
COS 429: Computer Vision

Lecture 5
Wrap-up of SIFT

Then fitting, RANSAC, Hough transforms

Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Svetlana Lazebnik

Last time: interest point detection

SIFT descriptors

From feature detection to feature description

Slide: S. Lazebnik

Eliminating rotation ambiguity

• To assign a unique orientation to circular image
windows:

• Create histogram of local gradient directions in the patch
• Assign canonical orientation at peak of smoothed histogram

0 2 π

Slide: S. Lazebnik

SIFT detected features

• Detected features with characteristic scales and
orientations:

David G. Lowe. "Distinctive image features from scale-invariant
keypoints.” IJCV 60 (2), pp. 91-110, 2004.

Slide: S. Lazebnik

SIFT Descriptor

• Divide 16×16 window into 4×4 grid of cells
• Compute an orientation histogram for each cell

– 16 cells * 8 orientations = 128-dimensional descriptor

David G. Lowe. "Distinctive image features from scale-invariant
keypoints.” IJCV 60 (2), pp. 91-110, 2004.

Properties of Feature Descriptors

• Easily compared (compact, fixed-dimensional)
• Easily computed
• Invariant

– Translation
– Rotation
– Scale
– Change in image brightness
– Change in perspective?

Properties of SIFT

Extraordinarily robust detection and description technique
– Handles changes in viewpoint (~ 60 degree out-of-plane rotation)

– Handles significant changes in illumination (sometimes even day vs night)

– Fast and efficient—can run in real time
– Lots of code available

Source: N. Snavely

A hard feature matching problem

NASA Mars Rover images

Slide credit: S. Lazebnik

Answer below (look for tiny colored squares…)

NASA Mars Rover images
with SIFT feature matches 
Figure by Noah Snavely

Slide credit: S. Lazebnik

Going deeper

Scale-invariant regions (blobs)

Slide: S. Lazebnik
K. Mikolajczyk, C. Schmid, A performance evaluation of
local descriptors. IEEE PAMI 2005

Going deeper

Affine-adapted blobs

Slide: S. Lazebnik
K. Mikolajczyk, C. Schmid, A performance evaluation of
local descriptors. IEEE PAMI 2005

Fitting

Fitting

• We’ve learned how to
detect edges, corners,
blobs. Now what?

• We would like to form a
higher-level, more compact
representation of the
features in the image by
grouping multiple features
according to a simple model

Slide: S. Lazebnik

Source: K. Grauman

Fitting

• Choose a parametric model to represent a set of
features

simple model: lines simple model: circles

complicated model: car

Fitting: Issues

• Noise in the
measured feature
locations

• Extraneous data:
clutter (outliers),
multiple lines

• Missing data:
occlusions

Case study: Line detection

http://vision.caltech.edu/malaa/software/research/caltech-lane-detection/

Source: S. Lazebnik

Fitting

• If we know which points belong to the line, how do
we find the “optimal” line parameters?
• Least squares

Source: S. Lazebnik

Least squares minimization

Least squares minimization

Data: (x1, y1), …, (xn, yn)

Line equation: yi = m xi + b

Find (m, b) to minimize

Least squares line fitting

∑ =
−−=

n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

YXXBX TT =

Y =

2

64
y1
...
yn

3

75

where

X =

2

64
x1 1
...

...
xn 1

3

75 B =

m
b

�

Bad:
1) Fails completely for

vertical lines
2) Not rotation-invariant

Good: closed-form solution

Total least squares

(xi, yi)

ax+by=d

(a bit more detail at the end of the slide deck, posted online)

Total Least Squares

1. Translate center of mass to origin

✴

Total Least Squares

2. Compute covariance matrix, 
find eigenvector w. largest eigenvalue

Least squares: Robustness to noise

Least squares fit to the red points:

Source: S. Lazebnik

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Source: S. Lazebnik

Outliers

• Least squares assumes Gaussian errors
• Outliers: points with extremely low probability

of occurrence (according to Gaussian
statistics)
– Can be result of data association problems

• Can have strong influence on least squares

Robust Estimation

• Goal: develop parameter estimation methods
insensitive to small numbers of large errors

• General approach: try to give large deviations less
weight

• e.g., median is a robust measure, mean is not

Least Absolute Value Fitting

• Minimize  
 
instead of

• Points far away from trend get comparatively 
less influence

X

i

|yi � f(xi, a, b, . . .)|
X

i

(yi � f(xi, a, b, . . .))
2 (mean)

(median)

Outlier detection and rejection

• Lots of methods for fitting models in the presence
of outliers
• e.g., look up “iteratively reweighed least

squares”
• Often not guaranteed to converge; require good

starting point
• (least squares estimator is often a good starting

point)

RANSAC

RANSAC

• RANdom SAmple Consensus: designed for 
bad data (in best case, up to 50% outliers)

• Take many random subsets of data
– Choose a small subset uniformly at random
– Fit a model to the data
– Find all remaining points that are “close” to the model

and reject the rest as outliers

• At the end, select model that agreed with most
points

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for line fitting example

Source: R. Raguram

RANSAC for line fitting example

Least-squares fit

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

2. Hypothesize a
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

2. Hypothesize a
model

3. Compute error
function

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-
and-verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-
and-verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-
and-verify loop

Uncontaminated sample

Source: R. Raguram

RANSAC for line fitting example

1. Randomly
select minimal
subset of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize-
and-verify loop

Source: R. Raguram

RANSAC for line fitting

Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining

points (i.e., points whose distance from the line is
less than t)

• If there are d or more inliers, accept the line and
refit using all inliers

Source: S. Lazebnik

Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95)
– Zero-mean Gaussian noise with std. dev. σ: t = 1.96 σ

