Lecture 14:
3D, camera geometry, calibration
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Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Steve Seitz, David Fouhey



Our goal: Recovery of 3D structure

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the
analysis of paintings, Proc. Computers and the History of Art, 2002




Application: Single-view modeling

A. Criminisi, |. Reid, and A. Zisserman,
Single View Metrology, IJCV 2000




2.5-D: estimating depth from single image

Weifeng Chen, Zhao Fu, Dawei Yang, Jia Deng. Single-Image Depth Perception in the Wild.
Neural Information Processing Systems (NeurIPS), 2016



Inherent ambiguity

[}

Source: S. Lazebnik



Pictorial Cues — Shading

[Figure from Prados & Faugeras 2006]



Pictorial Cues — Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]



Pictorial Cues — Perspective effects

[ NATIONALGEOGRAPHIC.COM © 2003 National Geographic Society. All rights reserved.

Image credit: S. Seitz



Pictorial Cues — Familiar Objects

Source: D. Fouhey



Resolving Single-view Ambiguity

//OX .
« Stereo: given 2 calibrated cameras in different
views and correspondences, can solve for X

Original diagram credit: S. Lazebnik



Multi-view stereo




Multi-view stereo or 3D photography

 Generic problem formulation: given several
images of the same object or scene, compute a
representation of its 3D shape
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Multi-view stereo or 3D photography

» “Images of the same object or scene”

 Arbitrary number of images (from two to thousands)
- Arbitrary camera positions (camera network or video sequence)
« Calibration may be initially unknown

+ “Representation of 3D shape”
* Depth maps
« Meshes
+ Point clouds
- Patch clouds
« Volumetric models
- Layered models



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Single-view geometry




Our goal: Recovery of 3D structure

X?

?

[}

Source: S. Lazebnik



Review: Pinhole camera model

world coordinate system
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Source: S. Lazebnik



Review: Pinhole camera model
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Change #1: Principal point offset
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Change #1: Principal point offset

We want the principal
T point to map to (p,, p,)
pyyk_ be Xcam |nStead Of (0,0)
I 1
x Dy

(X, Y, 2) =~ (fX/Z+p fY/Z+p,)

(X _ (X
v (fX+Zp.\ [f p. O v
p —| fY+Zp, |= f p, 0 p
L) ' A\ L

Source: S. Lazebnik



Change #1: Principal point offset

T principal point: (px,py)
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Source: S. Lazebnik



Change #2: Pixel coordinates

_ pixels/m

Pixel size:
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Source: S. Lazebnik



Change #3: Camera rotation and translation

« Conversion from world to camera coordinate system
(in non-homogeneous coordinates):

~ ~  ~)
Xcam B Re( - CJ\
coords. of point /
in camera frame

coords. of camera center

in world frame
coords. of a point

in world frame Source: S. Lazebnik



Camera projection matrix
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Camera parameters

* Intrinsic parameters m, (A NCE B.]

— Principal point coordinates

— Focal length

— Pixel magnification factors

— Skew (non-rectangular pixels)
— Radial distortion

Source: S. Lazebnik



Camera parameters

* Intrinsic parameters

— Principal point coordinates

— Focal length

— Pixel magnification factors

— Skew (non-rectangular pixels)
— Radial distortion

 Extrinsic parameters

— Rotation and translation relative to world coordinate system

How many parameters here?

Source: S. Lazebnik



Camera calibration basics




Camera calibration
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Camera Calibration

Determining values for camera parameters

Necessary for any algorithm that requires
3D <= 2D mapping

Method used depends on:

