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What does activity recognition involve?



Detection: are there people?



Objects and scenes: where are they?
chair

walker

floor

indoor scene

long term care 
facility



Action recognition: what are they doing?
squatfall

stand
run



Intention/social role: why are they doing this?
comfort

watch
get help



Group activity recognition: what is the overall 
situation?

help the 
fallen person



help the 
fallen person

chair

walker

floor

indoor scene

long term care 
facility

comfort

watch

get help

squatfall

stand

run

These are inter-related problems:
model structures



Desiderata for Activity Recognition Models
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Label structure Temporal structure Group structure

chair
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indoor scene

long term care facility

time

help the fallen 
person
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Image Classification 

Indoor
outdoor	
man-made outdoor	

natural

leisure sports
field

man-made	
elements

cabins	
houses

trench pitcher	
mound

batter’s	
box

play-
ground

barn

field bat base
ball

grass person building

• A natural image can be categorized with labels at 
different concept layers

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Label Correlation Helps

Indoor outdoor	
man-
made

outdoor	
natural

leisure man-
made	
elements

cabins	
houses

sports
field

field bat base
ball

grass person building

trench pitcher	
mound

batter’s	
box

play-
ground

barn

Positive	correlation
Negative	correlation

• Such categorization at different concept layers can 
be modeled with label graphs

• It is natural and straightforward to leverage label 
correlation



Goal: A generic label relation model
• Infer the entire label space from visual input
• Infer missing labels given a few fixed provided labels

Visual	
Architecture

(CNN)

Initial
Activation

Inference
Machine	

on
Knowledge
Graph

Refined	
Probability

Back-propagate	Gradient	from	Loss	Function
An	End-to-end	Trainable	

System

Metadata	
or	

Partial	Label

SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Top-down Inference Neural Network

Visual
Architect

ure

Top-down	
inference

• Refine activations for each label
• Pass messages top-down and 

within each layer of label graph

a
i
t = Vt�1,t · ait�1 +Ht · xi

t + bt

Activation	
at	current	
concept	
layer

Vertical	weight	
propagates	
information	

across	concept	
layers

Horizontal	weight	
propagates	
information	

within	concept	
layers

Activation	at	last	concept	layer

xi
t = Wt · CNN(Ii) + bt

Produce	initial	visual	activation	
from	CNN

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Bidirectional Inference Neural Network 
(BINN)

Bidirectional	
inference

Visual
Architect

ure

�!
a

i
t =
�!
V t�1,t ·�!a i

t�1 +
�!
H t · xi

t +
�!
b t,

 �
a

i
t =
 �
V t+1,t · �a i

t+1 +
 �
H t · xi

t +
 �
b t,

a
i
t =
�!
U t ·�!a i

t +
 �
U t · �a i

t + bt

• Bidirectional inference to make information propagate 
across entire label structure

• Inference in each direction independently and blend 
results



Structured Inference Neural Network 
(SINN)

Class

Zebra

Leopard

Cat

Hound

Attributes

Fast

Striped

Spotted

Domestic

Positive Correlation

Negative Correlation

• BINN is hard to train
• Regularize connections with 

prior knowledge about label 

correlations

• Decompose connections 

into Positive correlation + 

Negative correlation

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



ReLU
neuron	is	
essential to	
keep	
positive/neg
ative	
contribution

�(x) = ReLU(x)

• Evolve BINN formulation with regularization in connections

Structured	
inference

Visual
Architect

ure
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Structured	Inference	Neural	Network	(SINN)



Prediction from Purely Visual Input

SINN Prediction
Information PropagationVisual Activation Output Activation Prediction

outdoor 
manmade

sports field

batter box

bat, people, 
water

CNN

• Visual architecture (e.g. Convolutional Neural Network) 
produces visual activation

• SINN implements information propagation bidirectionally
and produces refined output activation 

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Prediction with Partially Observed Labels

SINN Prediction with Partial Human Labels

Activations from partial human labels

Information PropagationVisual Activation Output Activation Prediction 

sports field

batter box

baseball, bat, 
people, field

CNN

Label: Outdoor Man-made Reverse Sigmoid

• Reverse Sigmoid (logit) neuron produces activation 
from Partial labels

• SINN adapts both visual activation and activation 
from partial labels to infer the remaining labels



Reverse sigmoid (logit): 
produce activation from label

a(y) = log
1

1� g(y)
,

g(y) =

(
y + ✏, if y = 0,

y � ✏, if y = 1.

