
COS 429: Computer Vision

Image Alignment and Stitching

Credits: S. Rusinkiewicz, D. Fouhey, R. Szeliski, S. Lazebnik, H. Sawhney

Motivation: panorama stitching

• We have two images — how do we combine
them?

• We have two images — how do we combine
them?

Motivation: panorama stitching

Panoramic Mosaics

Gigapixel Images

danielhartz.com

Applications – Look into the Past

Image Alignment Applications

• Local alignment:
– Tracking
– Stereo

• Global alignment:
– Camera jitter elimination
– Image enhancement
– Panoramic mosaicing

Image Alignment Approaches

• Direct alignment: see which image transformation
maximizes similarity in overlap region
– Often performed coarse-to-fine

• Feature-based alignment: find image
transformation that matches keypoint locations

• We have two images — how do we combine
them?

Panorama stitching

Step 1: extract keypoints
Step 2: match keypoint features

Panorama stitching

Step 3: align images

Step 1: extract keypoints
Step 2: match keypoint features

• We have two images — how do we combine
them?

Alignment as Fitting

• Previously: fitting a model to features in one image  
 
 

• Alignment: fitting a model to a transformation
between pairs of features (matches) in two images

∑
i

i Mx);(L
Find model M that minimizesM

xi

∑ ʹ
i

ii xxT));((L

Find transformation T  
that minimizesT

xi
xi'

Feature-Based Alignment

• Find keypoints; compute SIFT descriptors
• Generate candidate keypoint matches
• Use RANSAC to select a subset of matches
• Fit to find best image transformation
• Warp images according to transformation
• Blend images in overlapping regions

Feature-Based Alignment

• Find keypoints; compute SIFT descriptors
• Generate candidate keypoint matches
• Use RANSAC to select a subset of matches
• Fit to find best image transformation
• Warp images according to transformation
• Blend images in overlapping regions

Recall: after blob detection and scale
normalization

Slide: S. Lazebnik

Recall: eliminating rotation ambiguity

• To assign a unique orientation to circular image
windows:

• Create histogram of local gradient directions in the patch
• Assign canonical orientation at peak of smoothed histogram

0 2 π

Slide: S. Lazebnik

Recall: SIFT Descriptor

• Divide 16×16 window into 4×4 grid of cells
• Compute an orientation histogram for each cell

– 16 cells * 8 orientations = 128-dimensional descriptor

David G. Lowe. "Distinctive image features from scale-invariant
keypoints.” IJCV 60 (2), pp. 91-110, 2004.

Feature-Based Alignment

• Find keypoints; compute SIFT descriptors
• Generate candidate keypoint matches
• Use RANSAC to select a subset of matches
• Fit to find best image transformation
• Warp images according to transformation
• Blend images in overlapping regions

Candidate Matches

• For a given keypoint in image A, how to find
candidate match in image B?

),(ii yx ʹʹ
),(ii yx

?

Candidate Matches

• For each SIFT descriptor in image A, find closest
(according to Euclidean distance) in image B

!"#$_%&$'h (() = argmin
()′ �

(− ()′�
2

Instance matching

Credit: James Hays

Example: instance matching

NASA Mars Rover images

Slide credit: S. Lazebnik

Example: instance matching
(look for tiny colored squares)

NASA Mars Rover images
with SIFT feature matches 
Figure by Noah Snavely

Slide credit: S. Lazebnik

Candidate Matches

• For a given keypoint in image A, how to find
candidate match in image B?
• What if there are a lot of keypoints?

?

Problem: Ambiguous Correspondences

Source: Y. Furukawa

Candidate Matches

• For each SIFT descriptor in image A, find closest
(according to Euclidean distance) in image B

• Refinement: mutual best match
– x’ is most similar to x and x is most similar to x’

!"#$_%&$'h (() = argmin
()′ �

(− ()′�
2

• For each SIFT descriptor in image A, find closest
(according to Euclidean distance) in image B

• Refinement: mutual best match
– x’ is most similar to x and x is most similar to x’

• Refinement: best match is 
much better than second-best
– Ratio of closest to second-closest

distance is high for non-distinctive
features

– Threshold ratio of e.g. 0.8

Candidate Matches

!"#$_%&$'h (() = argmin
()′ �

(− ()′�
2

[Lowe]

