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Abstract

Image registration finds a variety of applications in
computer vision. Unfortunately, traditional image registration
techniques tend to be costly. We present a new image
registration technique that makes use of the spatial intensity
gradient of the images to find a good match using a type of
Newton-Raphson iteration. Our technique is faster because
it examines far fewer potential matches between the images
than existing techniques. Furthermore, this registration
technique can be generalized to handle rotation, scaling and
shearing. We show show our technique can be adapted for
use in a stereo vision system.

1. Introduction

Image registration finds a variety of applications in
computer vision, such as image matching for stereo vision,
pattern recognition, and motion analysis. Untortunately,
existing techniques for image registration tend to be costly.
Moreover, they generally fail to deal with rotation or other
distortions of the images.

In this paper we present a new image registration
technique that uses spatial intensity gradient information to
direct the search for the position that yields the best match.
By taking more information about the images into account,
this technique is able to find the best match between two
images with far fewer comparisons of images than
techniques which examine the possible positions of
registration in some fixed order. Our technique takes
advantage of the fact that in many applications the two
images are already in approximate registration. This
technique can be generalized to deal with arbitrary linear
distortions of the image, including rotation. We then describe
a stereo vision system that uses this registration technique,
and suggest some further avenues for research toward
making effective use of this method in stereo image
understanding.

2. The registration problem

The translational image registration problem can be
characterized as follows: We are given functions F(x) and
G(x) which give the respective pixel values at each location
x in two images, where x is a vector. We wish to find the
disparity vector h which minimizes some measure of the
difference between F(x + h) and G(x), for x in some region of
interest R. (See figure 1).

Figure 1: The image registration problem

Typical measures of the difference between F(x + h) and
G(x) are:
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We will propose a more general measure of image difference,
of which both the L2 norm and the correlation are special
cases. The L1 norm is chiefly of interest as an inexpensive
approximation to the L2 norm.

From Proceedings of Imaging Understanding Workshop, pp. 121-130 (1981).
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3. Existing techniques

An obvious technique for registering two images is to
calculate a measure of the difference between the images at
all possible values of the disparity vector h—that is, to
exhaustively search the space of possible values of h. This
technique is very time consuming: if the size of the picture
G(x) is NXN, and the region of possible values of h is of size
MXM, then this method requires O(M2N2) time to compute.

Speedup at the risk of possible failure to find the best h
can be achieved by using a hill-climbing technique. This
technique begins with an initial estimate h0 of the disparity.
To obtain the next guess from the current guess hk, one
evaluates the difference function at all points in a small (say,
3X3) neighborhood of hk and takes as the next guess hk+1

that point which minimizes the difference function. As with all
hill-climbing techniques, this method suffers from the
problem of false peaks: the local optimum that one attains
may not be the global optimum. This technique operates in
O(M2N) time on the average, for M and N as above.

Another technique, known as the sequential similarity
detection algorithm (SSDA) [2], only estimates the error for
each disparity vector h. In SSDA, the error function must be
a cumulative one such as the L1 or L2 norm. One stops
accumulating the error for the current h under investigation
when it becomes apparent that the current h is not likely to
give the best match. Criteria for stopping include a fixed
threshold such that when the accumulated error exceeds
this threshold one goes on to the next h, and a variable
threshold which increases with the number of pixels in R
whose contribution to the total error have been added. SSDA
leaves unspecified the order in which the h’s are examined.

Note that in SSDA if we adopt as our threshold the
minimum error we have found among the h examined so far,
we obtain an algorithm similar to alpha-beta pruning in min-
max game trees [7]. Here we take advantage of the fact that
in evaluating minh ∑x d(x, h), where d(x, h) is the contribution
of pixel x at disparity h to the total error, the ∑x can only
increase as we look at more x’s (more pixels).

