
COS 429: Computer Vision

Lecture 14:
3D, camera geometry, calibration

Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Steve Seitz, David Fouhey



Our goal: Recovery of 3D structure

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the 
analysis of paintings, Proc. Computers and the History of Art, 2002



Application: Single-view modeling

A. Criminisi, I. Reid, and A. Zisserman, 
Single View Metrology, IJCV 2000 



2.5-D: estimating depth from single image

Weifeng Chen, Zhao Fu, Dawei Yang, Jia Deng. Single-Image Depth Perception in the Wild. 
Neural Information Processing Systems (NeurIPS), 2016



Inherent ambiguity

x

X?
X? X?

Source: S. Lazebnik



Pictorial Cues – Shading

[Figure from Prados & Faugeras 2006]



Pictorial Cues – Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]



Pictorial Cues – Perspective effects

Image credit: S. Seitz



Pictorial Cues – Familiar Objects

Monitor: probably not  
12 feet wide. 

Desk surface: 
probably flat

Source: D. Fouhey



Resolving Single-view Ambiguity

X

• Stereo: given 2 calibrated cameras in different 
views and correspondences, can solve for X

x
x

Original diagram credit: S. Lazebnik



Multi-view stereo

Many slides adapted from S. Seitz



Multi-view stereo or 3D photography

• Generic problem formulation: given several 
images of the same object or scene, compute a 
representation of its 3D shape  
 
 
 
 
 

Reconstruction (side)

(top)



Multi-view stereo or 3D photography

• “Images of the same object or scene”
• Arbitrary number of images (from two to thousands)
• Arbitrary camera positions (camera network or video sequence)
• Calibration may be initially unknown 

• “Representation of 3D shape”
• Depth maps
• Meshes
• Point clouds
• Patch clouds
• Volumetric models
• Layered models
• …



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Single-view geometry



Our goal: Recovery of 3D structure

x

X?
X? X?

Source: S. Lazebnik



Review: Pinhole camera model

world coordinate system

Source: S. Lazebnik
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Review: Pinhole camera model

PXx =

Source: S. Lazebnik
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Change #1: Principal point offset

px

py

Source: S. Lazebnik
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Change #1: Principal point offset

We want the principal 
point to map to (px, py) 
instead of (0,0)
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Change #2: Pixel coordinates

Pixel size: 
yx mm
11

×

pixels/m m pixels
Source: S. Lazebnik



( )C~X~RX~ cam −=

Change #3: Camera rotation and translation

coords. of point  
in camera frame

coords. of camera center  
in world frame

coords. of a point 
in world frame

• Conversion from world to camera coordinate system  
(in non-homogeneous coordinates):

Source: S. Lazebnik



Camera projection matrix

[ ]XtRKx =
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Camera parameters

• Intrinsic parameters
– Principal point coordinates
– Focal length
– Pixel magnification factors
– Skew (non-rectangular pixels) 
– Radial distortion
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P = K[R t]



Camera parameters

• Intrinsic parameters
– Principal point coordinates
– Focal length
– Pixel magnification factors
– Skew (non-rectangular pixels) 
– Radial distortion 

• Extrinsic parameters
– Rotation and translation relative to world coordinate system

Source: S. Lazebnik

How many parameters here?

P = K[R t]



Camera calibration basics



Camera calibration
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Camera Calibration

• Determining values for camera parameters
• Necessary for any algorithm that requires 

3D ↔ 2D mapping
• Method used depends on:

– What data is available
– Intrinsics only vs. extrinsics only vs. both
– Form of camera model



Camera Calibration

• General idea:  place  
“calibration object” with  
known geometry in the scene

• Get correspondences
• Solve for mapping from 

scene to image



General camera model

• Projection matrix
• Don’t care about “z” after transformation

• Scale ambiguity → 11 free parameters
– 6 extrinsic, 5 intrinsic
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Camera Calibration – linear system

• Given:
– 3D ↔ 2D correspondences
– General perspective camera model

• Write equations:
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Camera Calibration – linear system

• Overconstrained (more equations than unknowns)
• Underconstrained (rank deficient matrix – any multiple 

of a solution, including 0, is also a solution)
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Camera Calibration – linear system

• Standard linear least squares methods for 
Ax=0 will give the solution x=0

• Instead, look for a solution with |x|= 1
• That is, minimize |Ax|2 subject to |x|2=1



Camera Calibration – linear system

• Minimize |Ax|2 subject to |x|2=1
• |Ax|2 = (Ax)T(Ax) = (xTAT)(Ax) = xT(ATA)x
• Expand x in terms of eigenvectors of ATA: 

x = µ1e1+ µ2e2+… 
 xT(ATA)x = λ1µ1

2+λ2µ2
2+… 

 |x|2 = µ1
2+µ2

2+…



Camera Calibration – linear system

• To minimize  
λ1µ1

2+λ2µ2
2+… 

subject to  
 µ1

2+µ2
2+… = 1  

set µmin= 1 and all other µi=0

• Thus, least squares solution is eigenvector of ATA 
corresponding to minimum (nonzero) eigenvalue



Camera calibration: Linear method

• Advantages: easy to formulate and solve
• Disadvantages

– Doesn’t directly tell you camera parameters
– Doesn’t model radial distortion
– Can’t impose constraints, such as known focal length and 

orthogonality 

• Non-linear methods are preferred
– Define error as squared distance between projected points and 

measured points
– Minimize error using Newton’s method or other non-linear optimization



Camera calibration without known coordinates

• What if world coordinates of reference 3D points are not 
known?

