Lecture 13:

Introduction to Deep Learning

COS 429: Computer Vision

? PRINCETON
UNIVERSITY

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat

This image by Nikita is
licensed under CC-BY 2.0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

The Problem: Semantic Gap

This image by Nikita is
licensed under CC-BY 2.0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

[[105
[91
[76
[99
[106
[114
[133
[128
[125
[127
[115
[89

[62

[87
[118
[164
[157
[130
[128
[123
(122
[122

99
103

1e0

96
99
95
95
101
64
52
62
65
111
113
113
117
124
120
76
41
76
112
121
104
122
145
93

139 102

87]
85]
85]
94]
95]
91]
82]
101]
98]
84]
78]
80]
87]
119]
118]
112]
107]
109]
94]
86]
79]
99]
107]
84]]

What the computer sees

e.g. 800 x 600 x 3
(3 channels RGB)

An image is just a big grid of
numbers between [0, 255]:

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint variation

i [[105 112 108 111 104 99 186 99 96 103 112 119 184 97 93 87]
[91 98 102 106 184 79 98 163 99 105 123 136 110 105 94 85
[76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85
[99 81 81 03 120 131 127 160 95 98 102 99 96 93 101 94
[106 91 61 64 69 91 88 B85 101 107 109 98 75 B84 96 95

(133 137 147 103 65 81 8@ 65 52 54 74 B84 102 93 85 82
(128 137 144 140 189 95 86 70 62 65 63 63 60 73 86 101

(127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84]
(115 114 109 123 150 148 131 118 113 109 160 92 74 65 72 78]
[89 93 90 97 188 147 131 118 113 114 113 109 106 95 77 80]
[63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87

All pixels change when
the camera moves!

This image by Nikita is
licensed under CC-BY 2.0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: lllumination

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

This image by Umberto Salvagnin This image by Umberto Salvagnin T_h\s image by sare bear is T_h\s image by Tom Thai is
is licensed under CC-BY 2.0 is licensed under CC-BY 2.0 licensed under CC-BY 2.0 licensed under CC-BY 2.0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

This image by jonsson is licensed
under CC-BY 2.0

This image is CCO 1.0 public domain This image is CC0 1.0 public domain

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Background Clutter

This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Intraclass variation

This image is CCO 1.0 public domain

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

An image classifier

def classify_image(image):
return cléss_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Attempts have been made

Find edges Find corners

- VAN D

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
Machine learning!
return model

def predict(model, test_images):
Use model to predict labels
return test_labels

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

First classifier: Nearest Neighbor

def train(images, labels):
Machine learning!

return model

def predict(model, test_images):

return test_labels

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Memorize all

g data and labels

Predict the label

» of the most similar
training image

Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

airplane 5 B o5t 0 K = B O o
automobile na!ﬁﬂg
bird SR EETHKE
cat 1 T g 0 R
deer [l il o B R CR R R 2
dog W EARE SRR AN
g DIfSa@&”EREEE
horse oy e I 2 PO A S B TR
ship [R e R P
wuck (@ W s B
Alex Kiizhevsky, “Learning Multiple Layers of Features from Tiny Images', Technical Report, 2000,

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example Dataset: CIFAR10

10 classes

50,000 training images

10,000 testing images Test images and nearest neighbors
alrplane .')ﬁ.== -‘. ﬁ".ﬂ.-ﬁﬂ

£ ERsE S-FEERERNEEE

bird HLI?V! Hid | S-SREEEEREESE
cat 1 T g 0 R > gr @) w
deer [l il o B R R S H»IEHIHIIHII
dog EhREFEER AN]
g EDIENa® S E
horse jugy e [N o PO 1N I 5 RN 6
ship [O e R R
ruck g 8 I ol A o s B 1

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Distance Metric to compare images