• Reverse	the	sigmoid	function	to	produce	sigmoid	input

Use	a	small	epsilon to	keep	
numerical	stability	(0.005)

Inverse	of	sigmoid

y = �(x) =
1

1 + exp�x



Image Datasets 
• Evaluate with two types of experiments on three datasets

Animals	with	Attributes
[Lampert et	al.	2009]

Labels
28	taxonomy	
terms
50	animal	classes
85	attributes

• Taxonomy	terms	are	
constructed	from	Word	Net	
as	[Hwang	et	al.	2012]

• Knowledge	graph	constructed	
by	combining	class-attributes	
graph	with	taxonomy	graph

Task:		predict	entire	label	
set

NUS-WIDE
[Chua	et	al.	2009]

Labels
698	image	
groups
81	concepts
1000	tags

Task:		predict	81	concepts	
with	observing	
tags/image	groups

• Knowledge	graph	produced	by	
Word	Net	using	semantic	
similarity

• 698	image	groups	constructed	
from	image	meta	data

SUN	397
[Xiao	et	al.	2012]

Labels
3	coarse
16	general
397	fine-
grained

Task	1:		predict	entire	
label	set
Task	2:		predict	fine-
grained	scene	given	
coarse	scene	category	
• Knowledge	graph	provided	by	

dataset



Ex1: Inference from visual input

75

85

95

28	Taxonomy	
Terms

50	Animal	
Classes

85	Attributes

Animal	With	Attributes

CNN	+	Logistics CNN	+	BINN CNN	+	SINN

50

70

90

3	Coarse	Scene	
Categories

16	General	Scene	
Categories

397	Fine-grained	
Scene	Categories

SUN	397

CNN	+	Logistics CNN	+	BINN CNN	+	SINN

• Produce predictions on entire label space
• Evaluate on each concept layer (measured by mAP per 

class)
• Consistent improvement over baselines on different concept 

layers



Ground Truth: railroad
CNN + Logistic: statue 
buildings person
Our Predictions: railroad
person sky

Ground Truth: animal grass 
water dog
CNN + Logistic: grass 
person animal
Our Predictions: water 
animal dog

Ground Truth: rainbow 
clouds sky
CNN + Logistic: clouds 
water sky
Our Predictions: rainbow 
clouds sky

Ground Truth: food water
CNN + Logistic: food 
plants flower
Our Predictions: food
plants water

Correct	predictions	are	marked	in	blue while	incorrect	are	marked	in	red

• Produce predictions given partial 1k tags and 698 
image groups

Ex2: Inference from partial labels (NUS-WIDE)



Ex2: Inference from partial labels (NUS-WIDE)
69.24

40

45

50

55

60

65

70

mAP	per	class
65

70

75

80

85

mAP	per	image

1k	tags	+	groups	
+	CNN	+	SINN
1k	tags	+	CNN	+	
SINN
1k	tags	+	groups	
+	CNN	+	Logistics

1k	tags	+	groups	
+	Logistics

CNN	+	Logistics

1k	tags	+	Logistics

5k	tags	+	Tag	neighbors	
[Johnson	et.	al.	2015]
5k	tags	+	Logistics
[Johnson	et.	al.	2015]

• Evaluate on standard
81 ground truth
classes of NUSWIDE

• Outperform all 
baselines by large 
margin

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Correct	predictions	are	marked	in	blue while	incorrect	are	marked	in	red

• Produce predictions given coarse-level labels (3 coarse 
categories)

Ex2: Inference with partial labels (SUN397)

CNN + Logistic: campus 
Observed Label:
outdoor/man-made
Our Predictions: abbey
Ground Truth: abbey

CNN + Logistic: building 
facade
Observed Label:  
outdoor/man-made
Our 
Predictions: library/outdoor 
Ground Truth: 
library/outdoor

CNN + Logistic: patio
Observed Label:
outdoor/natural;
outdoor/man-made
Our Predictions:  picnic
area
Ground Truth: picnic
area

