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Desiderata for Activity Recognition Models
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Image Classification

* A natural image can be categorized with labels at
different concept layers
outdoor

Olndoor O man-made O outdoor
natural

O teisure O sports O man-made O cabins

elements

field houses
Otrench O pitcher O batter’s O play- O barn
mound box ground
field O bat O base O grass O person O building
ball

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Label Correlation Helps

« Such categorization at different concept layers can
be modeled with label graphs

 |tis natural and straightforward to leverage label

correlation ) outdoor
: natural

O cabins

houses

- POSitive correlation

—— Negative correlation O field O bat O base O grass persorl)) building




Goal: A generic label relation model

« Infer the entire label space from visual input

An End-to-end Trainable
System

Visual
Architecture
(CNN)

g

Initial
Activation

Inference
Machine
on
Knowledge
Graph

™l

Refined
Probability

o s | o

---=|-|=|I

<

Back-propagate Gradient from Loss Function

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016




Top-down Inference Neural Network

* Refine activations for each label Produce initial visual activation
« Pass messages top-down and from CNN
within each layer of label graph — == =0 2l=W,-CNN(") +b,
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Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Bidirectional Inference Neural Network
(BINN)

Bidirectional inference to make information propagate
across entire label structure

* Inference in each direction independently and blend

Bidirectional
inference

results | Top down
: ' Inference l
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Structured Inference Neural Network
(SINN)

BINN is hard to train | Class Attributes

Regularize connections with
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Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016




Structured Inference Neural Network (SINN)

« Evolve BINN formulation with regularization in connections
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Prediction from Purely Visual Input

 Visual architecture (e.g. Convolutional Neural Network)
produces visual activation

« SINN implements information propagation bidirectionally
and produces refined output activation
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Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Prediction with Partially Observed Labels

« Reverse Sigmoid (logit) neuron produces activation
from Partial labels

« SINN adapts both visual activation and activation
from partial labels to infer the remaining labels
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Reverse sigmoid (logit):
produce activation from label

* Reverse the sigmoid function to produce sigmoid input

|
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Image Datasets

« Evaluate with two types of experiments on three datasets

Animals with Attributes
[Lampert et al. 2009]

Labels

28 taxonomy
terms

50 animal classes
85 attributes

. K

-Mi

Task: predict entire label

set

* Taxonomy terms are
constructed from Word Net
as [Hwang et al. 2012]

* Knowledge graph constructed
by combining class-attributes
graph with taxonomy graph

NUS-WIDE

[Chua et al. 2009]
B Labels

| 698 image
= groups
81 concepts
1000 tags
Task predict 81 concepts
with observing

tags/image groups

Knowledge graph produced by
Word Net using semantic
similarity

698 image groups constructed
from image meta data

SUN 397
[Xiao et al. 2012]
~—- | abels

§ 397 fine-
= crained

Task 1: predict entire
label set

Task 2: predict fine-
grained scene given
coarse scene category

Knowledge graph provided by
dataset




Ex1: Inference from visual input

Produce predictions on entire label space
Evaluate on each concept layer (measured by mAP per

class)
Consistent improvement over baselines on different concept
layers

Animal With Attributes SUN 397

95 90
75 m N . = =n BN

28 Taxonomy 50 Animal 85 Attributes 3 Coarse Scene 16 General Scene 397 Fine-grained
Terms Classes Categories Categories Scene Categories

B CNN + Logistics BCNN + BINN B CNN + SINN B CNN + Logistics B CNN + BINN B CNN + SINN



Ex2: Inference from partial labels (NUS-WIDE)

* Produce predictions given partial 1k tags and 698
iImage groups

: -
.»-“‘l

- P

Grond Truth: animal grass  Ground Truth: rainbow

éound f:uth: r?lro

Truth: food water

CNN + Logistic: statue water dog clouds sky CNN + Logistic: food
buildings person CNN + Logistic: grass CNN + Logistic: clouds plants flower
Our Predictions: railroad person animal water sky Our Predictions: food
person sky Our Predictions: water Our Predictions: rainbow plants water

animal dog clouds sky

Correct predictions are marked in blue while incorrect are marked in red



Ex2: Inference from partial labels (NUS-WIDE)