Some registration algorithms employ a coarse-fine search
strategy. See [6] for an example. One of the techniques
discussed above is used to find the best registration for the
images at low resolution, and the low resolution match is
then used to constrain the region of possible matches
examined at higher resolution. The coarse-fine strategy is
adopted implicitly by some image understanding systems
which work with a "pyramid" of images of the same scene at
various resolutions.

It should be nated that some of the techniques mentioned
so far can be combined because they concern orthogonal
aspects of the image registration problem. Hill climbing and
exhaustive search concern only the order in which the
algorithm searches for the best match,  and  SSDA  specifies

only the method used to calculate (an estimate of) the
difference function. Thus for example, one could use the
SSDA technique with either hill climbing or exhaustive
search, in addition a coarse-fine strategy may be adopted.

The algorithm we present specifies the order in which to
search the space of possible h's. In particular, our technique
starts with an initial estimate of h, and it uses the spatial
intensity gradient at each point of the image to modify the
current estimate of h to obtain an h which yields a better
match. This process is repeated in a kind of Newton-
Raphson iteration. If the iteration converses, it will do so in
O(M2 log N) steps on the average. This registration
technique can be combined with a coarse-fine strategy,
since is requires an initial estimate of the approximate
disparity h.

4. The registration algorithm

In this section we first derive an intuitive solution to the
one dimensional registration problem, and then we derive an
alternative solution which we generalize to multiple
dimensions. We then show how our technique generalizes to
other kinds of registration. We also discuss implementation
and performance of the algorithm.

4.1. One dimensional case
In the one-dimensional registration problem, we wish to

find the horizontal disparity h between two curves F(x) and
G(x) = F(x + h). This is illustrated in Figure 2.

Figure 2: Two curves to be matched

Our solution to this problem depends on a linear
approximation to the behavior of F(x) in the neighborhood of
x, as do all subsequent solutions in this paper. In particular,
for small h,
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The success of our algorithm requires h to be small enough
that this approximation is adequate. In section 4.3 we will
show how to extend the range of h’s over which this
approximation is adequate by smoothing the images.

The approximation to h given in (2) depends on x. A natural
method for combining the various estimates of h at various
values of x would be to simply average them:

h
G x F x

F x xx
≈ − ∑∑ ( ) ( )

' ( )
/ 1.                                                         (3)

We can improve this average by realizing that the linear
approximation in (1) is good where F(x) is nearly linear, and
conversely is worse where |F"(x)| is large. Thus we could
weight the contribution of each term to the average in (3) in
inverse proportion to an estimate of |F"(x)|. One such
estimate is

F x
G x F x

h
' ' ( )

' ( ) ' ( )≈ − .                                                              (4)

Since our estimate is to be used as a weight in an average,
we can drop the constant factor of 1/h in (4), and use as our
weighting function
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This in fact appeals to our intuition: for example, in figure 2,
where the two curves cross, the estimate of h provided by
(2) is 0, which is bad; fortunately, the weight given to this
estimate in the average is small, since the difference
between F'(x) and G'(x) at this point is large. The average
with weighting is
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where w(x) is given by (5).

Having obtained this estimate. we can then move F(x) by
our estimate of h, and repeat this procedure, yielding a type
of Newton-Raphson iteration. Ideally, our sequence of
estimates of h will converge to the best h. This iteration is
expressed by

h0 = 0,
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4.2. An alternative derivation
The derivation given above does not generalize well to two

dimensions because the two-dimensional linear
approximation occurs in a different form. Moreover, (2) is
undefined where F'(x) = 0, i.e. where the curve is level. Both
of these problems can be corrected by using the linear
approximation of equation (1) in the form

F(x + h) ≈ F(x) + hF’(x),                                                                  (8)

to find the h which minimizes the L2 norm measure of the
difference between the curves:
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This is essentially the same solution that we derived in (6),
but with the weighting function w(x) = F'(x)2 As we will see the
form of the linear approximation we have used here
generalizes to two or more dimensions. Moreover, we have
avoided the problem of dividing by 0, since in (9) we will
divide by 0 only if F'(x) = 0 everywhere (in which case h really
is undefined), whereas in (3) we will divide by 0 if F'(x) = 0
anywhere.

