
COS 429: Computer Vision

Lecture 5
Wrap-up of SIFT

Then fitting, RANSAC, Hough transforms

Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Svetlana Lazebnik



Last time: interest point detection



SIFT descriptors



From feature detection to feature description

Slide: S. Lazebnik



Eliminating rotation ambiguity

• To assign a unique orientation to circular image 
windows: 

• Create histogram of local gradient directions in the patch 
• Assign canonical orientation at peak of smoothed histogram

0 2 π

Slide: S. Lazebnik



SIFT detected features

• Detected features with characteristic scales and 
orientations:

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Slide: S. Lazebnik



SIFT Descriptor

• Divide 16×16 window into 4×4 grid of cells
• Compute an orientation histogram for each cell

– 16 cells * 8 orientations = 128-dimensional descriptor

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 



Properties of Feature Descriptors

• Easily compared (compact, fixed-dimensional)
• Easily computed
• Invariant

– Translation
– Rotation
– Scale
– Change in image brightness
– Change in perspective?



Properties of SIFT

Extraordinarily robust detection and description technique 
– Handles changes in viewpoint (~ 60 degree out-of-plane rotation) 

– Handles significant changes in illumination (sometimes even day vs night) 

– Fast and efficient—can run in real time 
– Lots of code available

Source: N. Snavely



A hard feature matching problem

NASA Mars Rover images

Slide credit: S. Lazebnik



Answer below (look for tiny colored squares…)

NASA Mars Rover images 
with SIFT feature matches 
Figure by Noah Snavely

Slide credit: S. Lazebnik



Going deeper

Scale-invariant regions (blobs)

Slide: S. Lazebnik
K. Mikolajczyk, C. Schmid, A performance evaluation of 
local descriptors. IEEE PAMI 2005 



Going deeper

Affine-adapted blobs

Slide: S. Lazebnik
K. Mikolajczyk, C. Schmid, A performance evaluation of 
local descriptors. IEEE PAMI 2005 



Fitting



Fitting

• We’ve learned how to 
detect edges, corners, 
blobs. Now what?

• We would like to form a 
higher-level, more compact 
representation of the 
features in the image by 
grouping multiple features 
according to a simple model

Slide: S. Lazebnik



Source: K. Grauman

Fitting

• Choose a parametric model to represent a set of 
features

simple model: lines simple model: circles

complicated model: car



Fitting: Issues

• Noise in the 
measured feature 
locations 

• Extraneous data: 
clutter (outliers), 
multiple lines 

• Missing data: 
occlusions

Case study: Line detection

http://vision.caltech.edu/malaa/software/research/caltech-lane-detection/

Source: S. Lazebnik



Fitting

• If we know which points belong to the line, how do 
we find the “optimal” line parameters?
• Least squares

Source: S. Lazebnik



Least squares minimization



Least squares minimization



Data: (x1, y1), …, (xn, yn) 

Line equation: yi = m xi + b 

Find (m, b) to minimize 

Least squares line fitting
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Bad: 
1) Fails completely for 

vertical lines
2) Not rotation-invariant

Good: closed-form solution



Total least squares

(xi, yi)

ax+by=d

(a bit more detail at the end of the slide deck, posted online)



Total Least Squares

1. Translate center of mass to origin

✴



Total Least Squares

2. Compute covariance matrix, 
find eigenvector w. largest eigenvalue



Least squares: Robustness to noise

Least squares fit to the red points:

Source: S. Lazebnik



Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Source: S. Lazebnik



Outliers

• Least squares assumes Gaussian errors
• Outliers: points with extremely low probability 

of occurrence (according to Gaussian 
statistics)
– Can be result of data association problems

• Can have strong influence on least squares



Robust Estimation

• Goal: develop parameter estimation methods 
insensitive to small numbers of large errors

• General approach: try to give large deviations less 
weight

• e.g., median is a robust measure, mean is not



Least Absolute Value Fitting

• Minimize  
 
instead of

• Points far away from trend get comparatively 
less influence

X

i

|yi � f(xi, a, b, . . . )|
X

i

(yi � f(xi, a, b, . . . ))
2 (mean)

(median)



Outlier detection and rejection

• Lots of methods for fitting models in the presence 
of outliers
• e.g., look up “iteratively reweighed least 

squares”
• Often not guaranteed to converge; require good 

starting point
• (least squares estimator is often a good starting 

point)



RANSAC



RANSAC

• RANdom SAmple Consensus: designed for 
bad data (in best case, up to 50% outliers)

• Take many random subsets of data
– Choose a small subset uniformly at random
– Fit a model to the data
– Find all remaining points that are “close” to the model 

and reject the rest as outliers

• At the end, select model that agreed with most 
points

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and 
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981. 