Evaluate on standard
81 ground truth
classes of NUSWIDE
Outperform all
baselines by large
margin

70
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mMAP per image

W 1ktags + groups W 1Ktags+groups m sy ia0s + Tag neighbors

+ CNN + SINN + Logistics [Johnson et. al. 2015]
m 1k tags + CNN + 1k tags + LOg|St|CS B gk tags + Log|st|cs

SINN H o1
M 1k tags + groups M CNN + Logistics [Johnson et. al. 2015]

+ CNN + Logistics

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Ex2: Inference with partial labels (SUN397)

« Produce predictions given coarse-level labels (3 coarse

categories)

|

CNN + Logistic patio

CNN + Logistic: campus Ob ) operating room
served Label:
Observed Label: facade . Observed Label: indoor
Observed Label: outdoor/natural;
outdoor/man-made Our
- . outdoor/man-made outdoor/man-made o _
Our Predictions: abbey PP A Predictions: dentists
Ground Truth:  abbe Our Our Predictions: picnic o
' y Predictions: library/outdoor area orniee

Ground Truth:

Ground Truth: Ground Truth:  picnic _ _
dentists office

library/outdoor area

Correct predictions are marked in blue while incorrect are marked in red



Ex2: Inference with partial labels (SUN397)

. SUN 397
 Evaluate on 397 fine- 70

grained scene

categories
« Significantly improved " I
40 ]

performance

Multiclass Accuracy mAP per Class

B Image Features + SVM [Xiao et al. 2012]
CNN + Logistics

B CNN + BINN

B CNN + SINN

B CNN + Partial Labels + Logistics

B CNN + Partial Labels + SINN

Hu, Deng, Zhou, Liao, Learning Structured Inference Neural Networks with Label Relations, CVPR 2016



Video Dataset: YouTube-8M

* Youtube-8M V1 / V2
« 8 million / 7 million videos
» ~500K hours of video
» 4800 possible labels

« 1.8/ 3.4 labels per video
average

* Inception V3 frame features

 Neural network audio u _gé_é_éff_&_%_{éf'_'ﬁ__
features f
Bread Cat Aol
Adorable e

Fine—Grained Classification

Nauata, Smith, Mori, Hierarchical Label Inference for Video Classification CVPR Workshops 2017

Input Frames

1
I Hierarchical
I Label Inference

26

Coarse-Grained Classification



Results

mAP / gAP

Method
YouTube-8M v1 YouTube-8M v2

LSTM [Abu El Haija
R 26.6 / N/A

Logistic regression
[Abu El Haija et al.] 28.1 / N/A

Hierarchical
Label Inference

CNN features 27.98 /60.34 | 36.84 /70.31

Bread
Cat

Animal
Adorable

3 1 . 1 8 / 64 . 74 40.1 9 / 76.33 Fine-Grained Classification Coarse-Grained Classification 27




Summary

* Inference in structured label space

« Relations within and across levels of a label space

« Model positive and negative correlations between
labels in end-to-end trainable model



Desiderata for Activity Recognition Models

Label structure Group structure

long term care facility
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MultiTHUMOS

