Lecture 17:

Convolutional Neural Networks (CNNs)

COS 429: Computer Vision

? PRINCETON
UNIVERSITY

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Last time: Neural Networks
Linear score function: f = Wz
2-layer Neural Network f = Wamax(0, Wiz)

3072

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Next: Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsamplmg

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

SEOUENCE INDICATORS

The machine was connected to a camera that used
20x20 cadmium sulfide photocells to produce a 400-pixel

image.
1 fw-24+b6>0
. flz) = :
recognized 0 otherwise
letters of the alphabet
update rule: STEP mmw

wilt + 1) = wi(t) + od; — y5(8) s

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://en.wikipedia.org/wiki/File:IBM_Automatic_Sequence_Controlled_Calculator_Sequence_Indicators.jpg
https://creativecommons.org/licenses/by/3.0/us/

A bit of history...

Aaption
(control
® £
Reference
. an-off-on ye;ie:ﬂ)
+1y-1 | h—Vd
: | — AA)
- ((p Nl
vy (;;E;:; L
Quantizer . E
InputJ M - “
input —>——oOutput =
..' (;
7 of these
e
\

Ols are adjustable

Loo o) Reference _ Desired
swi B cutput

AMA

W\

on-off-on

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical

Wi d rOW a n d H Off, ~ 1 960 : Ad al i n e/M ad al i n e Report with permission from Stanford University Special Collections.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www.oac.cdlib.org/findaid/ark:/13030/c8rv0qw9/entire_text/

A bit of history...

input output
pattern pattern p
error
E,

recognizable math

Rumelhart et al., 1986: First time back-propagation became popular

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

>
| -
O
e
®
e
Y
o
-l—“
O
<C

[Hinton and Salakhutdinov 2006]

r

i = e e

=

2000 units

SouUIyoB|\ UueWwZ)j0og PaloLIsey

Reinvigorated research in

Deep Learning

Fine-tuning with backprop

RBM-initialized autoencoder

Pretraining

lllustration of Hinton and Salakhutdinov 2006 by Lane

Mclintosh, copyright CS231n 2017

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First strong results o)

HMM
pre-training
Acoustic Modeling using Deep Belief Networks 4
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 B l
Context-Dependent Pre-trained Deep Neural Networks § §
for Large Vocabulary Speech Recognition 23 | |
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012 a | |
rt t 1

. . . . Spectrogram

Imagenet classification with deep convolutional

neural networks
Alex Krizhevsky, llya Su

lllustration of Dahl et al. 2012 by Lane Mclintosh, copyright
CS231n 2017

tskever, Geoffrey E Hinton, 2012

dense

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC...)
simple cells: modifiable parameters
complex cells: perform pooling

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

\

5\

L L

N

\

1/

A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input
Con% Fully Connected
Subsampl
LeNet-5

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

b
wY
|

pooling

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

1998

Image Maps
Input

%
Convolutions Fully Connected

Subsampling

—
128 2048 \/ 20as \dense
13
13 dense dense|
1600
1286 Max L)
Max 128 Max pooling 2 2048
peoling pooling

Credit: Fei-Fei Li

1998 # transistors 10°

Image Maps

FuIIy Connected

Input

Convolutlons
Subsampllng

transistors 10°
GPUs

g \dense

Credit: Fei-Fei Li

1998 # transistors 106

Image Maps
Input

'lg X\\uw pentium- # pixels used
XDXDA in training 10’

Convolutions FU”Y Connected
Subsampllng

2010 # transistors 10°

N
XL # pixels used
NME in training 10™

IMJLGENE|

Credit: Fei-Fei Li

So, what are CNNs?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
W x
1 10 x 3072 11O
3072 * 10
weights

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wax
1 10 x 3072 119
3072 X /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Convolution Layer

32x32x3 image

ox5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ConVOI Ut|0n I—ayer Filters always extend the full
S depth of the input volume

32x32x3 image /
ox5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

™~ 1 number:

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
=
@>@ a

convolve (slide) over all

spatial locations
32 28

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Convolution Layer

—

==

32

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

o[

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

28

28

We stack these up to get a “new image” of size 28x28x6!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g.6
ox5x3
filters

28

32

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g.6
ox5x3
filters

28

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

28

CONYV,

RelLU
e.g. 10
OX5x6
filters

10

24

CONYV,
RelLU

24

Preview

[Zeiler and Fergus 2013]

Low-level
features

Mid-level
features

Visualization of VGG-16 by Lane Mcintosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

VGG-16 Conv1_1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

VGG-16 Conv3_

High-level
features

Linearly

—| separable —

classifier

Preview Low-level | | Mig-level | | High-level | | Hneary
> > » separable

features features features e
classifier

. -

VGG-16 Convl_1 VGG-16 Conva_.

Retinal ganglion cell LGN and V1
receptive fields simple cells Complex cells:
Response to light
orientation and movement

Hypercomplex cells:
response to movement
with an end point

N

No response Response
(end point)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

ne filter => _
ne activation map example 5x5 filters
(32 total)

“ /_ﬁ_l NEESEONIIIAFREENESESARTIERERAERG
0
0

7

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

fleylsgleyl = Y, D fln.nl-glx—n,y—n,]

ny=—c0 py=—oo T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

preview:

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV [CONV CONV [CONV FC

: : T |

TR LW

AR

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

activation map

__— 32x32x3 image
5x5x3 filter

V
i ”

convolve (slide) over all
spatial locations

32 28

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

14

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Output size:
= (N - F) / stride + 1
N eg.N=7,F=3:
F stride 1=>(7-3)1+1=5

(7 -
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

n practice: Common to zero pad the border

il Il Al S A e.g. input 7x7

0 3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o | O | O

(recall:)
(N - F)/ stride + 1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

n practice: Common to zero pad the border

il Il Al S A e.g. input 7x7

0 3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o | O | O

7x7 output!

