Lecture 15: Introduction to Deep Learning

COS 429: Computer Vision

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

Challenges: Viewpoint variation

This image by Nikita is licensed under CC-BY 2.0

Challenges: Illumination

This image is CC0 1.0 public domain

Challenges: Deformation

licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under <u>CC-BY 2.0</u>

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Intraclass variation

This image is CC0 1.0 public domain

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

airplaneImage: Image: Imag

Example training set

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane	2	<u> </u>	×		-	J.	-	No.	-
automobile								P.	-
bird	1		1	-	4	r	2	3.	
cat	i					-	in.	-	-
deer	1			m	-	ey.	The second se	1	
dog	7		2	Ø	- 💮	E.		A	590
frog			1	Ser.	1		7	No.	17
horse		en vin	1 PE	家	A	$\mathcal{A}_{\mathcal{A}}$	2	j.	(m)
ship	de -	一道	3	-	-12		1100	-	
truck				200	Harris	and an	1	P.	1

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane	🎮 🎇) 	-		
automobile				i 🔁 💽	
bird		1	** *	12	1.2
cat	1				
deer	1 30		M. F		
dog	7			1. 2	AT ST
frog	1	30		S 🐳	30
horse		R. C			
ship	-	1	-		
truck			2	the state	

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Test images and nearest neighbors

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$


```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num_test):
        # find the nearest training image to the i'th test image
        # using the L1 distance (sum of absolute value differences)
        distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
```

min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image

using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Memorize training data

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y): """ X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data self.Xtr = X

```
self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

loop over all test rows
for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

For each test image: Find closest train image Predict label of nearest image import numpy as np

```
class NearestNeighbor:
    def __init__(self):
        pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num_test):
        # find the nearest training image to the i'th test image
        # using the L1 distance (sum of absolute value differences)
        distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
        min_index = np.argmin(distances) # get the index with smallest distance
        Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

import numpy as np

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num_test):
        # find the nearest training image to the i'th test image
        # using the L1 distance (sum of absolute value differences)
```

distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

import numpy as np

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

What does this look like?

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K = 1

K = 3

K = 5

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Very problem-dependent. Must try them all out and see what works best.

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset					
Idea #2: Split data into train and test, chooseBAD: Nohyperparameters that work best on test datawill performed	o idea how algo orm on new dat	orithn a			
train	test				

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset						
Idea #2: Split data into train and test, chooseBAD: No idea howhyperparameters that work best on test datawill perform on new						
train	test					
Idea #3: Split data into train, val, and test; choose Better! hyperparameters on val and evaluate on test						
train	test					

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

What does this look like?

What does this look like?

K-Nearest Neighbors: Summary

In **Image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples

Distance metric and K are **hyperparameters**

Choose hyperparameters using the **validation set**; only run on the test set once at the very end!

Linear Classification
Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Parametric Approach

Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

Interpreting a Linear Classifier

f(x,W) = Wx + b

What is this thing doing?

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

Interpreting a Linear Classifier

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0

Hard cases for a linear classifier

Class 1: number of pixels > 0 odd

Class 2: number of pixels > 0 even Class 1: 1 <= L2 norm <= 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else

This image is CC0 1.0 public domain

So far: Defined a (linear) <u>score function</u> f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

Vikita is licensed under CC-BY 2.0 is CC0 1.0 public domain Frog image is in the public domain

34

79

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

cat

car

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Previous losses:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Least-squares regression has the form

$$L_i = \sum_i ||s_i - y_i||^2$$

The SVM loss has the form:

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

cat

car

cat**3.2**car5.1frog-1.7

scores = unnormalized log probabilities of the classes.

$$s=f(x_i;W)$$

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s=f(x_i;W)$$

cat**3.2**car5.1frog-1.7

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s=f(x_i;W)$$

cat**3.2**car5.1frog-1.7

Softmax function

3.2

5.1

-1.7

cat

car

frog

scores = unnormalized log probabilities of the classes.

where

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

$$s=f(x_i;W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

3.2

5.1

cat

car

scores = unnormalized log probabilities of the classes.

where

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

$$s=f(x_i;W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

frog -1.7 in summary: $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2** car 5.1 frog -1.7

unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

unnormalized log probabilities

unnormalized log probabilities

probabilities

L2 Regularization (Weight Decay)

$$x = [1, 1, 1, 1]$$
 $R(W) = \sum_k \sum_l W_{k,l}^2$

$$w_1 = [1, 0, 0, 0] \ w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

Recap

- We have some dataset of (x,y)
- We have a **score function**:
- We have a loss function:

$$s = f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

Optimization

This image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

Strategy: Follow the slope

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

current W:	
[0.34,	
-1.11,	
0.78,	
0.12,	
0.55,	
2.81,	
-3.1,	
-1.5,	
0.33,]	
loss 1.25347	

gradient dW:

current W:	W + h (first dim):	gradient dW:
[0.34, -1 11	[0.34 + 0.0001 , _1 11	[?,
0.78,	0.78,	?,
0.12, 0.55,	0.12, 0.55,	?, ?.
2.81,	2.81,	?,
-5.1, -1.5,	-3.1, -1.5,	?, ?,
0.33,…] loss 1.25347	0.33,…] loss 1.25322	?,]

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	$[-2.5, ?, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001 = -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$?, ?,]

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

gradient dW: [-2.5, ?, ?, ?, ?, ?, ?, ?, ?,...]

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

current W:	W + h (third dim):
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

gradient dW:

current W:	W + h (third di
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

dim):

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \ s &= f(x;W) = Wx \end{aligned}$$

want $\nabla_W L$

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \ s &= f(x;W) = Wx \end{aligned}$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

current W:

gradient dW:

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Gradient Descent

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Interactive Web Demo

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Image features

Image Features

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Example: Bag of Words

Step 1: Build codebook

Image Features: Motivation

 $f(x, y) = (r(x, y), \theta(x, y))$

Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

r

θ

Image features vs ConvNets

Neural networks

(**Before**) Linear score function: f = Wx

(**Before**) Linear score function: (**Now**) 2-layer Neural Network

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$

Neural networks

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$

Neural networks

(Before) Linear score function:

(**Now**) 2-layer Neural Network or 3-layer Neural Network

$$f = Wx$$

$$f=W_2\max(0,W_1x)$$

$$f=W_3\max(0,W_2\max(0,W_1x))$$

Next time:

Backpropagation