Image Alignment and Stitching

COS 429: Computer Vision

Credits: S. Rusinkiewicz, D. Fouhey, R. Szeliski, S. Lazebnik, H. Sawhney

Motivation: panorama stitching

We have two images — how do we combine them?

Motivation: panorama stitching

We have two images — how do we combine them?

Panoramic Mosaics

Gigapixel Images

danielhartz.com

Applications – Look into the Past

Image Alignment Applications

- Local alignment:
 - Tracking
 - Stereo
- Global alignment:
 - Camera jitter elimination
 - Image enhancement
 - Panoramic mosaicing

Image Alignment Approaches

- Direct alignment: see which image transformation maximizes similarity in overlap region
 - Often performed coarse-to-fine
- Feature-based alignment: find image transformation that matches keypoint locations

Panorama stitching

We have two images — how do we combine them?

Step 1: extract keypoints Step 2: match keypoint features

Panorama stitching

We have two images — how do we combine them?

Step 1: extract keypoints Step 2: match keypoint features Step 3: align images

Alignment as Fitting

• Previously: fitting a model to features in one image

 Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Find transformation *T* that minimizes $\sum_{i} L(T(x_i); x'_i)$

Feature-Based Alignment

- Find keypoints; compute SIFT descriptors
- Generate candidate keypoint matches
- Use RANSAC to select a subset of matches
- Fit to find best image transformation
- Warp images according to transformation
- Blend images in overlapping regions

Feature-Based Alignment

- Find keypoints; compute SIFT descriptors
- Generate candidate keypoint matches
- Use RANSAC to select a subset of matches
- Fit to find best image transformation
- Warp images according to transformation
- Blend images in overlapping regions

Recall: after blob detection and scale normalization

Recall: eliminating rotation ambiguity

- To assign a unique orientation to circular image windows:
 - Create histogram of local gradient directions in the patch
 - Assign canonical orientation at peak of smoothed histogram

Recall: SIFT Descriptor

- Divide 16×16 window into 4×4 grid of cells
- Compute an orientation histogram for each cell
 - 16 cells * 8 orientations = 128-dimensional descriptor

keypoints." IJCV 60 (2), pp. 91-110, 2004.

Feature-Based Alignment

- Find keypoints; compute SIFT descriptors
- Generate candidate keypoint matches
- Use RANSAC to select a subset of matches
- Fit to find best image transformation
- Warp images according to transformation
- Blend images in overlapping regions

Candidate Matches

 For a given keypoint in image A, how to find candidate match in image B?

Candidate Matches

 For each SIFT descriptor in image A, find closest (according to Euclidean distance) in image B

$$best_match(x) = \arg\min_{x_i'} \left\| x - x_i' \right\|^2$$

Instance matching

Example: instance matching

NASA Mars Rover images

Slide credit: S. Lazebnik

Example: instance matching (look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Slide credit: S. Lazebnik

Candidate Matches

- For a given keypoint in image A, how to find candidate match in image B?
 - What if there are a lot of keypoints?

Problem: Ambiguous Correspondences

Candidate Matches

 For each SIFT descriptor in image A, find closest (according to Euclidean distance) in image B

$$best_match(x) = \arg\min_{x_{i'}} \left\| x - x_{i'} \right\|^2$$

- Refinement: mutual best match
 - -x' is most similar to x and x is most similar to x'

Candidate Matches

 For each SIFT descriptor in image A, find closest (according to Euclidean distance) in image B

$$best_match(x) = \operatorname{argmin} \|x - x_i'\|^2$$

- Refinement: mutual best match
 - -x' is most similar to x and x is most similar to x'
- Refinement: best match is much better than second-best
 - Ratio of closest to second-closest distance is high for non-distinctive features
 - Threshold ratio of e.g. 0.8

Feature-Based Alignment

- Find keypoints; compute SIFT descriptors
- Generate candidate keypoint matches
- Use RANSAC to select a subset of matches
- Fit to find best image transformation
- Warp images according to transformation
- Blend images in overlapping regions

Review: RANSAC

- Set of candidate matches contains many outliers
- RANSAC loop:
 - Randomly select a minimal set of matches
 - Compute transformation from seed group
 - Find inliers to this transformation
 - Keep the transformation with the largest number of inliers
- At end, re-estimate best transform using all inliers