Feature-Based Alignment

• Find keypoints; compute SIFT descriptors
• Generate candidate keypoint matches
• Use RANSAC to select a subset of matches
• Fit to find best image transformation
• Warp images according to transformation
• Blend images in overlapping regions

Review: RANSAC

• Set of candidate matches contains many outliers 

• RANSAC loop:
– Randomly select a minimal set of matches
– Compute transformation from seed group
– Find inliers to this transformation
– Keep the transformation with the largest number of

inliers

• At end, re-estimate best transform using all inliers

RANSAC: Translation Only

[Szeliski]

Candidate matches

RANSAC: Translation Only

[Szeliski]

Select one match, count inliers

RANSAC: Translation Only

[Szeliski]

Select one match, count inliers

RANSAC: Translation Only

[Szeliski]

Take transformation with most inliers, re-fit

Feature-Based Alignment

• Find keypoints; compute SIFT descriptors
• Generate candidate keypoint matches
• Use RANSAC to select a subset of matches
• Fit to find best image transformation
• Warp images according to transformation
• Blend images in overlapping regions

2D Transformation Models

• Translation only 

• Rigid body (translation+rotation) 

• Similarity (translation+rotation+scale) 

• Affine  

• Homography (projective)

Richard Szeliski

Image Warping

• Image filtering: change range of image
g(x) = T(f(x))

• Image warping: change domain of image
g(x) = f(T(x))

f

x

T
f

x

f

x

T
f

x

• Image filtering: change range of image
g(x) = T(f(x))

• Image warping: change domain of image
g(x) = f(T(x))

Richard Szeliski

Image Warping

T

T

Parametric (Global) Warping

• Examples of parametric warps:

translation rotation aspect

affine perspective cylindrical

Richard Szeliski

Parametric (Global) Warping

T

p’ = (x’,y’)

T is a coordinate changing machine

p = (x,y)

Note: T is the same for all points, has relatively few
parameters, and does not depend on image content

#′� = *(#)

Slide credit: A. Efros

Parametric (Global) Warping

T

p’ = (x’,y’)
p = (x,y)

Today we’ll deal with linear warps

T: matrix; p, p’: 2D points. Start with normal points and
=, then do homogeneous cords and ≡

Slide credit: A. Efros

#′� ≡ %#

Scaling

× 2

Scaling multiplies each component (x,y) by a scalar.
Uniform scaling is the same for all components.

Note the corner goes from (1,1) to (2,2)

Slide credit: A. Efros

Scaling

Non-uniform scaling multiplies each component by a
different scalar.

X × 2, 
Y × 0.5

Slide credit: A. Efros

Scaling

What does T look like?

(′� = &(
+′� = !+

Let’s convert to a matrix:

[(′�
+′�] = [

#(0
0 #+][(

+]
scaling matrix S

What’s the inverse of S?

Slide credit: A. Efros

2D Rotation

Rotation Matrix

But wait! Aren’t sin/cos non-linear?

x’ is a linear combination/function of x, y
x’ is not a linear function of θ

What’s the inverse of Rθ? ' = (*
) ()

[(′�
+′�] = [cos(,) − sin(,)

sin(,) cos(,)][(
+]

Slide credit: A. Efros

Things You Can Do With 2x2

Identity / No Transformation

[(′�
+′�] = [1 0

0 1][(
+]

Slide credit: A. Efros

Shear

[(′�
+′�] = [

1 #h (
#h + 1][(

+]

Things You Can Do With 2x2

2D Mirror About Y-Axis

[(′�
+′�] = [− 1 0

0 1][(
+]

Before

After

2D Mirror About X,Y

[(′�
+′�] = [− 1 0

0 − 1][(
+]

Before

After

Slide credit: A. Efros

Recall: what’s preserved in images?

Projections of parallel 3D
lines are not necessarily
parallel, so not parallelism

3D lines project to 2D lines
so lines are preserved

Distant objects are smaller
so size is not preserved

Slide credit: D. Fouhey

What’s Preserved With a 2x2

[(′�
+′�] = [& !