CNN + Logistic: 
operating room
Observed Label: indoor
Our 
Predictions: dentists
office
Ground Truth: 
dentists office



Ex2: Inference with partial labels (SUN397)

40

50

60

70

Multiclass	Accuracy mAP	per	Class

SUN	397

Image	Features	+	SVM	[Xiao	et	al.	2012]
CNN	+	Logistics
CNN	+	BINN
CNN	+	SINN
CNN	+	Partial	Labels	+	Logistics
CNN	+	Partial	Labels	+	SINN

• Evaluate on 397 fine-
grained scene 
categories

• Significantly improved 
performance

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Video Dataset: YouTube-8M
• Youtube-8M V1 / V2

• 8 million / 7 million videos
• ~500K hours of video
• 4800 possible labels
• 1.8 / 3.4 labels per video 

average

• Inception V3 frame features
• Neural network audio 

features
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Abstract

Videos are a rich source of high-dimensional structured

data, with a wide range of interacting components at vary-

ing levels of granularity. In order to improve understanding

of unconstrained internet videos, it is important to consider

the role of labels at separate levels of abstraction. In this

paper, we consider the use of the Bidirectional Inference

Neural Network (BINN) for performing graph-based infer-

ence in label space for the task of video classification. We

take advantage of the inherent hierarchy between labels at

increasing granularity. The BINN is evaluated on the first

and second release of the YouTube-8M large scale multi-

label video dataset. Our results demonstrate the effective-

ness of BINN, achieving significant improvements against

baseline models.

1. Introduction

The proliferation of large-scale video datasets ([16],
[19], [1], [13]), coupled with increasingly powerful com-
putational resources allow for applications of learning on
an unprecedented level. In particular, the task of labelling
videos is of relevance with the massive flow of unlabelled
user-uploaded video on social media. The complex, rich na-
ture of video data strongly motivates the use of deep learn-
ing, and has seen measurable success in recent applications
of video classification, captioning, and question answering
([6], [23], [22]).

Different labels such as outdoors and mountain, or beer

and Irish pub have intrinsic dependencies on each other that
are difficult for standard deep learning methods to model, as
labels are generally assumed to be pairwise independent.
Graphical models have seen promising results on incor-
porating label-space inference in image classification ([5],
[9]). In particular, the work in [9] develops a Structured
Inference Neural Network (SINN) and a Bidirectional In-
ference Neural Network (BINN) that performs hierarchical
inference for image labelling. However, an image is static
stream of data relative to video.

Models of temporal dependencies in sequential data have

CNN CNN CNN

AnimalCat
Bread

Adorable

Input Frames

Feature Extraction

Feature Aggregation

Coarse−Grained ClassificationFine−Grained Classification

Hierarchical
Label Inference

Figure 1. Diagram of proposed model for performing video label
inference. Each frame of a video is fed through a pre-trained CNN,
followed by a mean pooling for temporal aggregation. Inference
is performed in label space, and predictions are made at multiple
levels of granularity.

seen common use in both computer vision and natural lan-
guage processing. In this paper, we investigate methods of
incorporating recent methods of label inference with convo-
lutional neural networks, effectively combining spatial and
hierarchichal information into a single end-to-end trainable
network. Previous successful approaches to the problem of
video classification include Convolutional Neural Networks
(CNNs) [14], Recurrent Neural Networks (RNNs) such
as LSTMs ([6], [17]), Improved Dense Trajectories (IDT)
[24], and Histogram of Oriented Optical Flows (HOOF) [2].
However, all of these previous models discount the hier-
archical dependencies between labels that could be lever-
aged to improve predictions – this paper is an attempt at
resolving this disconnect. The explicit contribution of this
paper is to extend the application of the BINN previously
presented in [9] as a module for performing video classi-

1

Nauata, Smith, Mori, Hierarchical Label Inference for Video Classification CVPR Workshops 2017