• Number of samples N
• Choose N so that, with probability p, at least one random sample is

free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d
• Should match expected inlier ratio

Source: M. Pollefeys

RANSAC pros and cons

• Pros
• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to tune
• Doesn’t work well for low inlier ratios

(too many iterations, or can fail
completely)

• Can’t always get a good initialization  
of the model based on the minimum  
number of samples

Source: S. Lazebnik

Hough transform

Voting schemes

• Let each feature vote for all the models that are
compatible with it

• Hopefully the noise features will not vote
consistently for any single model

• Missing data doesn’t matter as long as there are
enough features remaining to agree on a good
model

Source: S. Lazebnik

Hough transform

• An early type of voting scheme
• General outline:

• Discretize parameter space into bins
• For each feature point in the image, put a vote in every bin in the

parameter space that could have generated this point
• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.
Int. Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

Source: S. Lazebnik

Parameter space representation

• A line in the image corresponds to a point in
Hough space

Source: S. Seitz

Image space Hough parameter space

b0

m0

Parameter space representation

Source: S. Seitz

Image space Hough parameter space

• What does a point (x0, y0) in the image space map
to in the Hough space?
• Answer: the solutions of b = –x0m + y0, which is a line in Hough space

(x0, y0)

Parameter space representation

• What does a point (x0, y0) in the image space map
to in the Hough space?
• Answer: the solutions of b = –x0m + y0, which is a line in Hough space

Source: S. Seitz

Image space Hough parameter space

(x0, y0)

Parameter space representation

• Where does the line that contains both (x0, y0) and
(x1, y1) map to?

b = –x1m + y1

Source: S. Seitz

Image space Hough parameter space

(x0, y0)

(x1, y1)

Parameter space representation

• Where does the line that contains both (x0, y0) and
(x1, y1) map to?
• It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz

Hough Transform for Lines

m

b

Hough Transform for Lines

m

b

Bucket Selection

• How to select bucket size?
– Too small: poor performance on noisy data
– Too large: poor accuracy, possibility of false positives

• Large buckets + verification and refinement
– Problems distinguishing nearby lines

• Be smarter at selecting buckets
– Use gradient information to select subset of buckets
– More sensitive to noise

Difficulties with Hough Transform for Lines

• Slope / intercept parameterization not ideal
– Non-uniform sampling of directions
– Can’t represent vertical lines

• Angle / distance parameterization
– Line represented as (r,θ) where  

x cos θ + y sin θ = r

r

θ

Angle / Distance Parameterization

• Advantage: uniform parameterization  
of directions

• Disadvantage: space of all lines passing through  
a point becomes a sinusoid in (r,θ) space

r

θ

Hough Transform Results

Forsyth & Ponce

Hough Transform with Noise

Forsyth & Ponce

Peak gets fuzzy and
hard to locate

Random points

Source: S. Lazebnik

Uniform noise can
lead to spurious
peaks in the array

Simplifying Hough Transforms

• Use local gradient information to reduce the
search space

• Another trick: use prior information
– For example, if looking for lines in a particular direction,

can reduce the search space even further

Fitting lines: Overview

• If we know which points belong to the line, how do
we find the “optimal” line parameters?
• Least squares 

• What if there are outliers?
• Robust fitting, RANSAC  

• What if there are many lines?
• Voting methods: RANSAC, Hough transform 

• What if we’re not even sure it’s a line?
• Model selection (not covered)

Source: S. Lazebnik

Hough transform beyond lines

Hough Transform

• What else can be detected using Hough
transform?

• Anything, but dimensionality is key

Hough transform for circles

• How many dimensions will the parameter space
have?

• Given an edge point, what are all possible bins
that it can vote for?

• What about an oriented edge point?

Source: S. Lazebnik

Hough transform for circles

),(),(yxIryx ∇+

x

y

(x,y)
x

y

r

),(),(yxIryx ∇−

image space Hough parameter space

Source: S. Lazebnik

Generalized Hough transform

• We want to find a template defined by its
reference point (center) and several distinct types
of landmark points in stable spatial configuration

c

Template

Source: S. Lazebnik

Generalized Hough transform

• Template representation: for each type
of landmark point, store all possible
displacement vectors towards the
center

Model

Template

Source: S. Lazebnik

Generalized Hough transform

• Detecting the template:
• For each feature in a new image, look up that

feature type in the model and vote for the
possible center locations associated with that
type in the model

Model

Test image

Source: S. Lazebnik

Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical
Learning in Computer Vision 2004

training image

visual codeword with 
displacement vectors

Source: S. Lazebnik

Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical
Learning in Computer Vision 2004

test image

Source: S. Lazebnik

Hough transform: Discussion

• Pros
• Can deal with non-locality and occlusion
• Can detect multiple instances of a model
• Some robustness to noise: noise points unlikely to contribute

consistently to any single bin

• Cons
• Complexity of search time increases exponentially with the number

of model parameters
• Non-target shapes can produce spurious peaks in parameter space
• It’s hard to pick a good grid size  

Source: S. Lazebnik

Next time: matching & alignment

Find (a, b, d) to minimize the sum of
squared perpendicular distances
between points (xi, yi) and line
ax+by=d (a2+b2=1):

Total least squares

∑ =
−+=

n

i ii dybxaE
1

2)(
(xi, yi)

ax+by=d

E = (UN)T (UN)

U =

2

64
x1 � x̄ y1 � ȳ

...
...

xn � x̄ yn � ȳ

3

75 N =

a
b

�
where

With a bit of algebra, can show that the
solution will amount to minimizing:

Solution to minimizing E,
subject to ||N||2 = 1:

eigenvector of UTU  
associated with the
smallest eigenvalue