' -][(
+] = *[(

+]
After multiplication by T (irrespective of T)

• Origin is origin: 0 = T0
• Lines are lines
• Parallel lines are parallel
• Ratios between distances the same if

scaling is uniform (otherwise no)

Slide credit: D. Fouhey

[
(a x + by) + λ(ad irx + bd iry)
(cx + d y) + λ(cd irx + d d iry)] = [a b

c d] [
x + λd irx
y + λd iry]

Things You Can’t Do With 2x2

What about translation?
x’ = x + tx, y’ = y+ty

+(2,2)

How do we fix it?

Homogeneous Coordinates

What about translation?
x’ = x + tx, y’ = y+ty

+(2,2)

(+ $(
+ + $+

1
≡

(′�
+′�
1

≡
1 0 $(
0 1 $+
0 0 1

[
(
+
1]

Slide credit: A. Efros

Representing 2D Transformations

How do we represent a 2D transformation?
Let’s pick scaling

(′�
+′�
1

≡
#(0 &
0 #+ !
- " /

[
(
+
1]

0 0 0 0 1

a b d e fWhat’s

Affine Transformations

Affine: linear transformation plus translation

In general (without homogeneous coordinates)
′� = + + ,

Will the last coordinate always be 1?

(′�
+′�
0′�

≡
& ! '
- " /
0 0 1 [

(
+
1]t

Matrix Composition

(′�
+′�
0′�

≡
1 0 $(
0 1 $+
0 0 1

cos(,) − sin(,) 0
sin(,) cos(,) 0

0 0 1

#(0 0
0 #+ 0
0 0 1

[
(
+
0]

*($(, $+) 1(,) 2(#(, #+)

We can combine transformations via matrix
multiplication.

Does order matter?

Slide credit: A. Efros

After multiplication by T (irrespective of T)
• Origin is origin: 0 = T0?
• Lines are lines?
• Parallel lines are parallel?
• Ratios between distances?

After multiplication by T (irrespective of T)
• Origin is origin: 0 = T0
• Lines are lines
• Parallel lines are parallel
• Ratios between distances? if scaling is

uniform yes, otherwise no

What’s Preserved With Affine

Slide credit: D. Fouhey

(′�
+′�
1

≡
& ! '
- " /
0 0 1 [

(
+
1] ≡ %[

(
+
1]

(a x + by + c) + λ(a d irx + bd iry)
(d x + ey + f) + λ(d d irx + ed iry)

1
≡

a b c
d e f
0 0 1

x + λd irx
y + λd iry

1

Perspective Transformations

Set bottom row to not [0,0,1]
Called a perspective/projective transformation or a

homography

How many degrees of freedom?

(′�
+′�
0′�

≡
& ! '
- " /
3 h) [

(
+
0]

How Many Degrees of Freedom?

Recall: can always scale by non-zero value

(′�
+′�
0′�

≡
& ! '
- " /
3 h) [

(
+
0]Perspective

#
(′�
+′ �
0′�

≡ 1
)

(′�
+′ �
0′�

≡ 1
)

& ! '
- " /
3 h) [

(
+
0] ≡

&/) !/) '/)
-/) "/) //)
3/) h /) 1 [

(
+
0]

Homography can always be re-scaled by λ≠0

After multiplication by T (irrespective of T)
• Origin is origin: 0 = T0?
• Lines are lines?
• Parallel lines are parallel?
• Ratios between distances?

After multiplication by T (irrespective of T)
• Origin is origin: 0 = T0
• Lines are lines
• Parallel lines are parallel
• Ratios between distances .

What’s Preserved With Perspective

Slide credit: D. Fouhey

(′�
+′�
1

≡
& ! '
- " /
3 h) [

(
+
1] ≡ %[

(
+
1]

Transformation Families

In general: transformations are a nested set of groups

Diagram credit: R. Szeliski

What Can Homographies Do?

Homography example 1: any two views
of a planar surface

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography example 2: any images from two
cameras sharing a camera center

Figure Credit: S. Lazebnik

What Can Homographies Do?

Homography sort of example “3”: far away
scene that can be approximated by a plane

Figure credit: Brown & Lowe

Fitting Transformations

Setup: have pairs of correspondences

((), +)) ((′�), +′�))M,t

[()′�
+)′�] = -[()

+)] + .

