
COS 429: Computer Vision

Lecture 3: Convolution and filtering

Slides adapted from: Szymon Rusinkiewicz, Jia Deng

Image processing

 90 92 92 93 93 94 94 95 95 96
 94 95 96 96 97 98 98 99 99 99
 98 99 99 100 101 101 102 102 102 103
 103 103 104 104 105 107 106 106 111 121
 108 108 109 110 112 111 112 119 123 117
 113 113 110 111 113 112 122 120 117 106
 118 118 109 96 106 113 112 108 117 114
 116 132 120 111 109 106 101 106 117 118
 111 142 112 111 101 106 104 109 113 110
 114 139 109 108 103 106 107 108 108 108
 115 139 117 114 101 104 103 105 114 110
 115 129 103 114 101 97 109 116 117 118
 120 130 104 111 116 104 107 109 110 99
 125 130 103 109 108 98 104 109 119 105
 119 128 123 138 140 133 139 120 137 145
 164 138 143 163 155 133 145 125 133 155
 174 126 123 122 102 106 108 62 62 114
 169 134 133 127 92 102 94 47 52 118
 125 132 117 122 102 103 98 51 53 120
 109 99 113 116 111 98 104 82 99 116

What’s the basic structure we may want to detect?

Origin of Edges

• Edges are caused by a variety of factors:

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Credit: Steve Seitz

• Intuitively, much of semantic 
and shape information is 
available in the edges

• Ideal: artist’s line drawing  
(but artist is also using  
object-level knowledge)

• But what, mathematically, 
is an edge?

Edge Detection

Credit: D. Lowe

What is an Edge?

Edge easy to find
Source: S. Rusinkiewicz

What is an Edge?

Where is edge? Single pixel wide or multiple pixels?
Source: S. Rusinkiewicz

What is an Edge?

Noise: have to distinguish noise from actual edge
Source: S. Rusinkiewicz

Linear filtering: basics

• How can we reduce noise in a photograph?

Motivation: Image denoising

Source: S. Lazebnik

Idea #1: moving average

• Let’s replace each pixel with a weighted average
of its neighborhood

• The weights are called the filter kernel

 90 92 92 93 93 94 94 95 95 96
 94 95 96 96 97 98 98 99 99 99
 98 99 99 100 101 101 102 102 102 103
 103 103 104 104 105 107 106 106 111 121
 108 108 109 110 112 111 112 119 123 117
 113 113 110 111 113 112 122 120 117 106
 118 118 109 96 106 113 112 108 117 114
 116 132 120 111 109 106 101 106 117 118
 111 142 112 111 101 106 104 109 113 110
 114 139 109 108 103 106 107 108 108 108
 115 139 117 114 101 104 103 105 114 110
 115 129 103 114 101 97 109 116 117 118
 120 130 104 111 116 104 107 109 110 99
 125 130 103 109 108 98 104 109 119 105
 119 128 123 138 140 133 139 120 137 145
 164 138 143 163 155 133 145 125 133 155

1 1 1
1 1 1
1 1 1

1
—
9

“box filter”

• Let f be the image and g be the kernel. The output of
convolving f with g is denoted f * g.

Defining convolution

f

Source: F. Durand

• Kernel center is positioned at [i,j]
• for a 3x3 filter, k and l range between -1 and 1

Convention:  
kernel is “flipped”

(f ⇤ g)[i, j] =
X

k,l

f [i� k, j � l]g[k, l]

Annoying details: what is the size of the output?

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik

f

g

Convolution with linear filters

Original

?
111
111
111

Source: D. Lowe

Convolution with linear filters

Original

111
111
111

Blur (with a
box filter)

Source: D. Lowe

Convolution with linear filters

000
010
000

Original

?

Source: D. Lowe

Convolution with linear filters

000
010
000

Original Filtered
(no change)

Source: D. Lowe

Convolution with linear filters

Original

?
010
000
000

Source: D. Lowe

Convolution with linear filters

Original Shifted one
pixel down

Source: D. Lowe

010
000
000

Convolution with linear filters

000
001
000

Original

?

