Project 5
Virtual Memory

COS 318
Fall 2015

Project 5: Virtual Memory

Goal: Add memory management and support for
virtual memory to the kernel.

Read the project spec for the details.

Get a fresh copy of the start code from the lab
machines (/u/318/code/project5/).

Start as early as you can and get as much done as
possible by the design review.

Project 5: Schedule

* Design Review:
- Monday 12/07
— Sign up on the project page;
— Please, draw pictures and write your idea.

 Due date: Wednesday, 12/16, 11:55pm.

Project 5: Overview

You will extended the provided kernel with a
demand-paged virtual memory manager and
restrict user processes to user mode privileges
(ring 3) instead of kernel mode privileges (ring 0).
You will implement:

— virtual address spaces for user processes;
— page allocation;

— paging to and from disk;

— page fault handler.

Design Review

* Design Review:

— Explain how virtual addresses are translated to physical
addresses on i386.
<> When are page faults triggered?
<> How are you going to figure out which address caused a fault?

— You will need a data structure to track information about
pages.
<> What information should you track?

— For the functions page _alloc, page swap 1in,
page swap out, and page fault handler,
please describe the caller-callee relationship graph.

Implementation Checklist

memory.h:

— page map entry t
memory.c:

- page_addr ()

- page alloc()

- 1nit mem()

- setup page table()

- page fault handler()
- page swap in()

- page replacement policy()
— page swap out()

General Notes

Familiarize yourself with the 2-level page
description of i386.

— Read sections 3.7.1, 3.7.6, and 4.2 of the Intel manual,
linked off project website.

Make sure that you understand the new PCB
structure in kernel.h.

Look at interrupt.c:exception _14() to understand
how a page fault is initially handled.

Testing is tricky. A few hints later.

Big Picture

Set up memory for the kernel.

Set up virtual memory for each process: done in the
kernel when you create a new process.

— Each process now runs in virtual memory;

— Mapping virtual memory to physical memory is now
responsibility of the kernel;

— Hardware uses the mapping when instructions are
actually executed.
Implement the page_fault_handler() in the kernel:

— If a virtual page is not in memory, the kernel pages it in
from disk, and maps it to a physical page;

— Physical page frames are static;

— Virtual pages are moved between physical memory and
disk.

Virtual-to-Physical Mapping

. &

mﬁmmmﬁ

e Alinear address is divided into three sections:

— (Level 1) Page-directory entry: bits 22 to 31 provide
an offset to an entry in the page directory. The

selected entry provides the base physical address of a
page table.

— (Level 2) Page-table entry: bits 12 to 21 of the linear
address provide an offset to an entry in the selected
page table. This entry provides the base physical
address of a page in physical memory.

— Page offset: bits O to 11 provides an offset to a
physical address in the page.

Virtual-to-Physical Mapping N

.

4 ¥
SUB NUMINE =

Linear Address
31 22 21 12 11 0

Directory Table Offset

%
/1 12 4-KByte Page

A10 A 10 Page Table —>| Physical Address
Page Directory

—»| Page-Table Entry 20)»
—>» Directory Entry >
’.
A 30w 1024 PDE * 1024 PTE = 220 Pages

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Figure 3-12. Linear Address Translation (4-KByte Pages)

Directory Entry

Page-Directory Entry (4-KByte Page Table)
1211 9876543210

Page-Table Base Address Avail |G

P
S DIT|S|W

Avalilable for system programmer’s use —I ‘
Global page (Ignored)

Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Page Entry

Page-Table Entry (4-KByte Page)
1211 9876543210

. P PIP|U|R
Page Base Address Avail |G|A|D|A|C(W|/|/|P
T D|IT|S|W

Available for system programmer’s use —l |
Global Page

Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Initializing Kernel Memory

Allocate a page directory.
Allocate N_KERNEL_PTS (page tables).

For each page table, “allocate” pages until you
reach MAX_PHYSICAL _MEMORY.

For the kernel, physical address == virtual address.
Set correct flags

— @Give user permission to use the memory pages
associated with the screen.

Setting up Process Memory

Processes need four types of pages:
— Page directory;

— Page tables;

— Stack page table;

— Stack pages.

PROCESS START (virtual address of code + data):

— Use one page table and set the entries relative to the
process address space as not present (let demand paging
work when needed);

— Process needs pcb->swap_size memory.

PROCESS STACK (vaddr of stack top)
 Allocate N_PROCESS STACK PAGES for each process.

Page Faults

A page fault happens because the virtual page is not
resident on a physical page frame.

* How does the hardware know that a page fault
happened?

* You need to keep track of metada of physical page
frames:

Free or not?

Information to implement a replacement policy (FIFO is
sufficient for this assignment);

Pinned? When would you want to pin a physical page
frame?

Page Faults

You need to write page fault handler():

— Find the faulting page in the page directory and page
table;

— Allocate a page frame of physical memory;

— Load the contents of the page from the appropriate
swap location on the USB disk (How are you going to
figure out the swap location?);

— Update the page table of the process.

Paging from disk

To resolve a page fault, you might have to evict
contents of a physical page frame to disk:

- Might need to save the content of the physical page
frame;

— Bring in contents of virtual page, which is on the disk, and
copy contents into the physical page frame.

Use a USB disk image for swap storage (usb/scsi.h).
— Justuse scsi write() and scsi read().

Assume that processes do not change size (no
dynamic memory allocation).

Update page tables.
Decide if you need to flush TLB.

Some Tips

One page table is enough for a process memory
space (code+data).

Some functions (esp. the page fault handler) can
be interrupted.

— Use synchronization primitives.

Some pages don’t need to be swapped out.

— Kernel pages, process page directory, page tables,
stack page tables, and stack pages.

Implementation Hints %?
(Berp_~ et

LT
Use bochs-gdb to debug (you will not be able
to use bochsdbg).

— Uncomment Line 9 of bochsrc.
Start bochs-gdb and then gdb.
On gdb, type target remote localhost:1234

Use gdb commands to set breakpoints, step,
continue, etc.

gdb with emacs is very helpful (you can see the
source code while debugging).

Implementation and Testing
Hints

Test first with kernel threads
- Implement page addr ().

- Implement page alloc () (partially -> assume that

the number of pages is smaller than
PAGEABLE PAGES).

- Implement init memory ().

- Implement setup page table() (partially ->
kernel thread only).

— Comment out the loader thread in kernel.c and fix the
value of NUM_THREADS in kernel.h.

Implementation and Testing

Hints

After the kernel threads are working:

Finish the implementation of
setup page table() (deal with processes).

Implement page fault handler().
Implement page swap 1in().
Uncomment the loader thread in kernel.c.

< You should see a command shell on the screen.

Implementation and Testing
Hints

* After the shell is working:
— Finish the implementation of page alloc().
- Implement page replacement policy().
- Implement page swap out().

Extra Credit

Implement the FIFO with second chance paging
algorithm (2 pts).

Implement the Not Recently Used (NRU) page
replacement algorithm (2 pts).

