
COS 429: Computer Vision

Lecture 3: Convolution and filtering

Slides adapted from: Szymon Rusinkiewicz, Jia Deng



Image processing
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What’s the basic structure we may want to detect?



Origin of Edges

• Edges are caused by a variety of factors:

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Credit: Steve Seitz



• Intuitively, much of semantic 
and shape information is 
available in the edges

• Ideal: artist’s line drawing  
(but artist is also using  
object-level knowledge)

• But what, mathematically, 
is an edge?

Edge Detection

Credit: D. Lowe



What is an Edge?

Edge easy to find
Source: S. Rusinkiewicz



What is an Edge?

Where is edge?  Single pixel wide or multiple pixels?
Source: S. Rusinkiewicz



What is an Edge?

Noise: have to distinguish noise from actual edge
Source: S. Rusinkiewicz



Linear filtering: basics



• How can we reduce noise in a photograph?

Motivation: Image denoising

Source: S. Lazebnik



Idea #1: moving average

• Let’s replace each pixel with a weighted average 
of its neighborhood 

• The weights are called the filter kernel
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• Let f be the image and g be the kernel. The output of 
convolving f with g is denoted f * g.

Defining convolution

f

Source: F. Durand

• Kernel center is positioned at [i,j] 
• for a 3x3 filter, k and l range between -1 and 1 

Convention:  
kernel is “flipped”

(f ⇤ g)[i, j] =
X

k,l

f [i� k, j � l]g[k, l]



Annoying details: what is the size of the output?
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Source: S. Lazebnik
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Convolution with linear filters
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Source: D. Lowe



Convolution with linear filters

Original
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111

Blur (with a
box filter)

Source: D. Lowe



Convolution with linear filters
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Source: D. Lowe



Convolution with linear filters
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Original Filtered 
(no change)

Source: D. Lowe



Convolution with linear filters

Original
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Source: D. Lowe



Convolution with linear filters

Original Shifted one 
pixel down

Source: D. Lowe
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Convolution with linear filters
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Source: D. Lowe



Convolution with linear filters
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Source: D. Lowe



Convolution with linear filters
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(Note that filter sums to 1)

Source: D. Lowe



Convolution with linear filters
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Sharpening filter 
- Accentuates differences 
with local average

Source: D. Lowe



Sharpening

Before After



Sharpening

What does blurring take away?

original
smoothed (5x5)

–

detail

=

=

Let’s add it back:

+ 

Source: D. Fouhey

detail

smoothed details

original details sharpened



Proof that convolution is commutative

• Claim: 

• Consider a 1-D convolution for simplicity (2-D 
proof similar) 

m = i� k

f ⇤ g = g ⇤ f

(f ⇤ g)[i] =
X

k

f [i� k]g[k]

=
X

m

f [m]g[i�m]

= (g ⇤ f)[i]



Key properties of convolutions

• Commutative: f * g = g * f 
• Conceptually no difference between filter and signal 

• Associative: f * (g * h) = (f * g) * h 
• Often apply several filters one after another: (((f * g1) * g2) * g3) 

• This is equivalent to applying one filter: f * (g1 * g2 * g3) 

• Distributes over addition: f * (g + h) = (f * g) + (f * h) 
• Scalars factor out: kf * g = f * kg = k (f * g) 
• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], 

f * e = f
Source: S. Lazebnik

(f ⇤ g)[i] =
X

k

f [i� k]g[k]



Convolution vs cross-correlation

(f ⇤ g)[i] =
X

k

f [i� k]g[k] (f ⌦ g)[i] =
X

k

f [i+ k]g[k]

Convolution Cross-correlation

• Intuitively simpler

• Preserves associativity and 
commutativity, unlike cross-
correlation (exercise: check)

• Python: numpy.correlate• Python: numpy.convolve

• Used somewhat interchangeably in practice



Gaussian filters



Smoothing with box filter revisited

• What’s wrong with this picture? 
• What’s the solution?

Source: D. Forsyth



Smoothing with box filter revisited

• What’s wrong with this picture? 
• What’s the solution? 

• To eliminate edge effects, weight contribution of 
neighborhood pixels according to their closeness to the 
center

“fuzzy blob”
Source: S. Lazebnik



Gaussian Kernel

• Constant factor at front makes volume sum to 1 (can be 
ignored when computing the filter values, as we should 
renormalize weights to sum to 1 in any case)

0.003   0.013   0.022   0.013   0.003 

0.013   0.059   0.097   0.059   0.013 

0.022   0.097   0.159   0.097   0.022 

0.013   0.059   0.097   0.059   0.013 

0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen 



Gaussian Kernel

• Standard deviation σ: determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30 
kernel σ = 5 with 30 x 30 

kernel



Choosing kernel width

• The Gaussian function has infinite support, but discrete 
filters use finite kernels

Source: K. Grauman



Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Source: S. Lazebnik



Gaussian vs. box filtering

Source: S. Lazebnik



Gaussian filters properties

• Remove high-frequency components from the 
image (low-pass filter) 

• Convolution with self is another Gaussian 
• So can smooth with small-σ kernel, repeat, and get same result as 

larger-σ kernel would have 
• Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev.  