Results

27

Method

mAP / gAP

YouTube-8M v1 YouTube-8M v2

LSTM [Abu El Haija
et al.] 26.6 / N/A

Logistic regression 
[Abu El Haija et al.] 28.1 / N/A

CNN features 27.98 / 60.34 36.84 / 70.31

BINN 31.18 / 64.74 40.19 / 76.33
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The proliferation of large-scale video datasets ([16],
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an unprecedented level. In particular, the task of labelling
videos is of relevance with the massive flow of unlabelled
user-uploaded video on social media. The complex, rich na-
ture of video data strongly motivates the use of deep learn-
ing, and has seen measurable success in recent applications
of video classification, captioning, and question answering
([6], [23], [22]).
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and Irish pub have intrinsic dependencies on each other that
are difficult for standard deep learning methods to model, as
labels are generally assumed to be pairwise independent.
Graphical models have seen promising results on incor-
porating label-space inference in image classification ([5],
[9]). In particular, the work in [9] develops a Structured
Inference Neural Network (SINN) and a Bidirectional In-
ference Neural Network (BINN) that performs hierarchical
inference for image labelling. However, an image is static
stream of data relative to video.

Models of temporal dependencies in sequential data have
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Figure 1. Diagram of proposed model for performing video label
inference. Each frame of a video is fed through a pre-trained CNN,
followed by a mean pooling for temporal aggregation. Inference
is performed in label space, and predictions are made at multiple
levels of granularity.

seen common use in both computer vision and natural lan-
guage processing. In this paper, we investigate methods of
incorporating recent methods of label inference with convo-
lutional neural networks, effectively combining spatial and
hierarchichal information into a single end-to-end trainable
network. Previous successful approaches to the problem of
video classification include Convolutional Neural Networks
(CNNs) [14], Recurrent Neural Networks (RNNs) such
as LSTMs ([6], [17]), Improved Dense Trajectories (IDT)
[24], and Histogram of Oriented Optical Flows (HOOF) [2].
However, all of these previous models discount the hier-
archical dependencies between labels that could be lever-
aged to improve predictions – this paper is an attempt at
resolving this disconnect. The explicit contribution of this
paper is to extend the application of the BINN previously
presented in [9] as a module for performing video classi-

1



Summary

• Inference in structured label space

• Relations within and across levels of a label space

• Model positive and negative correlations between 
labels in end-to-end trainable model



Desiderata for Activity Recognition Models
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MultiTHUMOS

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

THUMOS MultiTHUMOS

Annotations 6,365 38,690

Classes 20 65

Labels	per	frame 0.3 1.5

Classes	per	video 1.1 10.5

Max	actions	per	frame 2 9

Max	actions	per	video 3 25

Dense labels on 30 hours of THUMOS’14



Standard LSTM: Single input, single output

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

Modeling dense, multilabel actions 
Frame class predictions

t

……

Input video frames

Hochreiter 1997, Donahue 2014



Standard LSTM: Single input, single output

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

Modeling dense, multilabel actions 
Frame class predictions

t

……

Input video frames

All information about previous 
frames must be captured by 
current hidden state

Hochreiter 1997, Donahue 2014



Frame class predictions

t

……

MultiLSTM: Multiple inputs, multiple outputsStandard LSTM: Single input, single output

Input video frames

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

Frame class predictions

t

……

Input video frames

MultiLSTM



Frame class predictions

t

……

MultiLSTM: Multiple inputs, multiple outputsStandard LSTM: Single input, single output

Input video frames

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

Frame class predictions

t

……

Input video frames

MultiLSTM
Expanded temporal receptive field 
of input and output connections 
reduces burden on hidden state



Frame class predictions Frame class predictions

t

……

MultiLSTM: Multiple inputs, multiple outputsStandard LSTM: Single input, single output

Input video frames

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

t

……

Input video frames

MultiLSTM

Soft attention over multiple inputs:



Frame class predictions Frame class predictions

t

……

MultiLSTM: Multiple inputs, multiple outputsStandard LSTM: Single input, single output

Input video frames

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

t

……

Input video frames

MultiLSTM

Soft attention over multiple inputs:

Weighted average over multiple outputs:



Frame class predictions Frame class predictions

t

……

MultiLSTM: Multiple inputs, multiple outputsStandard LSTM: Single input, single output

Input video frames

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

t

……

Input video frames

MultiLSTM

Soft attention over multiple inputs:

Weighted average over multiple outputs:

Multilabel loss (per-class binary cross entropy):



MultiLSTM

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

Model THUMOS	mAP MultiTHUMOS	mAP

IDT 13.6 13.3

Single-frame	CNN 34.7 25.4

Two-stream	CNN 36.2 27.6

LSTM 39.3 28.1

LSTM+i 39.5 28.7

LSTM+i+a 39.7 29.1

MultiLSTM 41.3 29.7



Retrieving sequential and co-occurring 
actions

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

Sequential actions

Pass, then Shot Throw, then One-handed catch Jump, then Fall



Retrieving sequential and co-occurring 
actions

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.

