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Lecture 17:
Convolutional Neural Networks (CNNs)
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Linear score function:

2-layer Neural Network
      

Last time: Neural Networks
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Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1
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Frank Rosenblatt, ~1957: Perceptron

The Mark I Perceptron machine was the first 
implementation of the perceptron algorithm. 

The machine was connected to a camera that used 
20×20 cadmium sulfide photocells to produce a 400-pixel 
image. 

recognized 
letters of the alphabet

update rule:

A bit of history...

This image by Rocky Acosta is licensed under CC-BY 3.0

https://en.wikipedia.org/wiki/File:IBM_Automatic_Sequence_Controlled_Calculator_Sequence_Indicators.jpg
https://creativecommons.org/licenses/by/3.0/us/
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Widrow and Hoff, ~1960: Adaline/Madaline

A bit of history...

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical 
Report with permission from Stanford University Special Collections.

http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www.oac.cdlib.org/findaid/ark:/13030/c8rv0qw9/entire_text/
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Rumelhart et al., 1986: First time back-propagation became popular

recognizable math

A bit of history...

Illustration of Rumelhart et al., 1986 by Lane McIntosh, 
copyright CS231n 2017
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[Hinton and Salakhutdinov 2006]

Reinvigorated research in 
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006  by Lane 
McIntosh, copyright CS231n 2017
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First strong results
Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks 
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright 
CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Imagenet classification with deep convolutional 
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012
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A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)
simple cells: modifiable parameters
complex cells: perform pooling
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A bit of history:
Gradient-based learning applied to 
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

A bit of history:
ImageNet Classification with Deep 
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”
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1998

2010
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1998

2010

# transistors 106

# transistors 109

GPUs
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1998

2010

# transistors 106

# transistors 109

GPUs

# pixels used 
in training 1014

# pixels used 
in training 107
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2014

2012

2015
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So, what are CNNs?
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10
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32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24
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Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16 

architecture from [Simonyan and Zisserman 2014].
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Preview
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example 5x5 filters
(32 total)

We call the layer convolutional 
because it is related to convolution 
of two signals:

elementwise multiplication and sum of 
a filter and the signal (image)

one filter => 
one activation map

Figure copyright Andrej Karpathy.
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preview:
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A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\
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In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0
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Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760
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Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between 
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)
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The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between 
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local 
connectivity... 
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The brain/neuron view of CONV Layer

32

32

3

An activation map is a 28x28 sheet of neuron 
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28
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The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of 
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different 
neurons all looking at the same 
region in the input volume5
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3072
1

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Each neuron 
looks at the full 
input volume 
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three more layers to go: RELU/POOL/FC
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Reminder: need non-linearity
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Reminder: Activation functions



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Reminder: Activation functions

Good default choice
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING
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Common settings:

F = 2, S = 2
F = 3, S = 2
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
      where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet 
challenge this paradigm