The iterative form with weighting corresponding to (7) is

h0 = 0,
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where w(x) is given by (5).

4.3. Performance
A natural question to ask is under what conditions and how

fast the sequence of hks converges to the real h. Consider
the case

F(x) = sin x,

G(x) = F(x + h) = sin (x + h).

It can be shown that both versions of the registration
algorithm given above will converge to the correct h for |h| <
π, that is, for initial misregistrations as large as one-half
wavelength. This suggests that we can improve the range of
convergence of the algorithm by suppressing high spatial
frequencies in the image, which can be accomplished by
smoothing the image, i.e. by replacing each pixel of the
image by a weighted average of neighboring pixels. The
tradeoff is that smoothing suppresses small details, and
thus makes the match less accurate. If the smoothing
window is much larger than the size of the object that we are
trying to match, the object may be suppressed entirely, and
so no match will be possible.
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Since lowpass filtered images can be sampled at lower
resolution with no loss of information, the above observation
suggests that we adopt a coarse-fine strategy. We can use
a low resolution smoothed version of the image to obtain an
approximate match. Applying the algorithm to higher
resolution images will refine the match obtained at lower
resolution.

While the effect of smoothing is to extend the range of
convergence, the weighting function serves to improve the
accuracy of the approximation, and thus to speed up the
convergence. Without weighting, i.e. with w(x) = 1, the
calculated disparity h1 of the first iteration of (10) with f(x) =
sin x falls off to zero as the disparity approaches one-half
wavelength. However, with w(x) as in (5), the calculatian of
disparity is much more accurate, and only falls off to zero at
a disparity very near one-half wavelength. Thus with w(x) as
in (5) convergence is faster for large disparities.

4.4. Implementation
Implementing (10) requires calculating the weighted sums

of the quantities F'G, F'F, and (F')2 over the region of interest
R. We cannot calculate F'(x) exactly, but for the purposes of
this algorithm, we can estimate it by

F x
F x x F x

x
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∆

,

and similarly for G'(x), where we choose ∆x appropriately
small (e.g. one pixel). Some more sophisticated technique
could be used for estimating the first derivatives, but in
general such techniques are equivalent to first smoothing
the function, which we have proposed doing for other
reasons, and then taking the difference.

4.5. Generalization to multiple dimensions
The one-dimensional registration algorithm given above

can be generalized to two or more dimensions. We wish to
minimize the L2 norm measure of error:
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where x and h are n-dimensional row vectors. We make a
linear approximation analogous to that in (8),
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which has much the same form as the one-dimensional
version in (9).

The discussions above of iteration, weighting, smoothing,
and the coarse-fine technique with respect to the one-
dimensional case apply to the n-dimensional case as well.
Calculating our estimate of h in the two-dimensional case
requires accumulating the weighted sum of five products ((G
- F)Fx, (G - F)Fy, F2

x, F2
y, and FxFy) over the region R, as

opposed to accumulating one product for correlation or the
L2 norm. However, this is more than compensated for,
especially in high-resolution images, by evaluating these
sums at fewer values of h.

4.6. Further generalizations
Our technique can be extended to registration between

two images related not by a simple translation, but by an
arbitrary linear transformation, such as rotation, scaling, and
shearing. Such a relationship is expressed by

G(x) = F(xA + h),

where A is a matrix expressing the linear spatial
tranformation between F(x) and G(x). The quantity to be
minimized in this case is

E F xA h G x
x

= + −∑ [ ( ) ( )]2 .

To determine the amount ∆A to adjust A and the amount ∆h
to adjust h, we use the linear approximation

F x A A h h( ( ) ( ))+ + +∆ ∆

≈ + + +F xA h x A h
x

F x( ) ( ) ( )∆ ∆ ∂
∂

 (11)

When we use this approximation the error expression again
becomes quadratic in the quantities to be minimized with
respect to. Differentiating with respect to these quantities
and setting the results equal to zero yields a set of linear
equations to be solved simultaneously.

