
COS 429: Computer Vision

Lecture 4
Feature Detectors: Corners, Blobs and SIFT

Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Svetlana Lazebnik, Steve Seitz, David Fouhey



Last time: edge detection
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• Corners

• Blobs

This time: keypoints



Why Extract Keypoints?

• Motivation: panorama stitching
– We have two images – how do we combine them?
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Why Extract Keypoints?

• Motivation: panorama stitching
– We have two images – how do we combine them?

Step 3: align images

Step 1: extract keypoints
Step 2: match keypoint features



Applications  

• Keypoints are used for:
– Image alignment 
– 3D reconstruction
– Motion tracking
– Robot navigation
– Indexing and database retrieval
– Object recognition



Characteristics of Good Keypoints

• Repeatability
– Can be found despite geometric and photometric transformations 

• Salience
– Each keypoint is distinctive

• Compactness and efficiency
– Many fewer keypoints than image pixels

• Locality
– Occupies small area of the image; robust to clutter and occlusion



Corners



Corner Detection: Basic Idea

• We should easily recognize the point by looking through a 
small window 

• Shifting a window in any direction should give a large change 
in intensity

“edge”: 
no change along the 
edge direction

“corner”: 
significant change in 
all directions

“flat” region: 
no change in all 
directions

Slide credit: S. Lazebnik



Corner Detection: Mathematics

Change in appearance of window W for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

Slide credit: S. Lazebnik

E(u, v) = ∑
(x,y)∈W

[I(x + u, y + v) − I(x, y)]2



Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)

Change in appearance of window W for the shift [u,v]:

Slide credit: S. Lazebnik

E(u, v) = ∑
(x,y)∈W

[I(x + u, y + v) − I(x, y)]2



Corner Detection: Mathematics

We want to find out how this function behaves for small 
shifts

E(u, v)

Change in appearance of window W for the shift [u,v]:

Slide credit: S. Lazebnik

E(u, v) = ∑
(x,y)∈W

[I(x + u, y + v) − I(x, y)]2



• First-order Taylor approximation for small motions [u, v]: 

• Let’s plug this into E(u,v):

Corner Detection: Mathematics

I(x + u, y + v) ≈ I(x, y) + Ixu + Iyv

E(u, v) = ∑
(x,y)∈W

[I(x + u, y + v) − I(x, y)]2

≈ ∑
(x,y)∈W

[I(x, y) + Ixu + Iyv − I(x, y)]2

= ∑
(x,y)∈W

[Ixu + Iyv]2 = ∑
(x,y)∈W

[I2
x u2 + 2IxIyuv + I2

y v2]



Corner Detection: Mathematics

The quadratic approximation can be written as

where M is a second moment matrix computed from image 
derivatives:
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• The surface E(u,v) is locally approximated by a quadratic 
form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Slide credit: S. Lazebnik

• Specifically, in which directions  does it have the 
smallest/greatest change?



Interpreting the second moment matrix

Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.
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Slide credit: S. Lazebnik



Interpreting the second moment matrix

RRM ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

The axis lengths of the ellipse are determined by the eigenvalues and 
the orientation is determined by R 

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Diagonalization of M:

Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.
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Slide credit: S. Lazebnik



Recap so far

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

I(x, y)
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At an edge

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2
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• The direction 
along the edge 
results in no 
change  

• λmin is very small



At a corner

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

I(x, y)
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• All directions result 
in high change 

• λmin is large



Slide credit: S. Lazebnik

Interpreting the eigenvalues

λ1

λ2

“Corner” 
λ1 and λ2 are large,  
 λ1 ~ λ2; 
E increases in all 
directions

λ1 and λ2 are small;  
E is almost constant 
in all directions

“Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of M:



Slide credit: S. Lazebnik

Corner response function

λ1

λ2

“Corner” 
R > 0

“Edge”  
R < 0

“Edge”  
R < 0

“Flat” 
region

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR
α: constant

|R| small



The Harris corner detector

1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a 

Gaussian window around each pixel: 

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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Slide credit: S. Lazebnik



The Harris corner detector

1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a 

Gaussian window around each pixel  
3. Compute corner response function R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

Slide credit: S. Lazebnik



Harris Detector: Steps

Slide credit: S. Lazebnik

Two images of the same object



Harris Detector: Steps

Compute corner response R

Slide credit: S. Lazebnik



The Harris corner detector

1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a 

Gaussian window around each pixel  
3. Compute corner response function R 
4. Threshold R
5. Find local maxima of response function 

(nonmaximum suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

Slide credit: S. Lazebnik



Harris Detector: Steps

Find points with large corner response: R > threshold

Slide credit: S. Lazebnik



Harris Detector: Steps

Slide credit: S. Lazebnik

Take only the points of local maxima of R



Invariance and covariance

• We want corner locations to be invariant to photometric 
transformations and covariant to geometric 
transformations 
• Invariance: image is transformed and corner locations do not 

change 
• Covariance: if we have two transformed versions of the same 

image, features should be detected in corresponding locations

Slide credit: S. Lazebnik



Affine intensity change

•   Only derivatives are used => 
invariance to intensity shift I → I + b

•   Intensity scaling: I → a I

R

x (image coordinate)

R

x (image coordinate)

threshold

Partially invariant to affine intensity change

I → a I + b

Slide: S. Lazebnik



Image translation

•  Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Slide: S. Lazebnik



Image rotation

Second moment ellipse rotates but its shape (i.e. 
eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Slide: S. Lazebnik



Scaling

All points will be 
classified as 
edges

Corner

Corner location is not covariant to scaling!
Slide: S. Lazebnik



Blobs



Feature detection with scale selection

• We want to extract features with characteristic scale 
that is covariant with the image transformation