L1 distance:

test image

56 | 32 | 10

18

90 | 23 | 128

133

24 | 26 | 178

200

2 | 0 |255

220

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

dy(I;, 1) Z [P — IP|
training image

10 | 20: | 24 | 17

8 | 10 | 89 | 100

12 | 16 | 178 | 170

4 | 32 (233 | 112

pixel-wise absolute value differences

46

12

14

1

82

13

39

33

12

10

0

30

32

22

108

add
—> 456

import numpy as n . P
Sl Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
“"* X is N x D where each row is an example we wish to predict label for
num_test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(sel?.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

import numpy as np

Nearest Neighbor classifier

class NearestNeighbor:
def _ init_ (self):

pass
def train(self, X, y):) ..
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ Memonze tralnlng data
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
"o X is N x D where each row is an example we wish to predict label for
num_test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

import numpy as n . P
Sl Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
"o X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)

loop over all test rows

for i in xrange(num test): For eaCh teSt image:

find the nearest training image to the i'th test image . . .
using the L1 distance (sum of absolute value differences) Flnd CloseSt tra|n |mage

distances = np.sum(np.abs(sel?.Xtr - X[i,:]), axis = 1)

min_index = np.argmin(distances) # get the index with smallest distance F’réa(jl(3t IEat)EBI ()f r]EBERrEBE;t |rT]E3£J€3

Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

import numpy as np

class NearestNeighbor:

def init

pass

def train(:

wun X IS

the nearest

f.Xtr

Lf.ytr

(self):

elf, X, y):
N x D where each row is an example. Y is 1l-dimension of size N """

A ramemhearce all -he Frainina dat =
Ly rememoers att Ll traliilill ! 3

=X
= b

def predict(self, X):

wan ¥ js

N x D where each row is an example we wish to predict label for

num_test X. shape[O]

Ypred = np. zeros(num test dtype =It%i*.ytr.dtype) v

for iin xrange(num test)
distanées = Np-. sum(np abs(Xtr - X[1,]), axis = 1)
min_index = np argmln(dlstances) jé 1€ " with smallest

Ypred[i] =

Lf.ytr[min_index] # predict the 1

return Ypred

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier

Q: With N examples,
how fast are training
and prediction?

import numpy as n . P
Sl Nearest Neighbor classifier
class NearestNeighbor:
def _init (self):
pass

Q: With N examples,
def train(self, X, y): . .
""" X is N x D where each rowris an example. Y is I-Qimension of size N """ r1()\A/ fEaSSt are trEaIr]Ir]SJ

and prediction?

self.Xtr = X

self.ytr ; y
def predict(self, X): A: Train O(1),
"o X is N x D where each row is an example we wish to predict label for """ .
predict O(N)

num_test = X.shape[0]
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

for i in xrange(num test):

distantes = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of tI carest

return Ypred

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

import numpy as np
class NearestNeighbor:
def _init_ ():

pass

def train(v Xy ly)s

""" X is N x D where each row is an example. Y is 1-dimension of size N """

XIr=X

Jtr =y
def predict(X

"o X is N x D where each row is an example we wish to predict label for """

num_test = X.shape[0]

Ypred = np.zeros(num _test, dtype = ¢ .ytr.dtype)
for i in xrange(num test):

distances = np.sum(np.abs(sel?.Xtr - X[i,:]), axis = 1)

min index = np.argmin(distances)
Ypred[i] = self.ytr[min_index] #

return Ypred

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Nearest Neighbor classifier

Q: With N examples,
how fast are training
and prediction?

A: Train O(1),
predict O(N)

This is bad: we want
classifiers that are fast
at prediction; slow for
training is ok

What does this look like?

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about
the algorithm that we set rather than learn

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about
the algorithm that we set rather than learn

Very problem-dependent.
Must try them all out and see what works best.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

Your Dataset

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train

test

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

What does this look like?

