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Lecture 18:
Training CNNs
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Where we are now...
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Where we are now...

Linear score function:

2-layer Neural Network
      

x hW1 sW2
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Neural Networks



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

4

Where we are now...

Convolutional Neural Networks
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Where we are now...
Convolutional Layer
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Where we are now...
Convolutional Layer

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll 
get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Where we are now...

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Learning network parameters through optimization

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Where we are now...

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph 

(network), get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient
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Next: Training Neural Networks 
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
babysitting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Gradient checking:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Activation Functions
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered
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Consider what happens when the input to a neuron (x) 
is always positive:

What can we say about the gradients on w?
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Consider what happens when the input to a neuron (x) 
is always positive:

What can we say about the gradients on w?
Always all positive or all negative :(
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered

3. exp() is a bit compute expensive
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible 

than sigmoid

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible 

than sigmoid

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
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ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime 

compared with Leaky ReLU 
adds some robustness to noise 

- Computation requires exp()

[Clevert et al., 2015]
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Maxout “Neuron”

- Generalizes ReLU and Leaky ReLU 
- Linear Regime! Does not saturate! Does not die!
- Does not have the basic form of dot product -> 

nonlinearity
Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]
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TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Before training: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when the input to a 
neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Before training: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Before training: Preprocess the data
In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize 
variance, to do PCA or 
whitening



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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- Q: what happens when W=0 init is used?
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.
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All activations 
become zero!
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All activations 
become zero!

Q: think about the 
backward pass. 
What do the 
gradients look like?
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*1.0 instead of *0.01
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Almost all neurons 
completely 
saturated, either -1 
and 1. Gradients 
will be all zero.

*1.0 instead of *0.01
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“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation 
assumes linear activations)
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Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by 
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and 
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet 
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)
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Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

input 
layer hidden layer

output layer
CIFAR-10 
images, 3072 
numbers

10 output 
neurons, one 
per class

50 hidden 
neurons



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Double check that the loss is reasonable:

returns the loss and the 
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for 
10 classes
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Double check that the loss is reasonable:

crank up regularization

loss went up, good. (sanity check)
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Lets try to train now…  

Tip: Make sure that 
you can overfit very 
small portion of the 
training data The above code:

- take the first 20 examples from 
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’
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Lets try to train now…  

Tip: Make sure that 
you can overfit very 
small portion of the 
training data

Very small loss, 
train accuracy 1.00, 
nice!
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Let’s try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.
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Let’s try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

Loss barely changing 
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Let’s try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is 
probably too low
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Let’s try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is 
probably too low

Notice train/val accuracy goes to 20% 
though, what’s up with that? 
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Lets try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is 
probably too low

Notice train/val accuracy goes to 20% 
though, what’s up with that? (remember 
this is softmax)
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Let’s try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low

       Now let’s try learning rate 1e6.
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cost: NaN almost 
always means high 
learning rate...

Let’s try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high
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Let’s try to train now…  

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we 
should be cross-validating is 
somewhere [1e-3 … 1e-5]
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Recall: setting hyperparameters
Idea #1: Choose hyperparameters 
that work best on the data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose 
hyperparameters on val and evaluate on test

Good!

train testvalidation

BAD: No idea how algorithm 
will perform on new data
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Cross-validation strategy
coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver: 
If the cost is ever > 3 * original cost, break out early
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For example: run coarse search  for 5 epochs
note it’s best to optimize 
in log space!
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For example: run coarse search  for 5 epochs

nice

note it’s best to optimize 
in log space!
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Now run finer search...
adjust range
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Now run finer search...
adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.
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Now run finer search...
adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.

But this best 
cross-validation result is 
worrying. Why?
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Random Search vs. Grid Search
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Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne 
Longpre, copyright CS231n 2017

Random Search for 
Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Monitor and visualize the loss curve
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Loss

time
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Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?
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Track the ratio of weight updates / weight magnitudes:

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Optimization

W_1

W_2
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction
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Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?
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Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Zero gradient, 
gradient descent 
gets stuck



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NeurIPS 2014
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Optimization: Problems with SGD

Our gradients come from 
minibatches so they can be noisy!
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SGD + Momentum
SGD SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

SGD + Momentum

Gradient

Velocity

actual step

Momentum update:
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum
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Nesterov Momentum
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Nesterov Momentum
Annoying, usually we want 
update in terms of
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Change of variables                                   and 
rearrange: 

Nesterov Momentum
Annoying, usually we want 
update in terms of
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Nesterov Momentum
SGD

SGD+Momentum

Nesterov
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Adam 

SGD

SGD+Momentum

RMSProp

Adam
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these 
learning rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay: 
e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Loss

Epoch

Learning rate decay!

More critical with SGD+Momentum, 
less common with Adam
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First-Order Optimization

Loss

w1
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting L-BFGS to large-scale, stochastic 
setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
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- Adam is a good default choice in most cases

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)

In practice:
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Beyond Training Error

Better optimization algorithms 
help reduce training loss

But we really care about error on new 
data - how to reduce the gap?
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance

Model Ensembles



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Cyclic learning rate schedules can 
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a 
moving average of the parameter vector and use that 
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
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How to improve single-model performance?

Regularization
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Regularization: Add term to loss

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward 
pass with a 
3-layer network 
using dropout
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.
a

x y

w1 w2
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
a

x y

w1 w2
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2

At test time, multiply 
by dropout probability 
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

drop in forward pass

scale at test time
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More common: “Inverted dropout”

test time is unchanged!
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Batch 
Normalization

Training: 
Normalize using 
stats from random 
minibatches

Testing: Use fixed 
stats to normalize
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Load image 
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

3. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation
Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation

Ioffe and Szegedy. “Batch normalization: accelerating deep network training by 
reducing internal covariate shift”, ICML 2015
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Overview
1. One time setup

gradient checking, activation functions, data 
preprocessing, weight initialization, regularization 

2. Training dynamics
starting the learning process, hyperparameter 
selection, parameter optimization, transfer learning

3. Evaluation
model ensembles
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool
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Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific
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very different 
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very little data Use Linear 
Classifier on
top layer

?

quite a lot of 
data

? ?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet
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Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet

Word vectors pretrained 
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has 
similar data, train a big ConvNet there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of 
pretrained models so you don’t need to train your own
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision 

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision
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Summary
1. One time setup

gradient checking: do
activation functions: use ReLU
data preprocessing: subtract mean of the image
weight initialization: use Xavier init
regularization: use L2+dropout+data augmentation

2. Training dynamics
starting the learning process: lots of sanity-checks
hyperparameter selection: random sample in log space
parameter optimization: use Adam
transfer learning: use freely

3. Evaluation
model ensembles: simple 2% boost