This generalization is useful in applications such as stereo
vision,  where the two different views of the object will be diff-
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erent views, due to the difference of the viewpoints of the
cameras or to differences in the processing of the two
images. If we model this difference as a linear
transformation, we have (ignoring the registration problem
tor the moment)

F(x) = αG(x) + β.

where α may be thought of as a contrast adjustment and β
as a brightness adjustment. Combining this with the general
linear transformation registration problem, we obtain

E F xA h G x
x

= + − +∑ [ ( ) ( ( ) )]α β 2

as the quantity to minimize with respect to α, β, A, and h.
The minimization of this quantity, using the linear
approximation in equation (11), is straightforward. This is the
general form promised in section 2. If we ignore A, minimizing
this quantity is equivalent to maximizing the correlation
coefficient (see, for example, [3]); if we ignore α and β as
well, minimizing this form is equivalent to minimizing the L2

norm.

5. Application to stereo vision

In this section we show how the generalized registration
algorithm described above can be applied to extracting
depth information from stereo images.

5.1. The stereo problem
The problem of extracting depth information from a stereo

pair has in principle four components: finding objects in the
pictures, matching the objects in the two views, determining
the camera parameters, and determining the distances from
the camera to the objects. Our approach is to combine
object matching with solving for the camera parameters and
the distances of the objects by using a form of the fast
registration technique described above.

Techniques for locating objects include an interest
operator [6], zero crossings in bandpass-filtered images [5],
and linear features [1]. One might also use regions found by
an image segmentation program as objects.

Stereo vision systems which work with features at the
pixel level can use one of the registration techniques
discussed above. Systems whose objects are higher-level
features must use some difference measure and some
search technique suited to the particular feature being used.
Our registration algorithm provides a stereo vision system
with a fast method of doing pixel-level matching.

Many stereo vision systems concern themselves only with
calculating the distances to the matched objects. One must
also be aware that in any real application of stereo vision the
relative positions of the cameras will not be known             
with perfect accuracy.  Gennery [4] has shown how to  simul-

taneously solve for the camera parameters and the
distances of objects.

5.2. A mathematical characterization
The notation we use is illustrated in figure 3. Let c be the

vector of camera parameters that describe the orientation
and position of camera 2 with respect to camera 1's
coordinate system. These parameters are azimuth,
elevation, pan, tilt, and roll, as defined in [4]. Let x denote
the position of an image in the camera 1 film plane of an
object. Suppose the object is at a distance z from camera 1.
Given the position in picture 1 x and distance z of the object,
we could directly calculate the position p(x, z) that it must
have occupied in three-space. We express p with respect to
camera 1's coordinate system so that p does not depend on
the orientation of camera 1. The object would appear on
camera 2's film plane at a position q(p, c) that is dependent
on the object's position in three-space p and on the camera
parameters c. Let G(x) be the intensity value of pixel x in
picture 1, and let F(q) the intensity value of pixel q in picture
2. The goal of a stereo vision system is to invert the
relationship described above and solve for c and z, given x,
F and G.

Figure 3: Stereo vision

5.3. Applying the registration algorithm
First consider the case where we know the exact camera

parameters c, and we wish to discover the distance z of an
object. Suppose we have an estimate of the distance z. We
wish to see what happens to the quality of our match
between F and G as we vary z by an amount ∆z. The linear
approximation that we use here is
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This equation is due to the chain rule of the gradient
operator; ∂q/∂p is a matrix of partial derivatives of the
components of q with respect to the components of p, and
∂F/∂q is the spatial intensity gradient of the image F(q).      
To update  our   estimate of z,  we  want  to find  the ∆z  which
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satisfies
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where ∂F/∂z is given by (12).