A~ HNIRE
BEglal |

EY

BN = E BN

ERSEFsEANEN
HEERERY BE

EREN»EAEEE
BRI ENETE
L ELEYL B B
BEEENESE ERD

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

What does this look like?
ﬂ*lﬂl

EY

BN = E BN

ERESFsEANEN
HEEKESY B

HEEN»ER SR
REENEFEN 278
L] R R
REENSE END

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

K-Nearest Neighbors: Summary

In Image classification we start with a training set of images and labels, and
must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on nearest training
examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set; only run on the test set once at
the very end!

35
Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Linear Classification

36
Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Recall CIFAR10

=55 =

) o g
bird BTHiE
cat ="k %
deer -.-=
dog Elﬁ
frog F?i.
horse 7 !E
ship - ;-EE
truck L PR o

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

50,000 training images
each image is 32x32x3

10,000 test images.

Parametric Approach

Image

> f(x, W)

Array of 32x32x3 numbers T

(3072 numbers total) W
parameters
or weights

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

>

10 numbers giving
class scores

Parametric Approach: Linear Classifier

f(x,W) = WXx

Image

- f(x,W) > 10 numbers giving

T class scores
Array of 32x32x3 numbers

(3072 numbers total) VV

parameters
or weights

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Parametric Approach: Linear Classifier
3072x1

f(x,W)

|mage

i
A\
‘.\\ :
“&yu;:;\ T

Array of 32x32x3 numbers

- f(x,W)

(3072 numbers total) VV

parameters
or weights

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

WK

10x1 10x3072

>

10 numbers giving
class scores

Parametric Approach: Linear Classifier
3072x1

f(x,W)

|mage

i
A\
‘.\\ :
“&yu;:;\ T

Array of 32x32x3 numbers

- f(x,W)

(3072 numbers total) VV

parameters
or weights

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

WK +

10x1 10x3072

b

10x1

>

10 numbers giving
class scores

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56
\\“"’f“'ﬁ 0.2 | -0.5| 01 | 2.0 1.1 -96.8 | Cat score
T S 1.5 | 1.3 | 21 | 0.0 4 | 32 | = | 437.9 | Dog score
24 |2, 24
4. M
T 0 [025| 02 |-0.3 1.2 61.95 | Ship score
Input image 2

W

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interpreting a Linear Classifier

airplane EME§E%=

automobile § ; ‘" : —

W f(x,W)=Wx+Db

oo I I

ol

dog wEIREEEER AN ' ' ' ing?
v DENeGCNESE What is this thing doing
horse g 1 7 O 1 5 PR

ship [< e

ruck @ Rl s B

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interpretlng a Lmear Classifier

airplane .

automoblle-H!aEg —

i Hamiemipam OGW)=Wx+b

= [ESssescs

deer i piite s it PO LN I I
- A Example tralned_ yvelghts
fog g=gg= of a linear classifier

orse 8. TR ol 7 Pl " .

ship E.g;;.ag trained on CIFAR-10:

truck ﬂﬁﬁl-wﬁﬁ

bird cat

er dog frog horse ship truck
F
— i a
= - . &

.g

plane

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interpreting a Linear Classifier

car classifier

Array of 32x32x3 numbers
(3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard cases for a linear classifier

Class 1: Class 1: Class 1:
number of pixels > 0 odd 1 <=L2 norm <=2 Three modes
Class 2: Class 2: Class 2:
number of pixels > 0 even Everything else Everything else

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Neural Network

Linear
classifiers

This image is CC0 1.0 public domain

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

So far: Defined a (linear) score function f(x,W)=Wx+b

Example class
scores for 3
images for

. airplane -3.45 -0.51 3.42

Some W' automobile -8.87 6.04 4,04

bird 0.09 5.31 2.65

cat 2.9 -4.22 5.1

How can we tell o 4 ag 4 1o > s
whether this W dog 8.02 3.58 5.55
. frog 3.78 4.49 -4 .34

Is good or bad?

horse 1.06 -4 .37 -1.5
Cat i.mage ?yMis Iicer?sed unqer CC-BY 2.0 Ship B O : 3 6 - 2 ° O 9 - 4 * 7 9
e e puple doman truck -0.72 —2.93 6.14

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Suppose: 3 training examples, 3 classes.