— What data is available

— Intrinsics only vs. extrinsics only vs. both

— Form of camera model



Camera Calibration

General idea: place
“calibration object” with
known geometry in the scene

Get correspondences

Solve for mapping from
scene to image

The Opti-CAL Calibration Target Image



General camera model

Projection matrix
Don’t care about “Z’ after transformation

(ax+by+cz+d

(a b ¢ d\(x X+ jy+kz+I1

e f g h % homogeneou s ex+fy+gz+h
—> : :
divide X+ jy+ kZ T l

o [ o ([ z

\ /
Scale ambiguity — 11 free parameters

— 6 extrinsic, 5 intrinsic



Camera Calibration — linear system

Given:
— 3D <= 2D correspondences

— (General perspective camera model

Write equations:

ax, +by, +cz, +d
ix, + jy, +kz, +1/ -
ex,+ fy,+gz,+h
ix, + jy, +kz, +1 -

u,

V|



Camera Calibration — linear system

(x, v, z 1 0 0 0 0 —-ux -—wy -—uz -—u)\a
0O 0 0 0 x y, z 1 —-vx -vy, -vz; —v |b

|
=1

x, v, z, 1 0 0 0 0 —-wyx, -—-uwy, -—-u,z, —u,|c

O 0 0 0 x, y», z 1 —=vx, —v,y, —v,z, -V

S R : : : : N\

Overconstrained (more equations than unknowns)

Underconstrained (rank deficient matrix — any multiple
of a solution, including 0, is also a solution)



Camera Calibration — linear system

Standard linear least squares methods for
Ax=0 will give the solution x=0

Instead, look for a solution with Ixl= 1
That is, minimize |AxI2 subject to Ix|2=1



Camera Calibration — linear system

Minimize |AxI2 subject to IxI2=1
|AXI2 = (AX)T(AX) = (XTAT)(Ax) = XT(ATA)X
Expand x in terms of eigenvectors of ATA:
X = W€+ UsCrt...
XT(ATA)X = Ay uy2+ o024+, ..

IXI2 = u 24p2+. ..



Camera Calibration — linear system

To minimize

A2+ U2+
subject to

W, 2H+U2+... =1

set u,,= 1 and all other u,=0

Thus, least squares solution is eigenvector of ATA
corresponding to minimum (nonzero) eigenvalue



Camera calibration: LLinear method

* Advantages: easy to formulate and solve
* Disadvantages

— Doesn'’t directly tell you camera parameters
— Doesn’t model radial distortion

— Can’t impose constraints, such as known focal length and
orthogonality

* Non-linear methods are preferred

— Define error as squared distance between projected points and
measured points

— Minimize error using Newton’s method or other non-linear optimization



Camera calibration without known coordinates

« What if world coordinates of reference 3D points are not
known??

* We can use scene features such as vanishing points
T Vertical vanishing

point
(at infinity)
Vanishing
line
\1
@
»
\ /v
Vanishing Vanishing
point

point

Slide from Efros, Photo from Criminisi



Recall: Vanishing points

image plane
vanishing point v

L~

/

camerﬁ

line in the scene

* All lines having the same direction share the same
vanishing point



Computing vanishing points

A/XO /Xt

@ >

(x,+td, ] [x,/t+d,] d, |
X - Yottdy| | y/t+d, X, = d,
Tz +td, | |z, /t+d, d,
! 1/t 0

« X _is a point at infinity, v is its projection: v=PX
* The vanishing point depends only on l/ine direction
« All lines having direction D intersect at X_



Calibration from vanishing points

« Consider a scene with three orthogonal vanishing directions:

- Note: v,, v, are finite vanishing points and v, is an infinite
vanishing point



Calibration from vanishing points

« Consider a scene with three orthogonal vanishing directions:

« We can align the world coordinate system with these
directions



Calibration from vanishing points

K

K

K

K

* =[P1 P, Ps3 p4]

S

- p,=P(1,0,0,0)T — the vanishing point in the x direction

- Similarly, p, and p, are the vanishing points in the y and z directions

- p,=P(0,0,0,1)T — projection of the origin of the world coordinate

system

* Problem: we can only know the four columns up to independent
scale factors, additional constraints needed to solve for them



Calibration from vanishing points

« Let us align the world coordinate system with three orthogonal
vanishing directions in the scene:

1 0 0 .
C.
e, =(0[, e,=[1]|, e;=]0 kivi=K[R|t]O’ = KRe.
0 0 1 - -

e =AR'K'v, ee. =0

J
v, K'RR'K''v, =v,K"'K'v, =0

« Each pair of vanishing points gives us a constraint on the focal
length and principal point (assuming zero skew and unit aspect
ratio).



