
Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 19:
Training CNNs, part 2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Gradient checking:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check
implementation with numerical gradient. This is called a
gradient check.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Reminder: Activation functions

Good default choice

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Before training: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Double check that the loss is reasonable:

returns the loss and the
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for
10 classes

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Let’s try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Recall: setting hyperparameters
Idea #1: Choose hyperparameters
that work best on the data

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose
hyperparameters on val and evaluate on test

Good!

train testvalidation

BAD: No idea how algorithm
will perform on new data

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Random Search vs. Grid Search

Important Parameter Important Parameter
U

ni
m

po
rta

nt
 P

ar
am

et
er

U
ni

m
po

rta
nt

 P
ar

am
et

er

Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017

Random Search for
Hyper-Parameter Optimization
Bergstra and Bengio, 2012

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Monitor and visualize the loss curve

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Track the ratio of weight updates / weight magnitudes:

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization

W_1

W_2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NeurIPS 2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum
SGD SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum

Gradient

Velocity

actual step

Momentum update:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nesterov Momentum

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nesterov Momentum
Annoying, usually we want
update in terms of

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Change of variables and
rearrange:

Nesterov Momentum
Annoying, usually we want
update in terms of

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nesterov Momentum
SGD

SGD+Momentum

Nesterov

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

AdaGrad

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

RMSProp

AdaGrad

RMSProp

Tieleman and Hinton, 2012

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Adam

SGD

SGD+Momentum

RMSProp

Adam

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these
learning rates is best to use?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum,
less common with Adam

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First-Order Optimization

Loss

w1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

In practice:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Beyond Training Error

Better optimization algorithms
help reduce training loss

But we really care about error on new
data - how to reduce the gap?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Model Ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Cyclic learning rate schedules can
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

How to improve single-model performance?

Regularization

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Add term to loss

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout Example forward
pass with a
3-layer network
using dropout

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random
mask

Want to “average out” the randomness at test-time

But this integral seems hard …

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.
a

x y

w1 w2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:
a

x y

w1 w2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:
During training we have:

a

x y

w1 w2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:
During training we have:

a

x y

w1 w2

At test time, multiply
by dropout probability

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout Summary

drop in forward pass

scale at test time

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

More common: “Inverted dropout”

test time is unchanged!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add some kind
of randomness

Testing: Average out randomness
(sometimes approximate)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add some kind
of randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch
Normalization

Training:
Normalize using
stats from random
minibatches

Testing: Use fixed
stats to normalize

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Load image
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Horizontal Flips

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation

Ioffe and Szegedy. “Batch normalization: accelerating deep network training by
reducing internal covariate shift”, ICML 2015

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of
data

? ?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

? ?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

Finetune a
few layers

?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Word vectors pretrained
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Summary
1. One time setup

gradient checking: do
activation functions: use ReLU
data preprocessing: subtract mean of the image
weight initialization: use Xavier init
regularization: use L2+dropout+data augmentation

2. Training dynamics
starting the learning process: lots of sanity-checks
hyperparameter selection: random sample in log space
parameter optimization: use Adam
transfer learning: use freely

3. Evaluation
model ensembles: simple 2% boost

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

CNN architectures

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580
GPU with only 3 GB of memory.
Network spread across 2 GPUs, half
the neurons (feature maps) on each
GPU.

[55x55x48] x 2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet: Improved
hyperparameters over
AlexNet

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

AlexNet VGG16 VGG19

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

AlexNet VGG16 VGG19

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.
72C2 for C channels per layer

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

VGG16

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

VGG16

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in
early CONV

Most params are
in late FC

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

VGG16

conv1-1

conv1-2

conv2-1

conv2-2

conv3-1

conv3-2

conv4-1

conv4-2

conv4-3

conv5-1

conv5-2

conv5-3

Common names

fc6

fc7

fc8

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Very deep networks using residual
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)
- Swept all classification and

detection competitions in
ILSVRC’15 and COCO’15!

Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

relu

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

X

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Tr
ai

ni
ng

 e
rr

or

Iterations

56-layer

20-layer

Te
st

 e
rr

or

Iterations

56-layer

20-layer

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Q: What’s strange about these training and test curves?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
ai

ni
ng

 e
rr

or

Iterations

56-layer

20-layer

Te
st

 e
rr

or

Iterations

56-layer

20-layer

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned
layers from the shallower model and setting
additional layers to identity mapping.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

conv

conv

relu

“Plain” layers
X

H(x)

relu

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

X

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

relu

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to
fit residual
F(x) = H(x) - x
instead of
H(x) directly

H(x) = F(x) + x

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

3x3 conv, 64
filters

3x3 conv, 128
filters, /2
spatially with
stride 2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning

Beginning
conv layer

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has

two 3x3 conv layers
- Periodically, double # of

filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning

- No FC layers at the end
(only FC 1000 to output
classes)

No FC layers
besides FC
1000 to
output
classes

Global
average
pooling layer
after last
conv layer

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

Total depths of 34, 50, 101, or
152 layers for ImageNet

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity... Inception-v4: Resnet + Inception!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

VGG: Highest
memory, most
operations

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet:
most efficient

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet:
Smaller compute, still memory
heavy, lower accuracy

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet:
Moderate efficiency depending on
model, highest accuracy