RANSAC for line fitting example

Source: R. Raguram



RANSAC for line fitting example

Least-squares fit

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Uncontaminated sample

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Source: R. Raguram



RANSAC for line fitting

Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining 

points (i.e., points whose distance from the line is 
less than t)

• If there are d or more inliers, accept the line and 
refit using all inliers

Source: S. Lazebnik



Choosing the parameters

• Initial number of points s 
• Typically minimum number needed to fit the model

• Distance threshold t 
• Choose t so probability for inlier is p (e.g. 0.95) 
– Zero-mean Gaussian noise with std. dev. σ:    t = 1.96 σ

• Number of samples N 
• Choose N so that, with probability p, at least one random sample is 

free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d 
• Should match expected inlier ratio

Source: M. Pollefeys



RANSAC pros and cons

• Pros
• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to tune
• Doesn’t work well for low inlier ratios 

(too many iterations, or can fail 
completely)

• Can’t always get a good initialization  
of the model based on the minimum  
number of samples

Source: S. Lazebnik



Hough transform



Voting schemes

• Let each feature vote for all the models that are 
compatible with it

• Hopefully the noise features will not vote 
consistently for any single model

• Missing data doesn’t matter as long as there are 
enough features remaining to agree on a good 
model

Source: S. Lazebnik



Hough transform

• An early type of voting scheme
• General outline: 

• Discretize parameter space into bins
• For each feature point in the image, put a vote in every bin in the 

parameter space that could have generated this point
• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 
Int. Conf. High Energy Accelerators and Instrumentation, 1959 

Image space Hough parameter space

Source: S. Lazebnik



Parameter space representation

• A line in the image corresponds to a point in 
Hough space

Source: S. Seitz

Image space Hough parameter space

b0

m0



Parameter space representation

Source: S. Seitz

Image space Hough parameter space

• What does a point (x0, y0) in the image space map 
to in the Hough space?
• Answer: the solutions of b = –x0m + y0, which is a line in Hough space

(x0, y0)



Parameter space representation

• What does a point (x0, y0) in the image space map 
to in the Hough space?
• Answer: the solutions of b = –x0m + y0, which is a line in Hough space

Source: S. Seitz

Image space Hough parameter space

(x0, y0)



Parameter space representation

• Where does the line that contains both (x0, y0) and 
(x1, y1) map to?

b = –x1m + y1

Source: S. Seitz

Image space Hough parameter space

(x0, y0)

(x1, y1)



Parameter space representation

• Where does the line that contains both (x0, y0) and 
(x1, y1) map to?
• It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1 

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz



Hough Transform for Lines

m

b



Hough Transform for Lines

m

b



Bucket Selection

• How to select bucket size?
– Too small: poor performance on noisy data
– Too large: poor accuracy, possibility of false positives

• Large buckets + verification and refinement
– Problems distinguishing nearby lines

• Be smarter at selecting buckets
– Use gradient information to select subset of buckets
– More sensitive to noise



Difficulties with Hough Transform for Lines

• Slope / intercept parameterization not ideal
– Non-uniform sampling of directions
– Can’t represent vertical lines

• Angle / distance parameterization
– Line represented as (r,θ ) where  

x cos θ + y sin θ = r

r

θ



Angle / Distance Parameterization

• Advantage: uniform parameterization  
of directions

• Disadvantage: space of all lines passing through  
a point becomes a sinusoid in (r,θ ) space

r

θ



Hough Transform Results

Forsyth & Ponce



Hough Transform with Noise

Forsyth & Ponce

Peak gets fuzzy and 
hard to locate



Random points

Source: S. Lazebnik

Uniform noise can 
lead to spurious 
peaks in the array



Simplifying Hough Transforms

• Use local gradient information to reduce the 
search space

• Another trick: use prior information
– For example, if looking for lines in a particular direction, 

can reduce the search space even further



Fitting lines: Overview

• If we know which points belong to the line, how do 
we find the “optimal” line parameters?
• Least squares 

• What if there are outliers?
• Robust fitting, RANSAC  

• What if there are many lines?
• Voting methods: RANSAC, Hough transform 

• What if we’re not even sure it’s a line?
• Model selection (not covered)

Source: S. Lazebnik



Hough transform beyond lines



Hough Transform

• What else can be detected using Hough 
transform?

• Anything, but dimensionality is key



Hough transform for circles

• How many dimensions will the parameter space 
have?

• Given an edge point, what are all possible bins 
that it can vote for?

• What about an oriented edge point?

Source: S. Lazebnik



Hough transform for circles 
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image space Hough parameter space

Source: S. Lazebnik



Generalized Hough transform

• We want to find a template defined by its 
reference point (center) and several distinct types 
of landmark points in stable spatial configuration

c

Template

Source: S. Lazebnik



Generalized Hough transform

• Template representation: for each type 
of landmark point, store all possible 
displacement vectors towards the 
center

Model

Template

Source: S. Lazebnik



Generalized Hough transform

• Detecting the template:
• For each feature in a new image, look up that 

feature type in the model and vote for the 
possible center locations associated with that 
type in the model

Model

Test image

Source: S. Lazebnik



Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 
Learning in Computer Vision 2004

training image

visual codeword with 
displacement vectors

Source: S. Lazebnik



Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 
Learning in Computer Vision 2004

test image

Source: S. Lazebnik



Hough transform: Discussion

• Pros
• Can deal with non-locality and occlusion
• Can detect multiple instances of a model
• Some robustness to noise: noise points unlikely to contribute 

consistently to any single bin

• Cons
• Complexity of search time increases exponentially with the number 

of model parameters
• Non-target shapes can produce spurious peaks in parameter space
• It’s hard to pick a good grid size  

Source: S. Lazebnik



Next time: matching & alignment



Find (a, b, d) to minimize the sum of 
squared perpendicular distances 
between points (xi, yi) and line 
ax+by=d (a2+b2=1):

Total least squares
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With a bit of algebra, can show that the 
solution will amount to minimizing:

Solution to minimizing E, 
subject to ||N||2 = 1:  

eigenvector of UTU  
associated with the 
smallest eigenvalue