Sequential actions

Co-occurring actions

Pass, then Shot Throw, then One-handed catch Jump, then Fall

Dive & BodyrollDive & No Bodyroll Shot & Guard Shot & No Guard Talk & Sit Talk & Stand



Task: action detection

Input Output

t = 0 t = T
Running

Talking

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Dominant paradigm: Dense processing

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

t = 0 t = T

…

…

Standard in THUMOS challenge 
action detection entries
Oneata et al. 2014
Wang et al. 2014
Oneata et al. 2014
Yuan et al. 2015

Sliding windows Action proposals

Gkioxari and Malik 2015
Yu et al. 2015
Escorcia et al. 2016
Peng and Schmid 2016
He et al. 2018



Efficiently detecting actions

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



t = 0 t = T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection

44

Detected 
actions

Video



t = 0 t = T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection

45

Detected 
actions

Video



t = 0 t = T

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection

46

Detected 
actions

Video



t = 0 t = T

Recurrent neural network
(time information)

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection

47

Detected 
actions

Video



t = 0 t = T

Recurrent neural network
(time information)

[ ]

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection

48

Detected 
actions

Video

Outputs:
Detection instance hypothesis [start, end]



t = 0 t = T

Recurrent neural network
(time information)

[ ]

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection

57

Detected 
actions

Video

Output

[ ]

x
Output

[ ]



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Training the detection instance output
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Training data

Positive video Negative video

t = 0 t = T[ ] [ ] t = 0 t = T

d1 d2

Detections

t = 0 t = T[ ] [ ] t = 0 t = T

g1

[ ]
d3

[ ]
d4

g2

Reward for detection

L2 distance
localization loss

y3 = 2y2 = 1y1 = 1 y4 = 0

cross-entropy
classification loss

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



61

Training data

t = 0 t = T[ ] [ ]Detections

t = 0 t = T[ ] [ ]
[ ]

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Training the non-differentiable outputs



Training the non-differentiable outputs
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Training data

t = 0 t = T[ ] [ ]
d1 d2

Detections

t = 0 t = T[ ] [ ]

Model’s action
sequence a Frame 1 Frame 8 Frame 6

⍉

go to frame 8 go to frame 6

(1) whether to predict a detection

(2) where to look next

[ ]

Frame 15

d3

go to frame 15

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Train an policy        for actions (1) and (2) using REINFORCE [Williams 1992]

63

Training data

t = 0 t = T[ ] [ ]Detections

t = 0 t = T[ ] [ ]

Frame 1 Frame 8 Frame 6

[ ]

Frame 15
Model’s action
sequence a

go to frame 8 go to frame 6
(2) where to look next

go to frame 15

d1 d2
⍉ (1) whether to predict a detection

d3

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Training the non-differentiable outputs



Train an policy        for actions (1) and (2) using REINFORCE [Williams 1992]

64

Training data

t = 0 t = TDetections

t = 0 t = T[ ] [ ]

Frame 1 Frame 8 Frame 6

Reward for an action sequence    :

Frame 15
Model’s action
sequence a

[ ] [ ]bad bad

go to frame 8 go to frame 6
(2) where to look next

go to frame 15

[ ]good

d1 d2
⍉ (1) whether to predict a detection

d3

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Training the non-differentiable outputs



Train an policy        for actions (1) and (2) using REINFORCE [Williams 1992]

Training the non-differentiable outputs
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Training data

t = 0 t = TDetections

t = 0 t = T[ ] [ ]

Frame 1 Frame 8 Frame 6 Frame 15

Objective:
Gradient:

Monte-Carlo approximation:

Model’s action
sequence a

[ ] [ ]bad bad

go to frame 8 go to frame 6
(2) where to look next

go to frame 15

[ ]good

d1 d2
⍉ (1) whether to predict a detection

d3

Reward for an action sequence    :