Calibration from vanishing points
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Horizon line,

1 finite vanishing point,
2 infinite vanishing points

Cannot recover focal
length, principal point is the
third vanishing point

2 finite vanishing points,
1 infinite vanishing point

Can solve for focal length, principal point

3 finite vanishing points




Rotation from vanishing points

Av, =K|R|t] oi - KRe,
e -
MK'v, =Re, =[r, r, r]|0|=r
0
MK, =1,

Thus,
Get A. by using the constraint ||r |]2=1.



Calibration from vanishing points: Summary

« Solve for K (focal length, principal point) using three
orthogonal vanishing points

» et rotation directly from vanishing points once calibration
matrix is known

 Advantages

— No need for calibration chart, 2D-3D correspondences
— Could be completely automatic

Disadvantages
— Only applies to certain kinds of scenes

— Inaccuracies in computation of vanishing points
— Problems due to infinite vanishing points



Stereo and epipolar geometry




Binocular stereo

- @Qiven a calibrated binocular stereo pair, fuse it to
produce a depth image

image 1

Dense depth map




Multi-Camera Geometry

Epipolar geometry — relationship between
observed positions of points in multiple cameras

Assume:

— 2 cameras

— Known intrinsics and extrinsics



Epipolar Geometry
P
\
C, c,




Epipolar Geometry
P
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C, c,




Epipolar Geometry

Epipoles



Epipolar Geometry

Epipolar constraint: corresponding points must lie
on conjugate epipolar lines

— Search for correspondences becomes a 1-D problem
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\ V \ /
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Basic stereo matching algorithm

» For each pixel in the first image
— Find corresponding epipolar line in the right image
— Examine all pixels on the epipolar line and pick the best match
— Triangulate the matches to get depth information

- Simplest case: epipolar lines are corresponding scanlines
— When does this happen?

TTT7 T HON. ABRATIIAM LINCOLN, President of United States. =ogs




Simplest Case: Parallel images

Image planes of cameras are
parallel to each other and to
the baseline

Camera centers are at same
height

Focal lengths are the same



Simplest Case: Parallel images

Image planes of cameras are
parallel to each other and to
the baseline

Camera centers are at same
height

Focal lengths are the same

Then epipolar lines fall along
the horizontal scan lines of the
iImages



What if images are not aligned?



Epipolar Geometry

Goal: derive equation for |,

Observation: P, C,, C, determine a plane




Epipolar Geometry

Work in coordinate frame of C,

Normal of plane is T x Rp,, where T is relative
translation, R is relative rotation




Epipolar Geometry

p, is perpendicular to this normal:
P, * (T xRp,) =0




Epipolar Geometry

Write cross product as matrix multiplication




Epipolar Geometry

p;*TxRp,=0 = pTEpP,=0
E Is the




Essential Matrix

E depends only on camera geometry
Given E, can derive equation for line 1,




Concrete example: parallel images

Rotation?
|dentity
Translation?
-0 -7, T,
-7, T 0 |




Concrete example: parallel images

[u1 (X] 1] 0 0 -t (0 =0

0
up v 1] | -t | =0
i t?)g _
—tvl -+ tUQ =0

The y-coordinates of corresponding points are the same!



Giving the consequence that:

Baseline O’
B

disparity = x — x’

Disparity is inversely proportional to depth!



Fundamental Matrix

Can define F analogously to
essential matrix, operating on pixel coordinates
iInstead of camera coordinates

u,TFu,=0

Advantage: can sometimes estimate F without
knowing camera calibration

— @Given a few good correspondences, can get epipolar

lines and estimate more correspondences, all without
calibrating cameras



From epipolar geometry to camera calibration

» Estimating the fundamental matrix is known as
“weak calibration”

* |If we know the calibration matrices of the two
cameras, we can estimate the essential matrix: E
= K'TFK

* The essential matrix gives us the relative rotation
and translation between the cameras, or their
extrinsic parameters

Source: S. Lazebnik



Structure from motion: basic idea

C 1 X
e Camera 2 \ Camera 3
Rl’tl

R29t2 \/ R39t3 Slide credit:

Noah Snavely



Next time: intro to deep learning

Neural Network

Linear
classifiers