On the other hand. suppose we know the distances zi, i =
1, 2, ..., n, of each of n objects from camera 1, but we don't
know the exact camera parameters c. We wish to determine
the effect of changing our estimate of the camera
parameters by an amount ∆c. Using the linear approximation
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As with the other techniques derived in this paper, weighting
and iteration improve the solutions for ∆z and ∆c derived
above.

5.4. An implementation
We have implemented the technique described above in a

system which functions well under human supervision. Our
program is capable of solving for the distances to the
objects, the five camera parameters described above, and a
brightness and contrast parameter for the entire scene, or
any subset of these parameters. As one would expect from
the discussion in section 4.3, the algorithm will converge to
the correct distances and camera parameters when the ini-
tial estimates of the zi's and c are sufficiently accurate that
we know the position in the camera 2 film plane of each ob-
ject to within a distance on the order of the size of the object.

A session with this program is illustrated in figures 4
through 10. The original stereo pair is presented in figure 4.
(Readers who can view stereo pairs cross-eyed will want to
hold the pictures upside down so that each eye receives the
correct view). The camera parameters were determined
independently by hand-selecting matching points and
solving for the parameters using the program described in
[4].

Figures 5 and 6 are bandpass-flitered versions of the
pictures in figure 4. Bandpass-filtered images are preferred
to lowpass-filtered images in finding matches because very
low spatial frequencies tend to be a result of shading
differences and carry no (or misleading) depth information.
The two regions enclosed in rectangles in the left view of
figure 5 have been hand-selected and assigned an initial
depth of 7.0 in units of the distance between cameras. I f
these were the actual depths, the corresponding objects
would be found in the right view at the positions indicated
figure 5. After seven depth-adjustment iterations, the
program found the matches shown in figure 6. The distances
are 6.05 for object 1 and 5.86 for object 2.

Figures 7 and 8 are bandpass-filtered with a band one
octave higher than figures 5 and 6. Five new points have
been hand-selected in the left view, reflecting the different
features which have become visible in this spatial frequency
range. Each has been assigned an initial depth equal to that
found for the corresponding larger region in figure 6. The
predicted position corresponding to these depths is shown in
the right view of figure 7. After five depth-adjustment
iterations, the matches shown in figure 8 were found. The
corresponding depths are 5.96 for object 1, 5.98 for object 2,
5.77 for object 3, 5.78 for object 4, and 6.09 for object 5.

Figures 9 and 10 are bandpass-filtered with a band yet
another octave higher than figures 7 and 8. Again five new
points have been hand-selected in the left view, reflecting
the different features which have become visible in this
spatial frequency range. Each has been assigned an initial
depth equal to that found for the corresponding region in
Figure 8. The predicted position corresponding to these
depths is shown in the right view of figure 9. After four depth-
adjustment iterations, the matches shown in figure 10 were
found. The corresponding depths are 5.97 for object 1, 5.98
for object 2, 5.80 For object 3, 5.77 for object 4, and 5.98 for
object 5.

5.5. Future research
The system that we have implemented at present requires

considerable hand-guidance. The following are the issues we
intend to investigate toward the goal of automating the
process.

• Providing initial depth estimates for objects: one should
be able to use approximate depths obtained from low
resolution images to provide initial depth estimates for
nearby objects visible only at higher resolutions. This
suggests a coarse-fine paradigm not just for the problem
of finding individual matches but for the problem of
extracting depth infortnation as a whole.

• Constructing a depth map: one could construct a depth
map from depth measurements by some interpolation
method, and refine the depth map with depth
measurements obtained from successively higher-
resolution views.

• Selecting points of interest: the various techniques
mentioned in section 3 should be explored.
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• Tracking sudden depth changes: the sudden depth
changes found at the edges of objects require some set
of higher-level heuristics to keep the matching algorithm
on track at object boundaries.

• Compensating for the different appearances of objects in
the two views: the general form of the matching
algorithm that allows for arbitrary linear transformations
should be useful here.
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Figure 5.

Figure 6.
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Figure 7.

Figure 8.
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Figure 9.

Figure 10.


