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Lecture 19:
Training CNNs, part 2
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Gradient checking:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Reminder: Activation functions

Good default choice
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Before training: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation 
assumes linear activations)
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Double check that the loss is reasonable:

returns the loss and the 
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for 
10 classes
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Let’s try to train now…  

Tip: Make sure that 
you can overfit very 
small portion of the 
training data

Very small loss, 
train accuracy 1.00, 
nice!
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Recall: setting hyperparameters
Idea #1: Choose hyperparameters 
that work best on the data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose 
hyperparameters on val and evaluate on test

Good!

train testvalidation

BAD: No idea how algorithm 
will perform on new data
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Random Search vs. Grid Search
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U

ni
m

po
rta

nt
 P

ar
am

et
er

U
ni

m
po

rta
nt

 P
ar

am
et

er

Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne 
Longpre, copyright CS231n 2017

Random Search for 
Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Monitor and visualize the loss curve
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Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?
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Track the ratio of weight updates / weight magnitudes:

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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Optimization

W_1

W_2
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction
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Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Zero gradient, 
gradient descent 
gets stuck
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Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NeurIPS 2014
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Optimization: Problems with SGD

Our gradients come from 
minibatches so they can be noisy!
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SGD + Momentum
SGD SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99
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SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise
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SGD + Momentum

Gradient

Velocity

actual step

Momentum update:
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum
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Nesterov Momentum
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Nesterov Momentum
Annoying, usually we want 
update in terms of
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Change of variables                                   and 
rearrange: 

Nesterov Momentum
Annoying, usually we want 
update in terms of
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Nesterov Momentum
SGD

SGD+Momentum

Nesterov
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AdaGrad

Added element-wise scaling of the gradient based on the 
historical sum of squares in each dimension

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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RMSProp

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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Adam 

SGD

SGD+Momentum

RMSProp

Adam
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these 
learning rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay: 
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum, 
less common with Adam
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First-Order Optimization

Loss

w1
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting L-BFGS to large-scale, stochastic 
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
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- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)

In practice:
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Beyond Training Error

Better optimization algorithms 
help reduce training loss

But we really care about error on new 
data - how to reduce the gap?
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1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Model Ensembles
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Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Cyclic learning rate schedules can 
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a 
moving average of the parameter vector and use that 
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
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How to improve single-model performance?

Regularization
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Regularization: Add term to loss

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward 
pass with a 
3-layer network 
using dropout
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.
a

x y

w1 w2
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
a

x y

w1 w2
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2

At test time, multiply 
by dropout probability 
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

drop in forward pass

scale at test time
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More common: “Inverted dropout”

test time is unchanged!
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Batch 
Normalization

Training: 
Normalize using 
stats from random 
minibatches

Testing: Use fixed 
stats to normalize
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Load image 
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation

Ioffe and Szegedy. “Batch normalization: accelerating deep network training by 
reducing internal covariate shift”, ICML 2015
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs
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MaxPool
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MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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FC-1000
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quite a lot of 
data
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MaxPool
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very similar 
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?
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data
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet

Word vectors pretrained 
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has 
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of 
pretrained models so you don’t need to train your own
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision 

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision
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Summary
1. One time setup

gradient checking: do
activation functions: use ReLU
data preprocessing: subtract mean of the image
weight initialization: use Xavier init
regularization: use L2+dropout+data augmentation

2. Training dynamics
starting the learning process: lots of sanity-checks
hyperparameter selection: random sample in log space
parameter optimization: use Adam
transfer learning: use freely

3. Evaluation
model ensembles: simple 2% boost
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CNN architectures
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LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner
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AlexNet
[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580 
GPU with only 3 GB of memory. 
Network spread across 2 GPUs, half 
the neurons (feature maps) on each 
GPU.

[55x55x48] x 2



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet: Improved 
hyperparameters over 
AlexNet



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet
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FC 4096[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

AlexNet VGG16 VGG19



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 
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AlexNet VGG16 VGG19



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 
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AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 
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AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 
72C2 for C channels per layer



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)
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VGG16



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)
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VGG16

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in 
early CONV

Most params are
in late FC



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)
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fc6
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fc8

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper Networks



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections
 

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!
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Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

Q: What’s strange about these training and test curves?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!
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Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize

The deeper model should be able to perform at 
least as well as the shallower model.

A solution by construction is copying the learned 
layers from the shallower model and setting 
additional layers to identity mapping.



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping
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Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

relu

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual 
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x
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Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
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Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension) 

3x3 conv, 64 
filters

3x3 conv, 128 
filters, /2 
spatially with 
stride 2
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Full ResNet architecture:
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- Every residual block has 
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- Periodically, double # of 
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(/2 in each dimension)

- Additional conv layer at 
the beginning 

Beginning 
conv layer
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Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning

- No FC layers at the end 
(only FC 1000 to output 
classes)

No FC layers 
besides FC 
1000 to 
output 
classes

Global 
average 
pooling layer 
after last 
conv layer
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Total depths of 34, 50, 101, or 
152 layers for ImageNet
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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Comparing complexity...
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Comparing complexity... Inception-v4: Resnet + Inception!
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Comparing complexity...
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.

VGG: Highest 
memory, most 
operations
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet: 
most efficient
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet:
Smaller compute, still memory 
heavy, lower accuracy
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet:
Moderate efficiency depending on 
model, highest accuracy