) A loss function tells how
With some W the scores f(z, W) =Wz are:

good our current classifier is
Given a dataset of examples

{(xza yz) i =1

Where I; is image and

cat 32 1.3 29 Y; is (integer) label
car 5. 1 49 25 Loss over the dataset is a

sum of loss over examples:
frog -1.7 20 -31

ZL 3727) yz)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Suppose: 3 training examples, 3 classes. Previous losses:
With some W the scores f(z, W) =Wz are:

Given an example (:ci, yi)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

Least-squares regression has the

form
Cat 3.2 1.3 Li=2||si_yi||2
car 5 1 4 9 2 5 The SVM loss ;1as the form:
0 if Sy, = 85+ 1
frog -1 7 2 O -3'1 hi = Z {Sj — 8y, +1 otherwise

J#Yi

= Z max (0, s; — sy, + 1)

J#Yi

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1
frog -1.7

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

| scores = unnormalized log probabilities of the classes.

§ = flas W)
cat 3.2
car 5.1
frog -1.7

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

| scores = unnormalized log probabilities of the classes.

PlY =kl X ==;) = stj where |8 = f(iBz, W)

cat 3.2
car 5.1

frog -1.7

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

| scores = unnormalized log probabilities of the classes.

Pl = R X =) = == where |§ = f(xi; W)

Zj e’
cat 3.2 Softmax function
car 5.1
frog -1.7

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

P(Y = B|X = ;) = <2

where

| scores = unnormalized log probabilities of the classes.

§ = flas W)

Want to maximize the log likelihood, or (for a loss function)
cat 32 to minimize the negative log likelihood of the correct class:

L; = —log P(Y = yi| X = z;)

car 5.1
frog -1.7

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

| scores = unnormalized log probabilities of the classes.

PlY =kl X ==;) = Ze.Skesj where |8 = f(il)z, W)

Want to maximize the log likelihood, or (for a loss function)
cat 32 to minimize the negative log likelihood of the correct class:

Li:—l PY: iX::Ei
car 5.1 og P Yil)

frog -1.7 insummary: [, = — log(e :)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

Li — —log(esyis.)

s @il
] €

cat 3.2
car 5.1
frog -1.7

unnormalized log probabilities

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

Li = — log(gjy;sj)

unnormalized probabilities

cat 3.2 24.5
car 51 - [164.0
frog -1.7 018

unnormalized log probabilities

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

Li = — log(gjy;sj)

unnormalized probabilities

cat 3.2 24.5 r 0.13
exp normalize

car 51 —— [164.0 - 1 0.87
frog -17 018 OOO

unnormalized log probabilities probabilities

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Softmax Classifier (Multinomial Logistic Regression)

L; = —log(<2

cat
car

frog

3.2
5.1
-1.7

exp

24.5
164.0
0.18

unnormalized probabilities

normalize

unnormalized log probabilities

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

>

)

Zj e’
013 |- L_i=-log(0.13)
=0.89
0.87
0.00
probabilities

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

3.2
5.1
-1.7

exp

unnormalized probabilities

24.5
164.0
0.18

Q: What is the min/max
possible loss L i7?

normalize

unnormalized log probabilities

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

>

0.13 | L_i=-log(0.13)
=0.89

0.87

0.00

probabilities

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

3.2
5.1
-1.7

exp

unnormalized probabilities

24.5
164.0
0.18

Q2: Usually at

initialization W is small

soalls=0.

