
Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 17:
Convolutional Neural Networks (CNNs)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Linear score function:

2-layer Neural Network

Last time: Neural Networks

x hW1 sW2

3072 100 10

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Frank Rosenblatt, ~1957: Perceptron

The Mark I Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20×20 cadmium sulfide photocells to produce a 400-pixel
image.

recognized
letters of the alphabet

update rule:

A bit of history...

This image by Rocky Acosta is licensed under CC-BY 3.0

https://en.wikipedia.org/wiki/File:IBM_Automatic_Sequence_Controlled_Calculator_Sequence_Indicators.jpg
https://creativecommons.org/licenses/by/3.0/us/

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Widrow and Hoff, ~1960: Adaline/Madaline

A bit of history...

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical
Report with permission from Stanford University Special Collections.

http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www.oac.cdlib.org/findaid/ark:/13030/c8rv0qw9/entire_text/

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Rumelhart et al., 1986: First time back-propagation became popular

recognizable math

A bit of history...

Illustration of Rumelhart et al., 1986 by Lane McIntosh,
copyright CS231n 2017

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

[Hinton and Salakhutdinov 2006]

Reinvigorated research in
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006 by Lane
McIntosh, copyright CS231n 2017

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First strong results
Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright
CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Imagenet classification with deep convolutional
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)
simple cells: modifiable parameters
complex cells: perform pooling

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A bit of history:
Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history:
ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

1998

2010

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

1998

2010

transistors 106

transistors 109

GPUs

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

1998

2010

transistors 106

transistors 109

GPUs

pixels used
in training 1014

pixels used
in training 107

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

2014

2012

2015

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

So, what are CNNs?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Preview

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

elementwise multiplication and sum of
a filter and the signal (image)

one filter =>
one activation map

Figure copyright Andrej Karpathy.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

preview:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local
connectivity...

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

32

32

3

An activation map is a 28x28 sheet of neuron
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume5

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

3072
1

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Each neuron
looks at the full
input volume

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

three more layers to go: RELU/POOL/FC

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Reminder: need non-linearity

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Reminder: Activation functions

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Reminder: Activation functions

Good default choice

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Common settings:

F = 2, S = 2
F = 3, S = 2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet
challenge this paradigm