Slide Credit: S. Lazebnik

Fitting Transformation

Data: (xi,yi,x’i,y’i) for
i=1,…,k

Model:
[x’i,y’i] = M[xi,yi]+t

Objective function:
||[x’i,y’i] – M[xi,yi]+t||2

M,t

Affine Transformation: M,t

Slide Credit: D. Fouhey

Fitting Transformations

⋮
(′�)
+′�)
⋮

=

⋯
() +)
0 0

0 0
() +)

1 0
0 1

⋯

%1
%2
%3
%4
$(
$+

[()′�
+)′�] = [%1 %2

%3 %4][()
+)] + [$(

$+]
Given correspondences: p’ = [x’i,y’i], p = [xi,yi]

Set up two equations per point

Slide Credit: D. Fouhey

Fitting Transformations

⋮
(′�)
+′�)
⋮

=

⋯
() +)
0 0

0 0
() +)

1 0
0 1

⋯

%1
%2
%3
%4
$(
$+

2 equations per point, 6 unknowns
How many points do we need?

Slide Credit: D. Fouhey

Fitting Transformation

Data: (xi,yi,x’i,y’i) for
i=1,…,k

Model:
[x’i,y’i,1] ≡ H[xi,yi,1]

Objective function:
It’s complicated

H

Homography: H

Slide Credit: D. Fouhey

(Chapters 6.1, 6.2 in the book)

Feature-Based Alignment

• Find keypoints; compute SIFT descriptors
• Generate candidate keypoint matches
• Use RANSAC to select a subset of matches
• Fit to find best image transformation
• Warp images according to transformation
• Blend images in overlapping regions

Image Warping

• Given a coordinate transform x’ = T(x) and a
source image f(x), how do we compute a
transformed image g(x’) = f(T(x))?

f(x) g(x’)x x’

T

Richard Szeliski

Forward Warping

• Send each pixel f(x) to its corresponding location
x’ = T(x) in g(x’)

f(x) g(x’)x x’

T

• What if pixel lands “between” two pixels?

Richard Szeliski

Forward Warping

• Send each pixel f(x) to its corresponding location
x’ = T(x) in g(x’)

f(x) g(x’)x x’

T

• What if pixel lands “between” two pixels?
• Answer: add “contribution” to several pixels,

normalize later (splatting)

Richard Szeliski

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x = T-1(x’) in f(x)

f(x) g(x’)x x’

T-1

• What if pixel comes from “between” two pixels?

Richard Szeliski

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x = T-1(x’) in f(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from

interpolated (prefiltered) source image

f(x) g(x’)x x’

Richard Szeliski

Interpolation

• Possible interpolation filters:
– nearest neighbor
– bilinear
– bicubic (interpolating)
– sinc / FIR

• See COS 426 for details on  
how to avoid “jaggies”

Feature-Based Alignment

• Find keypoints; compute SIFT descriptors
• Generate candidate keypoint matches
• Use RANSAC to select a subset of matches
• Fit to find best image transformation
• Warp images according to transformation
• Blend images in overlapping regions

Blending

• Blend over too small a region: seams
• Blend over too large a region: ghosting

• COS 426 for details

Putting it all together: making a panorama?

Step 1

• (Multi-scale) Harris; or
• Laplacian of Gaussian

Find corners/blobs

Step 2

Describe Regions Near Features

Build histogram of
gradient orientations
(SIFT)

(4 ∈1128

Step 3

Match Features Based On Region

(1 ∈1128 (2 ∈1128

#

�
(3

∈1128

(4 ∈1128

(4Sort by distance to: (4 − (1 < (4 − (2 < (4 − (3

Accept match if: (4 − (1 / (4 − (2

Nearest neighbor is far closer than 2nd nearest neighbor

Step 4

Fit transformation H via RANSAC

for trial in range(Ntrials):
 Pick sample
 Fit model
 Check if more inliers
Re-fit model with most inliers

Step 5

Warp images together

Resample images with inverse warping
and blend

Next class: intro to recognition + basics of ML

1 2 3

4 5 6