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Action detection results

Dataset
Detection AP at IOU 0.5

State-of-the-art Our result

THUMOS 2014 14.4 17.1

ActivityNet sports 33.2 36.7

ActivityNet work 31.1 39.9

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

While glimpsing only 2% of frames



Learned policies

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Learned policies



Importance of prediction indicator output

Deciding when to output a prediction (learning to do non-
maximum suppression) matters.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

mAP (IOU = 0.5)

Ours
(full	model) 17.1
Ours w/o prediction indicator output
(always	predict) 12.4



Importance of location output

Deciding where to look next (location output) has even greater 
effect.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

mAP (IOU = 0.5)

Ours
(full	model) 17.1
Ours w/o prediction indicator output
(always	predict) 12.4

Ours w/o location output 
(uniform	sampling) 9.3



Importance of location output

Uniform sampling does not always have sufficient temporal 
resolution where it’s needed.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Ours

Ours w/o location output
(uniform sampling)



Removing both prediction indicator 
and location outputs

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

mAP (IOU = 0.5)

Ours
(full	model) 17.1
Ours w/o prediction indicator output
(always	predict) 12.4

Ours w/o location output 
(uniform	sampling) 9.3

Ours w/o prediction indicator w/o location output
(always	predict,	with	uniform	sampling) 8.6



Importance of location regression
mAP (IOU = 0.5)

Ours
(full	model) 17.1
Ours w/o prediction indicator output
(always	predict) 12.4

Ours w/o location output 
(uniform	sampling) 9.3

Ours w/o prediction indicator w/o location output
(always	predict,	with	uniform	sampling) 8.6

Ours w/o location regression
(always	output	mean	action	duration) 5.5

Simply outputting mean action duration gives significantly worse 
performance.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Desiderata for Activity Recognition Models
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Label structure Temporal structure Group structure

chair

walker

floor

indoor scene

long term care facility

time

help the fallen 
person

Hu et al., CVPR 16
Deng et al., CVPR 16
Nauata et al., CVPRW 17
Deng et al., CVPR 17

Yeung et al., CVPR 16
Yeung et al., IJCV 17
He et al., WACV 18
Chen et al., ICCVW 17

Ibrahim et al., CVPR 16
Mehrasa et al., arXiv 17
Khodabandeh et al., arXiv 17
Lan et al. CVPR 12



Role	of	Context	in	Actions

Who has the puck?



76



Analyzing Human Trajectories to Recognize Actions

Which team is it?

Who was player X?

Will the shot be 
successful?

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Motivation

Using trajectories of players on the 
rink:

● Player 1 is passing the puck to 
player 5

● Player 2 is trying to block 
player 1

3

2 4

5

1

Trajectory definition: sequence of player movements across space over 
time

3

2
4

5

1

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Motivation

locations matter!

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Key Player Definition

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



● Shared-Compare Trajectory Network

● Stacked Trajectory Network

Model and Approach
● Shared-Compare Trajectory Network

● Stacked Trajectory Network

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared-Compare Trajectory Network

Shared-Compare 
Trajectory 
Network

Pass

Dump out

Dump in

Puck 
Protection

carry

shot

Classify

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared-Compare Trajectory Network

Pass

Dump out

Dump in
Puck 

Protection
carry

shot

Shared-Compare Trajectory Network



● Consists of 1D convolution and max-pooling layers
● Learning generic representation for each individual

Shared Trajectory Network

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Pooling stride =2

Kernel Size =C * K * M

1D convolution layer1D max-pooling layer

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared-Compare Trajectory Network

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared Compare Network
Input: 

● Pairs of individual trajectory features provided
by Shared Trajectory Network

● Pairs are formed relative to a “key player”

Learning:
● The relative motion patterns of pairs

● Interaction cues of players

Output: relative motion pattern representation of each pair

Enforce an ordering 
among the players

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Players Ordering
3

2
4

5

1
3

2

4

5

1

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



● Spatial proximity to the key player

● Key person may not be available in a general non-sports setting

● Average pooling strategy when key player is not provided

Relative Ordering

3
2 4

5

1

Key Person

2

4

5

3 1

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



● Shared-Compare Trajectory Network

● Stacked Trajectory Network

Model and Approach
● Shared-Compare Trajectory Network

● Stacked Trajectory Network

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Stacked Trajectory Network

Stacked 
Trajectory 
Network

ATL

BOS

NOP

GSW

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



● Learning overall group dynamics

Stacked Trajectory Network

91

ATL

BOS

NOP

GSW

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset

Experiments
● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Event recognition using Sportlogiq dataset
Task Definition

