
Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 18:
Training CNNs

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Where we are now...

x

W

hinge
loss

R

+ L
s (scores)

Computational graphs

*

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Where we are now...

Linear score function:

2-layer Neural Network

x hW1 sW2

3072 100 10

Neural Networks

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

4

Where we are now...

Convolutional Neural Networks

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung 5

Where we are now...
Convolutional Layer

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung 6

Where we are now...
Convolutional Layer

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll
get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung 7

Where we are now...

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Learning network parameters through optimization

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung 8

Where we are now...

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph

(network), get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Next: Training Neural Networks

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
babysitting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Gradient checking:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check
implementation with numerical gradient. This is called a
gradient check.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not
zero-centered

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Consider what happens when the input to a neuron (x)
is always positive:

What can we say about the gradients on w?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Consider what happens when the input to a neuron (x)
is always positive:

What can we say about the gradients on w?
Always all positive or all negative :(

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not
zero-centered

3. exp() is a bit compute expensive

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible

than sigmoid

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible

than sigmoid

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime

compared with Leaky ReLU
adds some robustness to noise

- Computation requires exp()

[Clevert et al., 2015]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Maxout “Neuron”

- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!
- Does not have the basic form of dot product ->

nonlinearity
Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Before training: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Remember: Consider what happens when the input to a
neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Before training: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Before training: Preprocess the data
In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is the
identity matrix)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize
variance, to do PCA or
whitening

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

- Q: what happens when W=0 init is used?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with
deeper networks.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

All activations
become zero!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

*1.0 instead of *0.01

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

*1.0 instead of *0.01

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

input
layer hidden layer

output layer
CIFAR-10
images, 3072
numbers

10 output
neurons, one
per class

50 hidden
neurons

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Double check that the loss is reasonable:

returns the loss and the
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for
10 classes

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Double check that the loss is reasonable:

crank up regularization

loss went up, good. (sanity check)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

Loss barely changing

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Lets try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember
this is softmax)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

 Now let’s try learning rate 1e6.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

cost: NaN almost
always means high
learning rate...

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 … 1e-5]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Recall: setting hyperparameters
Idea #1: Choose hyperparameters
that work best on the data

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose
hyperparameters on val and evaluate on test

Good!

train testvalidation

BAD: No idea how algorithm
will perform on new data

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Cross-validation strategy
coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

For example: run coarse search for 5 epochs
note it’s best to optimize
in log space!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

For example: run coarse search for 5 epochs

nice

note it’s best to optimize
in log space!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Now run finer search...
adjust range

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Now run finer search...
adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Now run finer search...
adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

But this best
cross-validation result is
worrying. Why?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Random Search vs. Grid Search

Important Parameter Important Parameter
U

ni
m

po
rta

nt
 P

ar
am

et
er

U
ni

m
po

rta
nt

 P
ar

am
et

er

Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017

Random Search for
Hyper-Parameter Optimization
Bergstra and Bengio, 2012

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Monitor and visualize the loss curve

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Loss

time

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Track the ratio of weight updates / weight magnitudes:

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization

W_1

W_2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NeurIPS 2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum
SGD SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum

Gradient

Velocity

actual step

Momentum update:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nesterov Momentum

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nesterov Momentum
Annoying, usually we want
update in terms of

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Change of variables and
rearrange:

Nesterov Momentum
Annoying, usually we want
update in terms of

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nesterov Momentum
SGD

SGD+Momentum

Nesterov

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Adam

SGD

SGD+Momentum

RMSProp

Adam

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these
learning rates is best to use?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum,
less common with Adam

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First-Order Optimization

Loss

w1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

In practice:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Beyond Training Error

Better optimization algorithms
help reduce training loss

But we really care about error on new
data - how to reduce the gap?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Model Ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple
snapshots of a single model during training!

Cyclic learning rate schedules can
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

How to improve single-model performance?

Regularization

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Add term to loss

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout Example forward
pass with a
3-layer network
using dropout

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random
mask

Want to “average out” the randomness at test-time

But this integral seems hard …

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.
a

x y

w1 w2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:
a

x y

w1 w2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:
During training we have:

a

x y

w1 w2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time
Want to approximate
the integral

Consider a single neuron.

At test time we have:
During training we have:

a

x y

w1 w2

At test time, multiply
by dropout probability

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Dropout Summary

drop in forward pass

scale at test time

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

More common: “Inverted dropout”

test time is unchanged!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add some kind
of randomness

Testing: Average out randomness
(sometimes approximate)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add some kind
of randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch
Normalization

Training:
Normalize using
stats from random
minibatches

Testing: Use fixed
stats to normalize

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Load image
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Horizontal Flips

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation

Ioffe and Szegedy. “Batch normalization: accelerating deep network training by
reducing internal covariate shift”, ICML 2015

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data
preprocessing, weight initialization, regularization

2. Training dynamics
starting the learning process, hyperparameter
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of
data

? ?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

? ?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

Finetune a
few layers

?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Word vectors pretrained
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of
pretrained models so you don’t need to train your own
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Summary
1. One time setup

gradient checking: do
activation functions: use ReLU
data preprocessing: subtract mean of the image
weight initialization: use Xavier init
regularization: use L2+dropout+data augmentation

2. Training dynamics
starting the learning process: lots of sanity-checks
hyperparameter selection: random sample in log space
parameter optimization: use Adam
transfer learning: use freely

3. Evaluation
model ensembles: simple 2% boost