Slide: S. Lazebnik



Blob detection: Basic idea

• To detect blobs, convolve the image with a “blob filter” at 
multiple scales and look for extrema of filter response in 
the resulting scale space

Slide: S. Lazebnik



Blob detection: Basic idea

Find maxima and minima of blob filter response in space 
and scale

* =

maxima

minima

Source: N. Snavely



Blob filter

Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D
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Slide: S. Lazebnik



Recall: Edge detection

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz

Edge

Derivative 
of Gaussian

Edge = maximum 
of derivative



Edge detection, Take 2

g
dx
d

f 2

2

∗

f

g
dx
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Edge

Second derivative 
of Gaussian  
(Laplacian)

Edge = zero crossing 
of second derivative

Source: S. Seitz



From edges to blobs

• Edge = ripple 
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response 
will achieve a maximum at the center of the blob, provided the 
scale of the Laplacian is “matched” to the scale of the blob

maximum

Slide: S. Lazebnik



Scale selection

• We want to find the characteristic scale of the blob by 
convolving it with Laplacians at several scales and looking 
for the maximum response 

• However, Laplacian response decays as scale increases:

increasing σoriginal signal 
(radius=8)

Slide: S. Lazebnik



Scale normalization

• The response of a derivative of Gaussian filter to a 
perfect step edge decreases as σ increases

πσ 2
1

Slide: S. Lazebnik



Scale normalization

• The response of a derivative of Gaussian filter to a 
perfect step edge decreases as σ increases 

• To keep response the same (scale-invariant), 
must multiply Gaussian derivative by σ 

• Laplacian is the second Gaussian derivative, so it 
must be multiplied by σ2

Slide: S. Lazebnik



Effect of scale normalization

Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum Slide: S. Lazebnik



Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D
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Slide: S. Lazebnik



Scale selection

Laplacian
Slide: S. Lazebnik

r

image

• At what scale does the Laplacian achieve a maximum response to a binary circle 
of radius r?



Scale selection

• At what scale does the Laplacian achieve a maximum response to a binary circle 
of radius r? 

• For maximum response: align the zeros of the Laplacian with the circle 

• The Laplacian in 2-D is given by (up to scale): 

• Therefore, the maximum response occurs at 

r

image

.2/r=σ

circle

Laplacian

0

Slide: S. Lazebnik

(x2 + y2 � 2�2)e�(x2+y2)/(2�2)



Characteristic scale

• We define the characteristic scale of a blob as the scale 
that produces peak of Laplacian response in the blob center

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection." 
International Journal of Computer Vision 30 (2): pp 77--116. Slide: S. Lazebnik



Scale-space blob detector

1. Convolve image with scale-normalized Laplacian 
at several scales

Slide: S. Lazebnik



Scale-space blob detector

Slide: S. Lazebnik



Scale-space blob detector

Slide: S. Lazebnik



Scale-space blob detector

1. Convolve image with scale-normalized Laplacian 
at several scales 

2. Find maxima of squared Laplacian response in 
scale-space

Slide: S. Lazebnik



Scale-space blob detector: Example

Slide: S. Lazebnik



Efficient implementation

• Laplacian of Gaussian can be approximated by 
Difference of Gaussians
• Assignment 1, question 3



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. Slide: S. Lazebnik



From feature detection to feature description

• Scaled and rotated versions of the same neighborhood will 
give rise to blobs that are related by the same transformation 

• What to do if we want to compare the appearance of these 
image regions? 

• Normalization: transform these regions into same-size 
circles 

• Problem: rotational ambiguity

Slide: S. Lazebnik



SIFT descriptors



After blob detection and scale normalization

Slide: S. Lazebnik



Eliminating rotation ambiguity

• To assign a unique orientation to circular image 
windows: 

• Create histogram of local gradient directions in the patch 
• Assign canonical orientation at peak of smoothed histogram

0 2 π

Slide: S. Lazebnik



SIFT detected features

• Detected features with characteristic scales and 
orientations:

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Slide: S. Lazebnik



From feature detection to feature description

Slide: S. Lazebnik



Properties of Feature Descriptors

• Easily compared (compact, fixed-dimensional)
• Easily computed
• Invariant

– Translation
– Rotation
– Scale
– Change in image brightness
– Change in perspective?



SIFT Descriptor

• Divide 16×16 window into 4×4 grid of cells
• Compute an orientation histogram for each cell

– 16 cells * 8 orientations = 128-dimensional descriptor

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 



Properties of SIFT

Extraordinarily robust detection and description technique 
– Handles changes in viewpoint (~ 60 degree out-of-plane rotation) 

– Handles significant changes in illumination (sometimes even day vs night) 

– Fast and efficient—can run in real time 
– Lots of code available

Source: N. Snavely



Feature descriptors

Think of a feature as some non-linear filter that maps pixels to 128D feature

Source: N. Snavely

128-dimensional 
vector x

Credit: David Fouhey

Two use cases: 
1. Instance Matching 

2. Category recognition



Use case 1: Instance matching

Credit: James Hays



Use case 1: instance matching

NASA Mars Rover images

Slide credit: S. Lazebnik



Use case 1: instance matching
(look for tiny colored squares)

NASA Mars Rover images 
with SIFT feature matches 
Figure by Noah Snavely

Slide credit: S. Lazebnik



Use case 2: Category recognition

Credit: David Fouhey

• Extract features from set of images 
(either densely or at key points)



Use case 2: category recognition

• Build codebook of “concepts”

Credit: David Fouhey



Use case 2: category recognition

Credit: David Fouhey

• Represent image as histogram of concepts



Next class: fitting, Hough transforms, RANSAC

b

a