What is the loss?

normalize

unnormalized log probabilities

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

>

0.13 |- L
0.87
0.00

probabilities

= -log(0.13)
=0.89

matrix multiply + bias offset

least-squares regression loss

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

0.01 -0.05 0:1 0.05 -15 0.0
0.7 0.2 0.05 0.16 22 0.2
0.0 -045 | -0.2 0.03 44 03

W 56 b
L
Yi

-2.85
} 2 =
0.86 (2-0.28)- = 2.96
0.28
cross-entropy loss (Softmax)
-2.85 0.058 0.016
ex normalize
0.86 _p, 286N . 064N -lo0(0-353)
(to sum =
to one) 0.452
0.28 1.32 0.353

LOW) = 3" Li(f (@i, W), 3
T J

Data loss: Model predictions
should match training data

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

LOW) = © 3 Ll f (e W), 1)
N 1=1 y

Data loss: Model predictions
should match training data

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

LOW) = © 3 Ll f (e W), 1)
N 1=1 y

Data loss: Model predictions
should match training data

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

LOW) = © 3 Ll f (e W), 1)
N =1 y

Data loss: Model predictions
should match training data

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

N

1
L(W) = ~ 2 Li(f(zs, W), ;) + AR(W)
g
N J \ J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

N

1
L(W) = ~ 2; Li(f(z:, W), y;) + AR(W)
g
N J \ J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:

“Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

L2 Regularization (Weight Decay)

z=[1,1,1,1] RW) =323, W,

w1 = :1,0,0,0]
we = [0.25,0.25,0.25,0.25]

7 LI | (S
wla:—wzac—l

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Recap

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax
regularization loss
L o 10g(Z 5) Wi
1 N Full loss score functiorL - Gz
= & 2uim1 Li + R(W) »u f(z;, W) -
Z;t
Yi

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

0 public domain

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Strategy: Follow the slope

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

df@) . f@+h) - f()
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W: gradient dW:
[0.34, [?,
-1.11, ?,
0.78, ?,
0.12, ?,
0.55, ?,
2.81, ?,
-3.1, ?,
-1.5, ?,
0.33,...] ?,...]
loss 1.25347

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W: W + h (first dim): gradient dW:
0.34, 10.34 + 0.0001, -2.5,

-1.11, -1.11, ?,

0.78, 0.78, ?, \
0.12, 0.12, (1.25322 - 1.25347)/0.0001
0.595, 0.55, =-2.5

2.81, 2.81, i) fetn 1@
3.1, 3.1, R R
-1.5, -1.9, ?,

0.33,..] 0.33,..] 2]

loss 1.25347 loss 1.25322

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, ?,

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, df(@) _ . f(z+h) - f()
-1.5, -1.5, de hoo "
0.33,...] 0.33,...] 2,...]

loss 1.25347 | loss 1.25353

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

o N
SO

N N D)) N) YO

~
.
.

| |

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

gradient dW:

[-2.5,
0.6,
0,

2

(1.25347 - 1.25347)/0.0001
=0

af(z) _ . f@+h) - f(@)
h

dx h —0

g—

This is silly. The loss is just a function of W.

N
L=3YlLi+2,W;
s= f(z; W) =Wz

want Vy L

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

This is silly. The loss is just a function of W.

N
L=3YlLi+2,W;
s= f(z; W) =Wg

want Vy L

Use calculus to compute an
analytic gradient

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Calculus!

https://pixabay.com/en/hammer-tool-metal-hit-break-33617/

current W gradient dW:
[0.34, [-2.5,
-1.11, dW = ... 0.6
0.78, (some function 0,

0.12, data and W) 0.2,
0.55, 0.7,
281, \ o8
-3.1, 11,
-1.5, 13
0.33,...] 2.4
loss 1.25347

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In_practice: Always use analytic gradient, but check
Implementation with numerical gradient. This is called a
gradient check.