Source: D. Lowe

Convolution with linear filters

000
001
000

Original Shifted left
By 1 pixel

Source: D. Lowe

Convolution with linear filters

Original

111
111
111

000
020
000 - ?

(Note that filter sums to 1)

Source: D. Lowe

Convolution with linear filters

Original

111
111
111

000
020
000 -

Sharpening filter
- Accentuates differences
with local average

Source: D. Lowe

Sharpening

Before After

Sharpening

What does blurring take away?

original
smoothed (5x5)

–

detail

=

=

Let’s add it back:

+

Source: D. Fouhey

detail

smoothed details

original details sharpened

Proof that convolution is commutative

• Claim:

• Consider a 1-D convolution for simplicity (2-D
proof similar)

m = i� k

f ⇤ g = g ⇤ f

(f ⇤ g)[i] =
X

k

f [i� k]g[k]

=
X

m

f [m]g[i�m]

= (g ⇤ f)[i]

Key properties of convolutions

• Commutative: f * g = g * f
• Conceptually no difference between filter and signal

• Associative: f * (g * h) = (f * g) * h
• Often apply several filters one after another: (((f * g1) * g2) * g3)

• This is equivalent to applying one filter: f * (g1 * g2 * g3)

• Distributes over addition: f * (g + h) = (f * g) + (f * h)
• Scalars factor out: kf * g = f * kg = k (f * g)
• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], 

f * e = f
Source: S. Lazebnik

(f ⇤ g)[i] =
X

k

f [i� k]g[k]

Convolution vs cross-correlation

(f ⇤ g)[i] =
X

k

f [i� k]g[k] (f ⌦ g)[i] =
X

k

f [i+ k]g[k]

Convolution Cross-correlation

• Intuitively simpler

• Preserves associativity and
commutativity, unlike cross-
correlation (exercise: check)

• Python: numpy.correlate• Python: numpy.convolve

• Used somewhat interchangeably in practice

Gaussian filters

Smoothing with box filter revisited

• What’s wrong with this picture?
• What’s the solution?

Source: D. Forsyth

Smoothing with box filter revisited

• What’s wrong with this picture?
• What’s the solution?

• To eliminate edge effects, weight contribution of
neighborhood pixels according to their closeness to the
center

“fuzzy blob”
Source: S. Lazebnik

Gaussian Kernel

• Constant factor at front makes volume sum to 1 (can be
ignored when computing the filter values, as we should
renormalize weights to sum to 1 in any case)

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013

0.022 0.097 0.159 0.097 0.022

0.013 0.059 0.097 0.059 0.013

0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Source: C. Rasmussen

Gaussian Kernel

• Standard deviation σ: determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30
kernel σ = 5 with 30 x 30

kernel

Choosing kernel width

• The Gaussian function has infinite support, but discrete
filters use finite kernels

Source: K. Grauman

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Source: S. Lazebnik

Gaussian vs. box filtering

Source: S. Lazebnik

Gaussian filters properties

• Remove high-frequency components from the
image (low-pass filter)

• Convolution with self is another Gaussian
• So can smooth with small-σ kernel, repeat, and get same result as

larger-σ kernel would have
• Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev.

• Separable kernel
• Factors into product of two 1D Gaussians
• Discrete example:

Source: K. Grauman

2σ

[]121
1
2
1

121
242
121

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Separability of the Gaussian filter

Source: D. Lowe

Why is separability useful?

• Separability means that a 2D convolution can be
reduced to two 1D convolutions (one among rows
and one among columns)

• What is the complexity of filtering an n×n image
with an m×m kernel?
• O(n2 m2)

• What if the kernel is separable?
• O(n2 m)

Source: S. Lazebnik

Coming back to edge detection

Winter in Kraków photographed by Marcin Ryczek

Edge detection

image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative

Source: S. Lazebnik

For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite
differences:

To implement the above as convolution, what would be  
the associated filter?

