, L(**w**) return best

Option #1A – "Grid Search"

Credit: D. Fouhey

Option #1A – "Grid Search"

Pros:

- 1. Super simple
- 2. Only requires being able to evaluate model

Cons:

1. Scales horribly to high dimensional spaces

Complexity: samplesPerDim^{numberOfDims}

Option #1B – Random Search

```
#Do random stuff RANSAC Style
best, bestScore = None, Inf
for iter in range(numIters):
      w = random(N,1) #sample
      score = L(\boldsymbol{w}) #evaluate
      if score < bestScore:
            best, bestScore = w, score
return best
```

Option #1B – Random Search

Credit: D. Fouhey

Option #1B – Random Search

Pros:

1. Super simple

Good parameters

 Only requires being able to sample model and evaluate it

Cons:

- Slow and stupid throwing darts at high dimensional dart board
- 2. Might miss something

All parameters • 0

3

When Do You Use Options 1A/1B?

Use these when

- Number of dimensions small, space bounded
- Objective is impossible to analyze (e.g., test accuracy if we use this distance function)

Random search is arguably more effective; grid search makes it easy to systematically test something (people love certainty)

Arrows: gradient direction (scaled to unit length)

Want:
$$\underset{w}{\operatorname{argmin}} L(w)$$
What's the geometric
interpretation of:
$$\nabla_{w} L(w) = \begin{bmatrix} \partial L/\partial x_{1} \\ \vdots \\ \partial L/\partial x_{N} \end{bmatrix}$$
Which is bigger (for small α)?

$$L(w) \stackrel{\leq ?}{>} L(w + \alpha \nabla_{w} L(w))$$

Arrows: gradient direction (scaled to unit length)

Method: at each step, move in direction of negative gradient

w0 = initialize() #initializefor iter in range(numIters): $g = \nabla_w L(w) #eval gradient$ w = w + -stepsize(iter)*g #update wreturn w

Gradient Descent

Given starting point (blue) $w_{i+1} = w_i + -9.8 \times 10^{-2} \times gradient$

How Do You Compute The Gradient? Numerical Method:

$$\nabla_{\boldsymbol{w}} L(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial L(w)}{\partial x_1} \\ \vdots \\ \frac{\partial L(w)}{\partial x_n} \end{bmatrix}$$

How do you compute this?

$$\frac{\partial f(x)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}$$
In practice, use:

$$\frac{f(x + \epsilon) - f(x - \epsilon)}{2\epsilon}$$

How Do You Compute The Gradient? Numerical Method:

$$\nabla_{\boldsymbol{w}} L(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial L(w)}{\partial x_1} \\ \vdots \\ \frac{\partial L(w)}{\partial x_n} \end{bmatrix}$$

Jse:
$$\frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

How many function evaluations per dimension?

How Do You Compute The Gradient? Analytical Method:

$$\nabla_{\boldsymbol{w}} L(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial L(w)}{\partial x_1} \\ \vdots \\ \frac{\partial L(w)}{\partial x_n} \end{bmatrix}$$

Credit: D. Fouhey

Note: if you look at other derivations, things are written either $(y-w^Tx)$ or $(w^Tx - y)$; the gradients will differ by a minus.

Credit: D. Fouhey

Interpreting the Gradient

Recall:

$$\mathbf{w} = \mathbf{w} + -\nabla_{\mathbf{w}} L(\mathbf{w}) \text{ #update w}$$

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = 2\lambda \mathbf{w} + \sum_{i=1}^{n} -\left(2\left(y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}\right)$$
Push w towards 0
$$-\nabla_{\mathbf{w}} L(\mathbf{w}) = -2\lambda \mathbf{w} + \sum_{i=1}^{n} \left(2\left(y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}\right)$$

If $y_i > w^T x_i$ (too *low*): then $w = w + \alpha x_i$ for some α **Before**: $w^T x$ **After**: $(w + \alpha x)^T x = w^T x + \alpha x^T x$

- Numerical: foolproof but slow
- Analytical: can mess things up Get
- In practice: do analytical, but check with numerical (called a gradient check)

Summary of terminology

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \lambda \|\boldsymbol{w}\|_{2}^{2} + \sum_{i=1}^{n} \|\boldsymbol{w}^{T}\boldsymbol{x}_{i} - \boldsymbol{y}_{i}\|_{2}^{2}$$

- *x* Inputs, features, Xs, data
- ^y Outputs, targets, labels, ys
- Weights, weight vector, parameters, params
- λ Trade-off parameters, regularization strength

Next time