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

0|0

0

0

0

0

o | O | O

n practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
oXx5x3 oX5x6
32 filters 28 filters 24
3 6 10

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

N

N

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

<

A

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

N

N

Examples time: / /

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> 7610 =760

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Summary. To summarize, the Conv Layer:

 Accepts a volume of size W; x Hy; x D,
» Requires four hyperparameters:
Number of filters K,
their spatial extent F',
the stride .S,
the amount of zero padding P.
» Produces a volume of size Wy x Hy x Dy where:
o W2 =(W1 —F+2P)/S+1
o Hy =(Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)
o D2 = I
« With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F'- F' - Dy) - K weights
and K biases.
« In the output volume, the d-th depth slice (of size Wy x H,) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

o

o]

o

o]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Common settings:

Summary. To summarize, the Conv Layer:
K = (powers of 2, e.g. 32, 64, 128, 512)

» Accepts a volume of size W; x H; x D, - F=3,8=1,P=
Requires four hyperparameters:
o Number of filters K, F=95S5=1P]
o their spatial extent F', - F=5,8=2,P=7 (Whatever fItS)
o the stride S, - F=1,S=1,P
o the amount of zero padding P.
Produces a volume of size W5 x Hy X D5 where:

o W2 =(W1 —F+2P)/S+1

o Hy =(Hy — F +2P)/S + 1 (i.e. width and height are computed equally by symmetry)

o D2 = I
With parameter sharing, it introduces F' - F' - D weights per filter, for a total of (F'- F' - Dy) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

(btw, 1x1 convolution layers make perfect sense)

1x1 CONV
o6 with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

_— 32x32x3 image

ox5x3 filter
2
\ 1 number:

32 the result of taking a dot product between
3 the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

—

V
——0

32

Credit: Fei-Fei Li & Justin Johnson &

32x32x3 image
5x5x3 filter

\

1 number:

Z(wo

@ synapse
axon from a neuron
woeT

cell body

Zwiazi +b

output axon

activation
function

It's just a neuron with local
connectivity...

the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

Serena Yeung

The brain/neuron view of CONV Layer

32 /

§>@ 28 An activation map is a 28x28 sheet of neuron
_— | outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

32 AS “5x5 filter” -> “5x5 receptive field for each neuron”

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

The brain/neuron view of CONV Layer

32

7 28 E.g. with 5 filters,

Il O O O O () CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
32 28 neurons all looking at the same
region in the input volume

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Reminder: Fully Connected Layer
Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full

input volume
input activation
Wz
1 10 x 3072 s
3072 * 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

three more layers to go: RELU/POOL/FC

RELU RELU RELU RELU RELU RELU

CONV | CONV CONV [CONV CONV [CONV FC
R Vv by l
— 9 ﬂ ; p
=
s
= =] e
=k]

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Reminder: need non-linearity

output layer
input layer
hidden layer

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Reminder: Activation functions

S|gmo|d 1 Leaky RelLU)
1 max(0.1z, x)
0'(%) 14e 7
g o T r——=1 10

tanh Maxout
tanh(x) max(wi T + by, wi x + by)
ReLU ELU
max (0, x) {x) 720
) : ae® —1) <0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Reminder: Activation functions

S|gmo|d 1 Leaky RelLU)
1 max(0.1z, x)
O-(:U) T 14e—*

-10 7?
tanh Maxout
tanh(z) ﬂ : max(wi x + by, wl x + by)
RelLU ELU
max(0,) { v 20

— ae®—1) =<0
Good default choice

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

.—’

|

112x112x64

b

224

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

— 112
downsampling

112

MAX POOLING

Single depth slice

X 11112 | 4
5|6 |7 |8
312 (110
112]3| 4

y

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

max pool with 2x2 filters
and stride 2

-

» Accepts a volume of size W x H; x Dy
» Requires three hyperparameters:
o their spatial extent F,
o the stride S,
 Produces a volume of size Wy x Hy x D, where:
o Wy =(W; —F)/S+1
o Hy=(Hy —F)/S+1
o Dy = D
* Introduces zero parameters since it computes a fixed function of the input
» Note that it is not common to use zero-padding for Pooling layers

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Common settings:

 Accepts a volume of size Wy x H; x Dy F
* Requires three hyperparameters: F
o their spatial extent F,
o the stride S,
 Produces a volume of size Wy x Hy x D, where:
o Wy =(W; —F)/S+1
o Hy=(Hy —F)/S+1
o Dy = D
* Introduces zero parameters since it computes a fixed function of the input
» Note that it is not common to use zero-padding for Pooling layers

I
w N
nww

[

2
2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU RELU RELU RELU RELU
CONV | CONV CONVlCONVl CONVlCONVl

-+

y
E
e
-
e
s,
|
-

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like
[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

challenge this paradigm

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