● Event classification 
● 6 event classes

○ pass, dump in, dump out, shot, carry, puck protection
● Dataset: Sportlogiq hockey dataset

93

Shared-Compare 
Trajectory Network

Predict event label

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Event recognition using Sportlogiq dataset
How the Sportlogiq
dataset looks

94Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Event recognition using Sportlogiq dataset

95

● Sportlogiq Dataset Information
○ State of the art algorithms are used to automatically 
detect and track players in raw broadcast video

○Trajectory data are estimated using homography

○ Trajectory length: 16 frames

○ # players used is fixed: 5

○ # of samples of each event

○ 4 games for training, 2 games for validation, and 2 games for testing

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Event recognition using Sportlogiq dataset

96

Baselines:
● IDT

○ Same input data as in our method
○ Each trajectory as IDT Trajectory shape descriptor
○ Normalized displacement vector of trajectory 
○ SVM with RBF kernel and ‘one vs. rest’ mechanism

[1]

[1] Wang et al., Dense trajectories and motion boundary descriptors for action recognition. IJCV 2013.

Trajectory Shape Descriptor

Player 
IDT

1 Player 
IDT

2 Player 
IDT

3 Player 
IDT

4 Player 
IDT

5

SVM

Classify



Event recognition using Sportlogiq dataset

97 / 37

Baselines:
● C3D

○ Trained from scratch

○ Fine-tuned from a model 
pretrained on Sports-1M

○ Same ordering as in our
approach
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[1] Tran et al., Learning spatiotemporal features with 3d convolutional networks. CVPR 2015.
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Event recognition using Sportlogiq dataset

98

● Training phase:
○ Key player is provided
○ Remaining players are ranked by proximity to the key player

● Test phase:
○ Both cases of known and unknown key player

○ Average pooling strategy for the case of unknown key player

Key Player



Event recognition on Sportlogiq dataset

99

Unknown Key Player

Known Key Player

● In comparison to IDT 
13.2 higher mAP

● In comparison to C3D 
trained from scratch 
8.7 higher mAP

● In comparison to fine-
tuned C3D 1.7 higher 
mAP



Event recognition on Sportlogiq dataset
Precision-recall curve

100

Unknown key 
player

Known key 
player



● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset

Experiments
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● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset



Team Identification on the NBA Dataset
Task Definition

● Team Identification
● Stacked Trajectory Network 
● 30 NBA teams
● Dataset: NBA basketball dataset

102

Stacked Trajectory 
Network

Team 
Identification

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Team Identification on the NBA Dataset
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How the NBA
dataset looks like

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Team Identification using NBA dataset

104

● Dataset Information
○ Trajectory data are acquired by a multi-camera system

○ Sampling rate: 25Hz

○ Extract 137176 possessions from 1076 games

○ 200 frames per possession

○ 82375 poss. for training, 27437 poss. for testing, and 27437 poss. for validation

○ Number of poss. per team

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Team Identification on the NBA Dataset
Results

105Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Team Identification on the NBA Dataset
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Baseline:
● IDT

○ Same input data as in our method
○ Each trajectory as IDT Trajectory shape descriptor
○ SVM with RBF kernel and ‘one vs. rest’ mechanism

[1] Wang et al., Dense trajectories and motion boundary descriptors for action recognition. IJCV 2013.