• Separable kernel 
• Factors into product of two 1D Gaussians 
• Discrete example:

Source: K. Grauman
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Separability of the Gaussian filter

Source: D. Lowe



Why is separability useful?

• Separability means that a 2D convolution can be 
reduced to two 1D convolutions (one among rows 
and one among columns) 

• What is the complexity of filtering an n×n image 
with an m×m kernel?  
• O(n2 m2) 

• What if the kernel is separable? 
• O(n2 m)

Source: S. Lazebnik



Coming back to edge detection

Winter in Kraków photographed by Marcin Ryczek



Edge detection

image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative

Source: S. Lazebnik



For 2D function f(x,y), the partial derivative is: 

For discrete data, we can approximate using finite 
differences: 

To implement the above as convolution, what would be  
the associated filter?

Derivatives with convolution
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Source: K. Grauman



Partial derivatives of an image

Which shows changes with respect to x?
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Source: S. Lazebnik



The gradient points in the direction of most rapid increase 
in intensity 
 
 

Image gradient

The gradient of an image:

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?

Note here: in Python, the 
coordinate system is different 
(y-axis increases going down). 
Be careful in assignment 1! 
VISUALIZE



Effects of noise

Consider a single row or column of the image

Where is the edge?
Source: S. Seitz



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

∗

f

g

f * g

)( gf
dx
d

∗

Source: S. Seitz



Derivative theorem of convolution

• Differentiation is convolution, and convolution is 
associative: 

• This saves us one operation:

g
dx
d

fgf
dx
d

∗=∗ )(

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz



Derivative of Gaussian filters

Which one finds horizontal/vertical edges?

x-direction y-direction

Source: S. Lazebnik



Derivative of Gaussian filters

Are these filters separable?

Source: S. Lazebnik

x-direction y-direction



Recall: separability of the Gaussian filter

Source: D. Lowe



Scale of Gaussian derivative filter

Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales”

1 pixel 3 pixels 7 pixels
Source: D. Forsyth



Review: Smoothing vs. derivative filters

Smoothing filters
– Gaussian: remove “high-frequency” components;  

“low-pass” filter
– Can the values of a smoothing filter be negative?
– What should the values sum to?

• One: constant regions are not affected by the filter 

 

Derivative filters
– Derivatives of Gaussian
– Can the values of a derivative filter be negative?
– What should the values sum to? 

• Zero: no response in constant regions 

– High absolute value at points of high contrast



Edge detection algorithms



What is an Edge?

Noise: have to distinguish noise from actual edge
Source: S. Rusinkiewicz



What is an Edge?

Is this one edge or two?
Source: S. Rusinkiewicz



What is an Edge?

Texture discontinuity

Source: S. Rusinkiewicz



J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 
8:679-714, 1986. 

1. Filter image with derivative of Gaussian 
2. Find magnitude and orientation of gradient
3. …
4. …

The Canny edge detector



The Canny edge detector

original image



The Canny edge detector

magnitude of the gradient



The Canny edge detector

thresholding



The Canny edge detector

How to turn 
these thick 
regions of the 
gradient into 
curves?



Non-maximum suppression

Check if pixel is local maximum along gradient 
direction, select single max across width of the 
edge
– requires checking interpolated pixels p and r

Slide credit: Steve Seitz



Non-maximum suppression



Non-maximum suppression

thinning 
(non-maximum suppression)

Problem: pixels 
along this edge 
didn’t survive the 
thresholding



Hysteresis thresholding

Use a high threshold to start edge curves, and a 
low threshold to continue them.

Source: Steve Seitz



Hysteresis thresholding

original image

high threshold 
(strong edges)

low threshold 
(weak edges)

hysteresis threshold
Source: L. Fei-Fei



Canny edge detector

1. Compute x and y gradient images 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression: 

– Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis): 

– Define two thresholds: low and high
– Use the high threshold to start edge curves and the low 

threshold to continue them  

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 
8:679-714, 1986. 

Slide credit: S. Lazebnik



Assignment 1: visualize, VISUALIZE, VISUALIZE



Faster Edge Detectors

• Can build simpler, faster edge detector by omitting 
some steps:
– No nonmaximum suppression
– No hysteresis in thresholding
– Simpler filters (approx. to gradient of Gaussian)

• Sobel:

• Roberts:
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2 0 −2
1 0 −1

1 2 1
0 0 0
−1 −2 −1

1 0
0 −1

0 −1
1 0

Source: S. Rusinkiewicz



Image gradients vs. meaningful contours

• Berkeley segmentation database: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude



Data-Driven Edge Detection

P. Dollar and L. Zitnick, Structured forests for fast edge detection, ICCV 2013

Training data

Input images

Ground truth

Output



Next class: feature detectors and descriptors