Dense labels on 30 hours of THUMOS’ 14

Annotations
Classes

Labels per frame

Classes per video

Max actions per frame

Max actions per video

CIenAndJerk, it,
Squat, PickUp,
BodyContract

THUMOS MultiTHUMOS

Jump, Throw,

VolleyballSet

Walk, Stand, Hug,
PatPerson

Dunk, Jump, Guard,
BasketballBlock,
BasketballShot

Spiking, Stand, Run,

Sit, Run, D
Pass, Guard

ribble,

Squat, BodyContract

Run, Fall

CricketBowling,

Throw

SoccerPenalty, Stand,

Stand, CricketShot,

BaseballPitch, Sit,

Throw, BodyContract,

Squat

TenniSing, Walk,

Run, TonanZiedCa'tch, Stand, TalkToCamera,

CloseUpTalk

Longjump, Sit, Run,
Jump

CliffDiving, Diving,
Jump, BodyRoll

Shotput, Sit, Stand,
Throw, ShotPutBend

PoleVault, Run,
PickUp, BodyContract,
PlantPole

BaseballPitch, Stand,
BodyContract, Squat

GolfSwing, Stand,
BodyBend,
TalkToCamera

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



Modeling dense, multilabel actions

Frame class predictions

I\
‘,.,*,‘,‘

|
>
t

Input video frames

Standard LSTM: Single input, single output
Hochreiter 1997, Donahue 2014

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



Modeling dense, multilabel actions

Frame class predictions

All information about previous
frames must be captured by |
current hidden state

Input video frames

Standard LSTM: Single input, single output
Hochreiter 1997, Donahue 2014

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



MultiLSTM

Frame class predictions

I\
CICI*ICIC

|
>
t

Input video frames

Standard LSTM: Single input, single output

Frame class predictions

A_+_A
b e

>
Input video frames t

MultiLSTM: Multiple inputs, multiple outputs

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



MultiLSTM

Expanded temporal receptive field
of input and output connections |
reduces burden on hidden state

Frame class predictions

Input video frames

MultiLSTM: Multiple inputs, multiple outputs

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



MultiLSTM

Frame class predictions

Soft attention over multiple inputs:
o < exp(wl, [tanh(Whohi_1) © tanh(W,qv;)])

MultiLSTM: Multiple inputs, multiple outputs

A

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



MultiLSTM

Frame class predictions

Weighted average over multiple outputs:

Yt = Z Bitpit
i

Soft attention over multiple inputs:
o < exp(wl, [tanh(Whohi_1) © tanh(W,qv;)])

MultiLSTM: Multiple inputs, multiple outputs

A

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



MultiLSTM

Multilabel loss (per-class binary cross entropy):
L(y|x) = Z ztc 10g(0(Yte)) + (1 — 2¢c) log(1 — o (yec)) rame class predictions

1@

Weighted average over multiple outputs:

Yt = Z Bitpit
i

Soft attention over multiple inputs:
o < exp(wl, [tanh(Whohi_1) © tanh(W,qv;)])

MultiLSTM: Multiple inputs, multiple outputs

A

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



MultiLSTM

08} )
q 08 ®
Model THUMOS mAP MultiTHUMOS mAP > bioHuman
CIoseUpTalkToCamra'/./ ¢

DT . o7 ClittDiving ® L4 e

% PoleVault® P
Single-frame CNN ® e

s ﬁ o8 Squat® ¢ -

¥ BasketballGuara ® e
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E_: 0l JavelinThggw o - ® GoltSwing
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' o
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MultiLSTM . 0.2t . AhotPutBend
Vol t
o1l e y
&% ® rwonaisedArmCelebrate
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Single-Frame CNN (per-class AP)

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



Retrieving sequential and co-occurring
aCtlonS Sequential actions

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



Retrieving sequential and co-occurring
aCtlonS Sequential actions

' I

Throw, then ne-handed catch Jump, then Fall

Co-occurring actions

Talk & Sit Talk & Stand

Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei. Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. IJCV 2017.



Task: action detection

Input Output

LI TP PPT T TTTTT |
R -

Talking

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Dominant paradigm: Dense processing

t=0 t=T s=tg 650
| I e
| ! s toee =
| | - Nomoer o povosl
|
I Standard in THUMOS challenge
[ action detection entries
Oneata et al. 2014
Wang et al. 2014 Gkioxari and Malik 2015
Oneata et al. 2014 Yu et al. 2015
Yuan et al. 2015 Escorcia et al. 2016
Peng and Schmid 2016
He et al. 2018
Sliding windows Action proposals

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Efficiently detecting actions

Baseball Swing

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Our model for efficient action detection

Detected
actions

Video HANEEEEEEEEEEEEEEEEEEEEEEEE
t=0 t=T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20164



Our model for efficient action detection

Detected
actions

Video HENSEEEEEEEEEEEEEEEEEEEEEEE
t=T

t=0

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20165



Our model for efficient action detection

Detected
actions

Convolutional neural network
(frame information)

Video ANEEEEEEEEEEEEEEEEEEEEEE
t=T

t=0

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20165



Our model for efficient action detection

Detected
actions

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video HENSEEEEEEEEEEEEEEEEEEEEEEE
t=T

t=0

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.7



Our model for efficient action detection

Detected
actions
I s
Outputs:
Output Detection instance hypothesis [start, end)]