Feature-Based Alignment

- Find keypoints; compute SIFT descriptors
- Generate candidate keypoint matches
- Use RANSAC to select a subset of matches
- Fit to find best image transformation
- Warp images according to transformation
- Blend images in overlapping regions

2D Transformation Models

- Translation only
- Rigid body (translation+rotation)
- Similarity (translation+rotation+scale)
- Affine
- Homography (projective)

Image Warping

• Image filtering: change *range* of image g(x) = T(f(x))

• Image warping: change *domain* of image g(x) = f(T(x))

Image Warping

• Image filtering: change *range* of image g(x) = T(f(x))

• Image warping: change *domain* of image g(x) = f(T(x))

Parametric (Global) Warping

Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

Parametric (Global) Warping

T is a coordinate changing machine p' = T(p)

Note: T is the same for all points, has relatively few parameters, and does **not** depend on image content

 $\mathbf{p} = (\mathbf{x}, \mathbf{y})$

Parametric (Global) Warping

Today we'll deal with linear warps $p'\equiv Tp$

T: matrix; p, p': 2D points. Start with normal points and =, then do homogeneous cords and \equiv

p' = (x', y')

 $\mathbf{p} = (x,y)$

Scaling multiplies each component (x,y) by a scalar. **Uniform** scaling is the same for all components.

Note the corner goes from (1,1) to (2,2)

Non-uniform scaling multiplies each component by a different scalar.

Scaling

What does T look like?

 $\begin{aligned} x' &= ax \\ y' &= by \end{aligned}$

Let's convert to a matrix:

2D Rotation

Rotation Matrix

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta)\\\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

But wait! Aren't sin/cos non-linear?

x' <u>is</u> a linear combination/function of x, y x' <u>is not</u> a linear function of θ

What's the inverse of
$$R_{\theta}$$
? $I = R_{\theta}^T R_{\theta}$

Things You Can Do With 2x2

Identity / No Transformation

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

Shear

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x\\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

Things You Can Do With 2x2

2D Mirror About Y-Axis

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

2D Mirror About X,Y

Recall: what's preserved in images?

3D lines project to 2D lines so lines are preserved Projections of parallel 3D lines are not necessarily parallel, so not parallelism

Distant objects are smaller so size is not preserved

Slide credit: D. Fouhey

What's Preserved With a 2x2

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & b\\c & d \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = T \begin{bmatrix} x\\y \end{bmatrix}$$

After multiplication by T (irrespective of T)

- Origin is origin: 0 = T0
- Lines are lines $\begin{bmatrix} (ax+by) + \lambda(adir_x + bdir_y) \\ (cx+dy) + \lambda(cdir_x + ddir_y) \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x + \lambda dir_x \\ y + \lambda dir_y \end{bmatrix}$
- Parallel lines are parallel
- Ratios between distances the same if scaling is uniform (otherwise no)

Things You Can't Do With 2x2

What about translation? $x' = x + t_x, y' = y+t_y$ **How do we fix it?**

Homogeneous Coordinates

Representing 2D Transformations

How do we represent a 2D transformation? Let's pick scaling $\begin{bmatrix} x'\\y'\\1 \end{bmatrix} \equiv \begin{bmatrix} s_x & 0 & a\\0 & s_y & b\\d & e & f \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$ a b d e f What's 0 0 0 1

Affine Transformations

Affine: linear transformation plus translation

Will the last coordinate always be 1?

In general (without homogeneous coordinates) x' = Ax + b

Matrix Composition

We can combine transformations via matrix multiplication.

What's Preserved With Affine

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix} \equiv T\begin{bmatrix} x\\y\\1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

- Origin is origin:0 = TOLines are lines $(ax + by + c) + \lambda(adir_x + bdir_y)$
 $(dx + ey + f) + \lambda(ddir_x + edir_y)$
1 $\equiv \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x + \lambda dir_x \\ y + \lambda dir_y \\ 1 \end{bmatrix}$
- Parallel lines are parallel
- Ratios between distances? if scaling is uniform yes, otherwise no

Perspective Transformations

Set bottom row to not [0,0,1] Called a perspective/projective transformation or a *homography*

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

How Many Degrees of Freedom?