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Gradient Descent

while True:
weights grad = evaluate gradient(loss_fun, data, weights)
weights += - step size * weights grad # perr’ nar ‘

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

original W

-

negative gradient direction

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Stochastic Gradient Descent (SGD)

Full sum expensive

N
1 .
L(W) =+ Y " Li(ws,yi, W) + AR(W) when N is large!
i ijz\,l Approximate sum
_ = Lz, us 3 using a minibatch of
VwL(W) N ;:1 VwiLi(zi,y;, W) + AV R(W) examples

32 /64 /128 common

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad # pe pat i)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Interactive Web Demo

-
s

¥Wi0,0) ®[O0,1] BbiO]]

A a4 a [xo0][=xr][y |[[st01]]sr21][st21]j|
2.06| 1.48 |-0.42 1o

Cocwd| leiay| lozoo 0.50 0.40 0 : 1.20 0.01 0.22| 0.02
v v 0.80 || 0.30 0 1.67||0.33 1.10| 0.44
w3, 00 ®[2,1] Bl

A A 0.30]]|0.80 0 1.38||-0.80 -1.os| 0.00
0.44 | |-1.82 | 0.52 i -‘

o.19||-oearf | oizs| [-0.40][0.30][2 ||[Fo=ae] [-0.20 -1.62] 0.39
v v l
wiz,0) w(2,1) bi2] -0.30 .70 1 -0.01 -0.88 "2-2’. A.B"‘

A - 4 +
-0.70{ | 0.20 1 =1.57| | -0.15| | =2.10 0.00

2.27|-2.04 |-0.10 |

) 1 BN | 0.70 | [-0. 40 [0.43 || 1.55 2.31] 0.25
v \ v

0.50 -0.60 2 -0.28| | 1.83 2.26 0.57
Step size: 0,10000 -0.40| [-0.50 2 -1.98| 1.26 || 0.01 2.24
et [en]
Start ropeated update Total data loss: 0.64 0.64 .
Regularization loss: 1.92
tal - 597
swp Total loss: 2.57

L2 Regularization strength: 0.10000

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Image features

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image Features

Nalll.:

H H 1 HHH h— Il HHHHU Lo ulln_ fa

I]ULIU O 0O

\Hﬂ Hmﬂ/’

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example: Color Histogram

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions
Within each region quantize edge
direction into 9 bins

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Example: Bag of Words

Step 1: Build codebook
>l a v = FulE™

Cluster patches to
Extract random - B9 form “codebook”
patches - of “visual words”
>

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image Features: Motivation

o y 6 @
° ¢ %
® ® o
o ([“ ® f(X’ y) = (r(X’ y)’ 9(X, Y)) ([“
[4
X * '0 ° ¢ > ° .O
°) o® r ° o
o (o ° 4
())
o [° ‘0
Cannot separate red After applying feature
and blue points with transform, points can
linear classifier be separated by linear
classifier

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Image features vs ConvNets

Feature Extraction > 10 numbers giving
scores for classes
ﬂﬂﬂﬂﬂuﬂuﬂuuﬂuuuﬂﬂnﬂﬂuuﬂnuﬂnuﬂunu -
training |

Krizhevsky, Sutskever, and Hinton, “Imagenet classification
with deep convolutional neural networks”, NIPS 2012.

Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
Reproduced with permission.

» 10 numbers giving

scores for classes

training

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Neural networks

(Before) Linear score function: f — W2

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Neural networks

(Before) Linear score function: f — W2
(Now) 2-layer Neural Network ~ f = Wy max(0, Wiz)

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Neural networks
(Before) Linear score function: f — W2
(Now) 2-layer Neural Network ~ f = Wy max(0, Wiz)

3072 100 10

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Neural networks
(Before) Linear score function: f = Wa
(Now) 2-layer Neural Network ~ f = Wy max(0, Wix)

3072

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Neural networks

(Before) Linear score function: f — W2

(Now) 2-layer Neural Network ~ f = Wy max(0, Wiz)
or 3-layer Neural Network

f — W3 maX(O, WZ ma'X(Oa WliB))

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Next time:

Backpropagation

Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