Recurrent neural network
(time information)
Convolutional neural network
(frame information)

Video HEEEEEEEEEEEEEEEEEEEEEEE

t=0 t=T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20168



Our model for efficient action detection

Detected
actions
‘
0
I s
Outputs:
Output Detection instance hypothesis [start, end)]
indicator
Recurrent neural network
(time information)
Convolutional neural network
(frame information)
Video HEEEEEEEEEEEEEEEEEEEEEEE
t=0 t=T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20162



Our model for efficient action detection

Detected
actions

Outputs:

Detection instance hypothesis [start, end]
indicator

Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video HEEEANEEEN [T T T T TP PTTTT |
t=T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20160



Our model for efficient action detection

Detected
actions

Outputs:

Detection instance hypothesis [start, end]
indicator

Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video

| [T T PTTPTTT |
t=T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20161



Our model for efficient action detection

Detected
actions
3
b
Cr 11
Outputs:
Detection instance hypothesis [start, end]

indicator
Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video HEEEER HEEEEEEEEEE
t=T

t=0

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 201622



Our model for efficient action detection

Detected
actions
3
b
Cr 11 I 2 |
Outputs:
Detection instance hypothesis [start, end]

indicator
Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video HEEEER HEEEEEEEEEE
t=T

t=0

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20163



Our model for efficient action detection

Detected
actions
3 3
b 0
Cr 11 I 2 |
Outputs:
Detection instance hypothesis [start, end]

indicator
Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video HEEEER HEEEEEEEEEE
t=T

t=0

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20164



Our model for efficient action detection

Detected
actions
3 3
b 0
Cr 11 I 2 |
Outputs:
Detection instance hypothesis [start, end]

indicator
Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video HEEEER HEEEEEEEEEE
t=T

t=0

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20165



Our model for efficient action detection

Detected
actions
3 3
b 0
Cr 11 I 2 |
Outputs:
Detection instance hypothesis [start, end]

indicator
Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

3

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016

Video HEEEEE

t=0

[ I T PTT0TT ]
t=T



Our model for efficient action detection

Detected
actions
3 3
b 0
Cr 11
Outputs:
Detection instance hypothesis [start, end]

indicator
Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

3

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20167

Video HEEEEE

t=0

[ I T PTT0TT ]
t=T



Our model for efficient action detection

Detected
actions

Outputs:

Detection instance hypothesis [start, end]
indicator

Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

3

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20163

Video HEEEEE

t=0

[ I T PTT0TT ]
t=T



Our model for efficient action detection

Detected
actions

Outputs:

Detection instance hypothesis [start, end]
indicator

Next frame to glimpse

Recurrent neural network
(time information)

Convolutional neural network
(frame information)

Video

[T TT 11711
t=T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016



Training the detection instance output

Training data

Detections

Reward for detection

t=o0| |

t=0

Positive video

g1

] 9

yi=

7/\/2

_1 \/3_

d1

d2

S ods

t=

|t=7

T

Negative video

ol T 1T VT VTV TT

|t=7

ya=0

t=of ] 1

|t=7

ds+

L(D,G) = Z’Cds (diyy; > 0) + Z Lioc(dis gy;)

)

cross-entropy

classification loss

1:y; >0

L2 distance
localization loss

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20160



Training the non-differentiable outputs

Training data t=0 [ | | | |- | | -I I- L =7

Detections t=0 | | 1 | | | | 1 =7

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20161



Training the non-differentiable outputs

Training data NI EEEEEEEEEEE T
Detections t=o | | | FL b e
dr T def T ods T , _
/ / ® \ (1) whether to predict a detection
Model’s action I — Framo 8 = $ 5 m; 15 |
sequence a rame rame rame rame
N _ (2) where to look next
go to frame 8 go to frame 6 go to frame 15

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20162



Training the non-differentiable outputs

Training data NI EEEEEEEEEEE T
Detections t=0 | | | | | | | | =7
S dr T def T ods , _
/ / (1) whether to predict a detection
| AN
Model’s action > 4 >
sequence a I Frame 1 Frame 8 Frame 6 Frame 15 |
N _ (2) where to look next
go to frame 8 go to frame 6 go to frame 15

