Lecture 4

Feature Detectors: Corners, Blobs and SIFT

COS 429: Computer Vision

Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Svetlana Lazebnik, Steve Seitz, David Fouhey

Last time: edge detection

90	92	92	93	93	94	94	95	95	96
94	95	96	96	97	98	98	102	102	102
90 102	102	104	100	101	101	102	102	111	103
103	100	104	1104	110	111	110	110	100	117
108	108	109	110	112	TTT	112	119	123	11/
113	113	110	111	113	112	122	120	117	106
118	118	109	96	106	113	112	108	117	114
116	132	120	111	109	106	101	106	117	118
111	142	112	111	101	106	104	109	113	110
114	139	109	108	103	106	107	108	108	108
115	139	117	114	101	104	103	105	114	110
115	129	103	114	101	97	109	116	117	118
120	130	104	111	116	104	107	109	110	99
125	130	103	109	108	98	104	109	119	105
119	128	123	138	140	133	139	120	137	145
164	138	143	163	155	133	145	125	133	155
174	126	123	122	102	106	108	62	62	114
169	134	133	127	92	102	94	47	52	118
125	132	117	122	102	103	98	51	53	120
109	99	113	116	111	98	104	82	99	116

$$\nabla f = \left[\frac{\partial f}{\partial x}, \mathbf{0}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

This time: keypoints

Corners

Blobs

Why Extract Keypoints?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why Extract Keypoints?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract keypoints Step 2: match keypoint features

Why Extract Keypoints?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract keypoints Step 2: match keypoint features Step 3: align images

Applications

- Keypoints are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Characteristics of Good Keypoints

- Repeatability
 - Can be found despite geometric and photometric transformations

Salience

- Each keypoint is distinctive
- Compactness and efficiency
 - Many fewer keypoints than image pixels
- Locality
 - Occupies small area of the image; robust to clutter and occlusion

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Change in appearance of window W for the shift [u,v]:

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

I(x, y)

E(u, v)

Change in appearance of window W for the shift [u,v]:

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

I(x, y)

E(u, v)

Change in appearance of window W for the shift [u, v]:

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

We want to find out how this function behaves for small shifts

E(u, v)

- First-order Taylor approximation for small motions [*u*, *v*]: $I(x + u, y + v) \approx I(x, y) + I_x u + I_y v$
- Let's plug this into E(u,v):

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

$$\approx \sum_{(x,y)\in W} [I(x,y) + I_x u + I_y v - I(x,y)]^2$$

$$= \sum_{(x,y)\in W} [I_x u + I_y v]^2 = \sum_{(x,y)\in W} [I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2]$$

The quadratic approximation can be written as

$$E(u,v) \approx \sum_{(x,y)\in W} I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2 = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a *second moment matrix* computed from image derivatives:

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

(the sums are over all the pixels in the window W)

Interpreting the second moment matrix

 The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u,v)$$

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

$$E(u,v)$$

 Specifically, in which directions does it have the smallest/greatest change?

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Diagonalization of M:

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Recap so far

 $E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$

At an edge

I(x, y)

 $E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$

- The direction along the edge results in no change
- λ_{min} is very small

At a corner

I(x, y)

 $E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$

direction of the fastest change $(\lambda_{\max})^{-1/2}$ $(\lambda_{\min})^{-1/2}$ direction of the slowest change

- All directions result in high change
- λ_{min} is large

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

 α : constant

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel:

$$M = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Harris Detector: Steps

Two images of the same object

Harris Detector: Steps

Compute corner response *R*

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold R
- 5. Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Harris Detector: Steps

Find points with large corner response: *R* > threshold

Harris Detector: Steps

Take only the points of local maxima of R

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

• Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

Slide: S. Lazebnik

Image translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

All points will be classified as edges

Corner location is not covariant to scaling!

Feature detection with scale selection

• We want to extract features with characteristic scale that is *covariant* with the image transformation

Blob detection: Basic idea

• To detect blobs, convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting *scale space*

Blob detection: Basic idea

Find maxima and minima of blob filter response in space and scale

Source: N. Snavely

Blob filter

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Recall: Edge detection

Edge detection, Take 2

Source: S. Seitz

From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Scale selection

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:

Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization

Slide: S. Lazebnik

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale selection

• At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

image

Slide: S. Lazebnik

Scale selection

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- For maximum response: align the zeros of the Laplacian with the circle
- The Laplacian in 2-D is given by (up to scale):

$$(x^2 + y^2 - 2\sigma^2)e^{-(x^2 + y^2)/(2\sigma^2)}$$

• Therefore, the maximum response occurs at $\sigma = r / \sqrt{2}$.

Characteristic scale

• We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision **30** (2): pp 77--116. Slide: S. Lazebnik

1. Convolve image with scale-normalized Laplacian at several scales

Slide: S. Lazebnik

sigma = 11.9912

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space

Scale-space blob detector: Example

Slide: S. Lazebnik

Efficient implementation

- Laplacian of Gaussian can be approximated by Difference of Gaussians
 - Assignment 1, question 3

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Slide: S. Lazebnik

From feature detection to feature description

- Scaled and rotated versions of the same neighborhood will give rise to blobs that are related by the same transformation
- What to do if we want to compare the appearance of these image regions?
 - *Normalization*: transform these regions into same-size circles
 - Problem: rotational ambiguity

SIFT descriptors

After blob detection and scale normalization

Slide: S. Lazebnik

Eliminating rotation ambiguity

- To assign a unique orientation to circular image windows:
 - Create histogram of local gradient directions in the patch
 - Assign canonical orientation at peak of smoothed histogram

SIFT detected features

 Detected features with characteristic scales and orientations:

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Slide: S. Lazebnik

From feature detection to feature description

Properties of Feature Descriptors

- Easily compared (compact, fixed-dimensional)
- Easily computed
- Invariant
 - Translation
 - Rotation
 - Scale
 - Change in image brightness
 - Change in perspective?

SIFT Descriptor

- Divide 16×16 window into 4×4 grid of cells
- Compute an orientation histogram for each cell
 - 16 cells * 8 orientations = 128-dimensional descriptor

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Properties of SIFT

Extraordinarily robust detection and description technique

- Handles changes in viewpoint (\sim 60 degree out-of-plane rotation)
- Handles significant changes in illumination (sometimes even day vs night)
- Fast and efficient—can run in real time
- Lots of code available

Feature descriptors

Think of a feature as some non-linear filter that maps pixels to 128D feature

Two use cases:

- 1. Instance Matching
- 2. Category recognition

Use case 1: Instance matching

Use case 1: instance matching

NASA Mars Rover images

Slide credit: S. Lazebnik

Use case 1: instance matching (look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Slide credit: S. Lazebnik

Use case 2: Category recognition

 Extract features from set of images (either densely or at key points)

Use case 2: category recognition

Build codebook of "concepts"

Figure: B. Liebe

Use case 2: category recognition

Represent image as histogram of concepts

Next class: fitting, Hough transforms, RANSAC