• We can use scene features such as vanishing points

Vanishing 
 point

Vanishing 
 line

Vanishing 
 point

 Vertical vanishing 
 point 

(at infinity)

Slide from Efros, Photo from Criminisi



Recall: Vanishing points

• All lines having the same direction share the same 
vanishing point

image plane

line in the scene

vanishing point v

camera 
center



Computing vanishing points

• X∞ is a point at infinity, v is its projection: v = PX∞ 

• The vanishing point depends only on line direction  

• All lines having direction D intersect at X∞
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Calibration from vanishing points

• Consider a scene with three orthogonal vanishing directions:

• Note: v1, v2 are finite vanishing points and v3 is an infinite 
vanishing point

. v2
v1

v3

.



Calibration from vanishing points

• Consider a scene with three orthogonal vanishing directions:

• We can align the world coordinate system with these 
directions

. v2
v1

v3

.



Calibration from vanishing points

• p1 = P(1,0,0,0)T – the vanishing point in the x direction 

• Similarly, p2 and p3 are the vanishing points in the y and z directions

• p4 = P(0,0,0,1)T – projection of the origin of the world coordinate 
system 

• Problem: we can only know the four columns up to independent 
scale factors, additional constraints needed to solve for them
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Calibration from vanishing points

• Let us align the world coordinate system with three orthogonal 
vanishing directions in the scene:

• Each pair of vanishing points gives us a constraint on the focal 
length and principal point (assuming zero skew and unit aspect 
ratio). 

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

=

1
0
0

,
0
1
0

,
0
0
1

321 eee [ ] i
i

ii KRe
e

tRKv =!
"

#
$
%

&
=

0
|λ

0,1 == −
j

T
ii

T
ii eevKRe λ

011 == −−−−
j

TT
ij

TTT
i vKKvvKRRKv



Calibration from vanishing points

Can solve for focal length, principal pointCannot recover focal 
length, principal point is the 

third vanishing point



Rotation from vanishing points

Thus, 
Get λi by using the constraint ||ri||2=1.
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Calibration from vanishing points: Summary

• Solve for K (focal length, principal point) using three 
orthogonal vanishing points

• Get rotation directly from vanishing points once calibration 
matrix is known

• Advantages
– No need for calibration chart, 2D-3D correspondences
– Could be completely automatic

• Disadvantages
– Only applies to certain kinds of scenes
– Inaccuracies in computation of vanishing points
– Problems due to infinite vanishing points



Stereo and epipolar geometry



Binocular stereo

• Given a calibrated binocular stereo pair, fuse it to 
produce a depth image

image 1 image 2

Dense depth map



Multi-Camera Geometry

• Epipolar geometry – relationship between 
observed positions of points in multiple cameras

• Assume:
– 2 cameras
– Known intrinsics and extrinsics



Epipolar Geometry

P

C1 C2

p2
p1



Epipolar Geometry

P

C1 C2

p2
p1

l2



Epipolar Geometry

P

C1 C2

p2
p1

l2

Epipolar line

Epipoles



Epipolar Geometry

• Epipolar constraint: corresponding points must lie 
on conjugate epipolar lines
– Search for correspondences becomes a 1-D problem



Basic stereo matching algorithm

• For each pixel in the first image
– Find corresponding epipolar line in the right image
– Examine all pixels on the epipolar line and pick the best match
– Triangulate the matches to get depth information  

• Simplest case: epipolar lines are corresponding scanlines
– When does this happen?



Simplest Case: Parallel images

• Image planes of cameras are 
parallel to each other and to 
the baseline

• Camera centers are at same 
height

• Focal lengths are the same



Simplest Case: Parallel images

• Image planes of cameras are 
parallel to each other and to 
the baseline

• Camera centers are at same 
height

• Focal lengths are the same

• Then epipolar lines fall along 
the horizontal scan lines of the 
images



What if images are not aligned?



Epipolar Geometry

• Goal: derive equation for l2
• Observation: P, C1, C2 determine a plane

P

C1 C2

p2
p1

l2



Epipolar Geometry

• Work in coordinate frame of C1

• Normal of plane is T × Rp2, where T is relative 
translation, R is relative rotation

P

C1 C2

p2
p1

l2



Epipolar Geometry

• p1 is perpendicular to this normal: 
      p1 • (T × Rp2) = 0

P

C1 C2

p2
p1

l2



• Write cross product as matrix multiplication

Epipolar Geometry

P

C1 C2

p2
p1

l2
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Epipolar Geometry

• p1 • T× R p2 = 0     ⇒     p1
T E p2 = 0 

• E is the essential matrix

P

C1 C2

p2
p1

l2



Essential Matrix

• E depends only on camera geometry
• Given E, can derive equation for line l2

P

C1 C2

p2
p1

l2



Concrete example:  parallel images

• Rotation?
• Identity

• Translation?
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Concrete example: parallel images

t

p1

p2 [u1 v1 1]

2
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The y-coordinates of corresponding points are the same!

�tv1 + tv2 = 0



Giving the consequence that:
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Disparity is inversely proportional to depth!



Fundamental Matrix

• Can define fundamental matrix F analogously to 
essential matrix, operating on pixel coordinates 
instead of camera coordinates 

u1
T F u2 = 0

• Advantage: can sometimes estimate F without 
knowing camera calibration
– Given a few good correspondences, can get epipolar 

lines and estimate more correspondences, all without 
calibrating cameras



From epipolar geometry to camera calibration

• Estimating the fundamental matrix is known as 
“weak calibration” 

• If we know the calibration matrices of the two 
cameras, we can estimate the essential matrix: E 
= K’TFK 

• The essential matrix gives us the relative rotation 
and translation between the cameras, or their 
extrinsic parameters

Source: S. Lazebnik



Structure from motion: basic idea

Camera 3
R3,t3 Slide credit: 

Noah Snavely

Camera 1
Camera 2R1,t1 R2,t2



Next time: intro to deep learning