Derivatives with convolution

ε

ε
ε

),(),(lim),(
0

yxfyxf
x
yxf −+
=

∂

∂
→

1
),(),1(),(yxfyxf

x
yxf −+
≈

∂

∂

Source: K. Grauman

Partial derivatives of an image

Which shows changes with respect to x?

-1
1

1
-1or-1 1

x
yxf

∂

∂),(
y
yxf

∂

∂),(

Source: S. Lazebnik

The gradient points in the direction of most rapid increase
in intensity 
 
 

Image gradient

The gradient of an image:

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?

Note here: in Python, the
coordinate system is different
(y-axis increases going down).
Be careful in assignment 1!
VISUALIZE

Effects of noise

Consider a single row or column of the image

Where is the edge?
Source: S. Seitz

Solution: smooth first

• To find edges, look for peaks in)(gf
dx
d

∗

f

g

f * g

)(gf
dx
d

∗

Source: S. Seitz

Derivative theorem of convolution

• Differentiation is convolution, and convolution is
associative: 

• This saves us one operation:

g
dx
d

fgf
dx
d

∗=∗)(

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz

Derivative of Gaussian filters

Which one finds horizontal/vertical edges?

x-direction y-direction

Source: S. Lazebnik

Derivative of Gaussian filters

Are these filters separable?

Source: S. Lazebnik

x-direction y-direction

Recall: separability of the Gaussian filter

Source: D. Lowe

Scale of Gaussian derivative filter

Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”

1 pixel 3 pixels 7 pixels
Source: D. Forsyth

Review: Smoothing vs. derivative filters

Smoothing filters
– Gaussian: remove “high-frequency” components;  

“low-pass” filter
– Can the values of a smoothing filter be negative?
– What should the values sum to?

• One: constant regions are not affected by the filter

 

Derivative filters
– Derivatives of Gaussian
– Can the values of a derivative filter be negative?
– What should the values sum to?

• Zero: no response in constant regions

– High absolute value at points of high contrast

Edge detection algorithms

What is an Edge?

Noise: have to distinguish noise from actual edge
Source: S. Rusinkiewicz

What is an Edge?

Is this one edge or two?
Source: S. Rusinkiewicz

What is an Edge?

Texture discontinuity

Source: S. Rusinkiewicz

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence,
8:679-714, 1986.

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. …
4. …

The Canny edge detector

The Canny edge detector

original image

The Canny edge detector

magnitude of the gradient

The Canny edge detector

thresholding

The Canny edge detector

How to turn
these thick
regions of the
gradient into
curves?

Non-maximum suppression

Check if pixel is local maximum along gradient
direction, select single max across width of the
edge
– requires checking interpolated pixels p and r

Slide credit: Steve Seitz

Non-maximum suppression

Non-maximum suppression

thinning
(non-maximum suppression)

Problem: pixels
along this edge
didn’t survive the
thresholding

Hysteresis thresholding

Use a high threshold to start edge curves, and a
low threshold to continue them.

Source: Steve Seitz

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold
Source: L. Fei-Fei

Canny edge detector

1. Compute x and y gradient images
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

– Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

– Define two thresholds: low and high
– Use the high threshold to start edge curves and the low

threshold to continue them  

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence,
8:679-714, 1986.

Slide credit: S. Lazebnik

Assignment 1: visualize, VISUALIZE, VISUALIZE

Faster Edge Detectors

• Can build simpler, faster edge detector by omitting
some steps:
– No nonmaximum suppression
– No hysteresis in thresholding
– Simpler filters (approx. to gradient of Gaussian)

• Sobel:

• Roberts:

1 0 −1
2 0 −2
1 0 −1

1 2 1
0 0 0
−1 −2 −1

1 0
0 −1

0 −1
1 0

Source: S. Rusinkiewicz

Image gradients vs. meaningful contours

• Berkeley segmentation database: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

Data-Driven Edge Detection

P. Dollar and L. Zitnick, Structured forests for fast edge detection, ICCV 2013

Training data

Input images

Ground truth

Output

Next class: feature detectors and descriptors

