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Lecture 15:
Introduction to Deep Learning



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image Classification: A core task in Computer Vision

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

This image by Nikita is 
licensed under CC-BY 2.0

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Challenges: Viewpoint variation

All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Challenges: Illumination

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Challenges: Deformation

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by Tom Thai is 
licensed under CC-BY 2.0 

This image by sare bear is 
licensed under CC-BY 2.0

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Challenges: Occlusion

This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Challenges: Intraclass variation

This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

An image classifier

Unlike e.g. sorting a list of numbers,
 
no obvious way to hard-code the algorithm for 
recognizing a cat, or other classes.



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Attempts have been made

John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data-Driven Approach
1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First classifier: Nearest Neighbor

Memorize all 
data and labels

Predict the label 
of the most similar 
training image



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example Dataset: CIFAR10

 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example Dataset: CIFAR10

 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images Test images and nearest neighbors



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Distance Metric to compare images

L1 distance:

add



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier

Memorize training data



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier

For each test image:
  Find closest train image
  Predict label of nearest image



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?

A: Train O(1),
     predict O(N)



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?

A: Train O(1),
     predict O(N)

This is bad: we want 
classifiers that are fast 
at prediction; slow for 
training is ok



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

What does this look like?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

K-Nearest Neighbors
Instead of copying label from nearest neighbor, 
take majority vote from K closest points

K = 1 K = 3 K = 5



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about 
the algorithm that we set rather than learn



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about 
the algorithm that we set rather than learn

Very problem-dependent. 
Must try them all out and see what works best.



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters
Idea #1: Choose hyperparameters 
that work best on the data

Your Dataset



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters
Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Your Dataset



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters
Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

Your Dataset

train test



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters
Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters
Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose 
hyperparameters on val and evaluate on test

Better!

train testvalidation



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters
Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, 
try each fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but not used too frequently in deep learning



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

What does this look like?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

What does this look like?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

K-Nearest Neighbors: Summary
In Image classification we start with a training set of images and labels, and 
must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on nearest training 
examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set; only run on the test set once at 
the very end!

35



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
36

Linear Classification



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Recall CIFAR10

50,000 training images
   each image is 32x32x3

10,000 test images.



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Parametric Approach

Image

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

parameters
or weights

W



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Parametric Approach: Linear Classifier

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Parametric Approach: Linear Classifier

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

3072x1



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Parametric Approach: Linear Classifier

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
3072x1

10x1 10x3072
10x1



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interpreting a Linear Classifier

What is this thing doing?

f(x,W) = Wx + b



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interpreting a Linear Classifier

Example trained weights 
of a linear classifier 
trained on CIFAR-10:

f(x,W) = Wx + b



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interpreting a Linear Classifier

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Hard cases for a linear classifier
Class 1: 
number of pixels > 0 odd

Class 2: 
number of pixels > 0 even

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

So far: Defined a (linear) score function f(x,W) = Wx + b

 -3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Cat image by Nikita is licensed under CC-BY 2.0
Car image is CC0 1.0 public domain
Frog image is in the public domain

Example class 
scores for 3 
images for 
some W:

How can we tell 
whether this W 
is good or bad?

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how 
good our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label

Loss over the dataset is a 
sum of loss over examples:



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Previous losses:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

Least-squares regression has the 
form

The SVM loss has the form:



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7

where



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7

where

Softmax function



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:cat

frog

car

3.2
5.1
-1.7

where



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:cat

frog

car

3.2
5.1
-1.7 in summary:

where



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities

normalize
0.13
0.87
0.00

probabilities



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities

normalize
0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89

Q: What is the min/max 
possible loss L_i?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89

Q2: Usually at 
initialization W is small 
so all s ≈ 0.
What is the loss?



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

least-squares regression loss

(2-0.28)2 = 2.96



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data loss: Model predictions 
should match training data



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data loss: Model predictions 
should match training data



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data loss: Model predictions 
should match training data



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data loss: Model predictions 
should match training data



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

L2 Regularization (Weight Decay)



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

Full loss



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Walking man image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Strategy: Follow the slope



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

This is silly. The loss is just a function of W:

want



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

This is silly. The loss is just a function of W:

want

Calculus!

Hammer image  is in the public domain

Use calculus to compute an 
analytic gradient

https://pixabay.com/en/hammer-tool-metal-hit-break-33617/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dW = ...
(some function 
data and W)



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

In summary:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Gradient Descent



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

original W

negative gradient direction
W_1

W_2



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Stochastic Gradient Descent (SGD)
Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interactive Web Demo

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/ 

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/


Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image features



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image Features



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example: Color Histogram

+1



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions
Within each region quantize edge 
direction into 9 bins

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example: Bag of Words

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image Features: Motivation

x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red 
and blue points with 
linear classifier

After applying feature 
transform, points can 
be separated by linear 
classifier



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Feature Extraction

Image features vs ConvNets

f
10 numbers giving 
scores for classes

training

training

10 numbers giving 
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification 
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. 
Reproduced with permission.



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Neural networks

(Before) Linear score function:



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

10
0

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

10
1

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks

x hW1 sW2

3072 100 10



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

10
2

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks

x hW1 sW2

3072 100 10



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

10
3

Neural networks

(Before) Linear score function:

(Now) 2-layer Neural Network
  or 3-layer Neural Network

      



Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Next time:

Backpropagation