Recall: can always scale by non-zero value

$$\begin{array}{l} \text{Perspective} \quad \begin{bmatrix} x'\\y'\\w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix} \\ \begin{array}{l} x'\\y'\\w' \end{bmatrix} = \frac{1}{i} \begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \frac{1}{i} \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix} = \begin{bmatrix} a/i & b/i & c/i\\d/i & e/i & f/i\\g/i & h/i & 1 \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix} \end{array}$$

Homography can always be re-scaled by $\lambda \neq 0$

What's Preserved With Perspective

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix} \equiv T\begin{bmatrix} x\\y\\1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

- Origin is origin: 0 = T0
- Lines are lines
- Parallel lines are parallel
- Ratios between distances

Transformation Families

In general: transformations are a nested set of groups

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\left[\left. \left. s oldsymbol{R} \right oldsymbol{t} ight. ight]_{2 imes 3} ight.$	4	angles $+ \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

Diagram credit: R. Szeliski

What Can Homographies Do?

Homography example 1: any two views of a *planar* surface

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography example 2: any images from two cameras sharing a camera center

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography sort of example "3": far away scene that can be approximated by a plane

Figure credit: Brown & Lowe

Fitting Transformations

Setup: have pairs of correspondences

Fitting Transformation

Affine Transformation: M,t

Data:
$$(x_i, y_i, x'_i, y'_i)$$
 for
i=1,...,k

Model: $[x'_i,y'_i] = \mathbf{M}[x_i,y_i] + \mathbf{t}$

Objective function: $\|[x'_i,y'_i] - \mathbf{M}[x_i,y_i] + \mathbf{t}\|^2$

Fitting Transformations

Given correspondences: $\mathbf{p}' = [x'_i, y'_i], \mathbf{p} = [x_i, y_i]$

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Set up two equations per point

$$\begin{bmatrix} \vdots \\ x'_{i} \\ y'_{i} \\ \vdots \end{bmatrix} = \begin{bmatrix} & \cdots & & & \\ x_{i} & y_{i} & 0 & 0 & 1 & 0 \\ 0 & 0 & x_{i} & y_{i} & 0 & 1 \\ & \cdots & & & \end{bmatrix} \begin{bmatrix} m_{1} \\ m_{2} \\ m_{3} \\ m_{4} \\ t_{x} \\ t_{y} \end{bmatrix}$$

Slide Credit: D. Fouhey

Fitting Transformations

Fitting Transformation

Homography: H

Data:
$$(x_i, y_i, x'_i, y'_i)$$
 for
i=1,...,k

Model: $[x'_{i},y'_{i},1] \equiv \mathbf{H}[x_{i},y_{i},1]$

Objective function: It's complicated

(Chapters 6.1, 6.2 in the book)

Feature-Based Alignment

- Find keypoints; compute SIFT descriptors
- Generate candidate keypoint matches
- Use RANSAC to select a subset of matches
- Fit to find best image transformation
- Warp images according to transformation
- Blend images in overlapping regions

Image Warping

Given a coordinate transform x' = T(x) and a source image f(x), how do we compute a transformed image g(x') = f(T(x))?

Forward Warping

- Send each pixel f(x) to its corresponding location x' = T(x) in g(x')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel f(x) to its corresponding location x' = T(x) in g(x')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)

Inverse Warping

- Get each pixel g(x') from its corresponding location $x = T^{-1}(x')$ in f(x)
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x') from its corresponding location $x = T^{-1}(x')$ in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: *resample* color value from *interpolated* (*prefiltered*) source image

Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic (interpolating)
 - sinc / FIR
- See COS 426 for details on how to avoid "jaggies"

Feature-Based Alignment

- Find keypoints; compute SIFT descriptors
- Generate candidate keypoint matches
- Use RANSAC to select a subset of matches
- Fit to find best image transformation
- Warp images according to transformation
- Blend images in overlapping regions

Blending

- Blend over too small a region: seams
- Blend over too large a region: ghosting

COS 426 for details

Putting it all together: making a panorama?

Step 1

Find corners/blobs

- (Multi-scale) Harris; or
- Laplacian of Gaussian

Describe Regions Near Features

Build histogram of gradient orientations (SIFT)

Match Features Based On Region

Nearest neighbor is far closer than 2nd nearest neighbor

Fit transformation H via RANSAC

for trial in range(Ntrials): Pick sample Fit model Check if more inliers Re-fit model with most inliers

Step 5

Warp images together

Resample images with inverse warping and blend

Next class: intro to recognition + basics of ML