[1]

Trajectory Shape Descriptor

Player#1 
IDT

Player#2 
IDT

Player#3 
IDT

Player#4 
IDT

Player#5 
IDT

SVM

Classify

Ball
IDT



Summary

107

● Learning person trajectory representations for group 
activity analysis 

● Using deep neural network models for learning 
trajectory features

● Experiments shows our model is capable of 
capturing:

○ Complex spatial-temporal dependencies

○ Distinctive group dynamics



Methods for handling structures in deep networks

Label structure: message passing algorithms for multi-level image/video labeling; 
purely from image data or with partial labels

Temporal structure: action detection in time; efficient glimpsing of video frames 

Group structure: network structures to connect related people, gating functions or 
modules for reasoning about relations

108

Conclusion



Thank you!
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Example:	Rally	in	a	Volleyball	Game



Waiting

Waiting
Waiting

Waiting

Waiting

Spiking

waiting
waiting

Standing

Standing

Moving

Left Spike



Image 
Classifier

Group activity 
label



Group Activity = Majority’s 
Activity

Group Activity = Key 
Player’s Activity

Challenge:	
• high	level	description
• aggregate	information	

over	whole	scene
• focus	on	relevant	

people

Group Activity – Right spike



Intuitive	fix:	use	
person-centric	
representation



Person	Tracks

• Extract trajectories by tracking each person forward/backward in time



Stage	1	:	Learning	Individual	Action	Features

LSTMLSTM LSTM

Walking Walking Walking

CNN
(AlexNet)

CNN
(AlexNet)

CNN
(AlexNet)



Stage1	:	Learning	Individual	Action	Features

LSTM

LSTM

LSTM

Person 1

Person 2

Person 3

.

.

.

.

.

Person N LSTM

Person 1 feature
Representation

Person 2 feature
Representation

Person 3 feature
Representation

Person n feature
Representation

.

.

.

.

.

.

.

.



Stage	2:	Learning	Frame	Representations	

Person 1

Person 2

Person 3

.

.

.

.

.

Person N

Person 1 feature
Representation

Person 2 feature
Representation

Person 3 feature
Representation

Person n feature
Representation

.

.

.

.

LSTM

LSTM

LSTM

LSTM

LSTM

.

.

.

.

Aggregate



Summary



1.	Crossing 2.	Queueing 3.	Talking

4.	Waiting 5.	Walking

• Same label set for people and group activities
• 1925 video clips for training, 638 video clips for testing

Collective	Activity	Dataset

Choi et al., VSWS 2009



Method Accuracy

Image Classification 63.0

Person	Classification 61.8

Person	- Fine	tuned 66.3

Temp	Model	- Person 62.2

Temp	Model	- Image 64.2

Our	Model	w/o	LSTM1 70.1

Our	Model	w/o	LSTM2 76.8

Our Model 81.5

Collective	Activity	Dataset

LSTM

LSTM LSTM

LSTM



Method Accuracy

Contextual Model	
[Lan et	al.	NIPS’10] 79.1

Deep Structured	Model	
[Deng	et	al.	BMVC‘15] 80.6

Our	Model 81.5

Cardinality Kernel
[Hajimirsadeghi &	Mori	

CVPR‘15]
83.4

Collective	Activity	Dataset
Method Accuracy

Image Classification 63.0

Person	Classification 61.8

Person	- Fine	tuned 66.3

Temp	Model	- Person 62.2

Temp	Model	- Image 64.2

Our	Model	w/o	LSTM1 70.1

Our	Model	w/o	LSTM2 76.8

Our Model 81.5



Volleyball	Dataset	– Frame	Labels

Spiking Setting Passing

• 4830 frames annotated from 55 volleyball videos
• 2/3 videos for training, 1/3 testing
• 9 player action labels
• 4 scene labels

Win	point

Left/right team variants



Volleyball	Dataset	– People	Labels

Waiting Digging Setting Spiking

Falling BlockingStandingMovingJumping



Experimental	results	on	Volleyball	Dataset
Method Accuracy

Image Classification 66.7

Person	Classification 64.5

Person	- Fine	tuned 66.8

Temp	Model	- Person 67.5

Temp	Model	- Image 63.1

Our	Model	w/o	LSTM1 73.3

Our	Model	w/o	LSTM2 80.9

Our Model 81.6

Dense trajectories: 73.4-78.7

LSTM

LSTM LSTM

LSTM



Visualization of	results
Left	set Right	pass

Left	pass

Right	Spike

Left	spike	(Left	pass) Right	spike	(Left	spike)



Summary

• A two stage hierarchical model for group activity 
recognition

• LSTMs as a highly effective temporal model and 
temporal feature source

• People-relation modeling with simple pooling