Train an policy 7T@ for actions (1) and (2) using REINFORCE wiliams 1992]

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20163



Training the non-differentiable outputs

Training data t=0 [ | | [1 ] | 1 i | 1 ] | Jt=7
= good o = bad o » bad o
Detections t=0 | | | | | | | | =7
=] d-’ - = dz. - d3 - . .
/ / ® (1) whether to predict a detection
- 4 \
g/le%?;lrfczcgon I Frgme 1 Fréme 8 Frame 6 F‘rame 15 |

(2) where to look next
go to frame 8 go to frame 6 go to frame 15

Train an policy 7T@ for actions (1) and (2) using REINFORCE wiliams 1992]

Reward for an action sequence a: r(a) = Nt —aN~

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016



Training the non-differentiable outputs

Training data t=0 [ | | [1 ] | 1 i | 1 ] | Jt=7
= good o = bad o » bad o
Detections t=0 | | | | | 1 | | =7
=] d-’ - = dz. - d3 - . .
/ / \ (1) whether to predict a detection
Model’s action I — - = t m; y |
sequence a rame rame 8 rame 6 rame 15

(2) where to look next
go to frame 8 go to frame 6 go to frame 15

Train an policy 7T@ for actions (1) and (2) using REINFORCE wiliams 1992]

Reward for an action sequence a: r(a) = Nt —aN~

Objective: ,](9) — Za pe(a)fr(a)
Gradient: VJ(0) =), ps(a)r(a)Vlogps(a)
K T
Monte-Carlo approximation: ~ VJ(6) ~ % Z r(a®) Z V log mg(aF| MF)

k=1 t=1

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 20165



Action detection results

Detection AP at IOU 0.5

Dataset
State-of-the-art Our result

THUMOS 2014 : 171

ActivityNet sports . 36.7

ActivityNet work . 39.9

While glimpsing only 2% of frames

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Learned policies

Ground Truth

Predictions

Observation
Sequence

Frame

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Learned policies

Detections

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of prediction indicator output

mAP (IOU = 0.5)

Ours
(full model)

Ours w/o prediction indicator output
(always predict)

Deciding when to output a prediction (learning to do non-
maximum suppression) matters.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of location output

mAP (IOU = 0.5)

Ours
(full model)

Ours w/o prediction indicator output
(always predict)

Ours w/o location output
(uniform sampling)

Deciding where to look next (location output) has even greater
effect.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of location output

Ground Truth aaaa—
Predictions EEm——————
Ours O?:s;zxzcsi NI E AT AT T T e T T T T T

: Predictions I
Ours w/o location output
Observed

(uniform sampling) O NN NNNNRNN NUNDNNE NURRUNY ROUNURNN NUUNNN NUUNNDNRCNUNDDUE NUARNAE NORNNERD EEEAARN

Uniform sampling does not always have sufficient temporal
resolution where it's needed.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Removing both prediction indicator
and location outputs

mAP (IOU = 0.5)
Ours
(full model)

Ours w/o prediction indicator output
(always predict)

Ours w/o location output
(uniform sampling)

Ours w/o prediction indicator w/o location output
(always predict, with uniform sampling)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of location regression

mAP (IOU =0.5)
Ours
(full model)

Ours w/o prediction indicator output
(always predict)

Ours w/o location output
(uniform sampling)

Ours w/o prediction indicator w/o location output
(always predict, with uniform sampling) )

Ours w/o location regression
(always output mean action duration)

Simply outputting mean action duration gives significantly worse
performance.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Desiderata for Activity Recognition Models

Label structure Group structure

long term care facility

l <« & L ) | N
walker o - o [ | g h
indoor scene

help the fallen ;
person

floor

Hu et al., CVPR 16 Yeung et al., CVPR 16 Ibrahim et al., CVPR 16
Deng et al., CVPR 16 Yeung et al., IJCV 17 Mehrasa et al., arXiv 17
Nauata et al., CVPRW 17 He et al., WACV 18 Khodabandeh et al., arXiv 17
Deng et al., CVPR 17 Chen et al., ICCVW 17 Lan etal. CVPR 12




Role of Context in Actions

Who has the puck?






Analyzing Human Trajectories to Recognize Actions

70

60 |

Which team is it?

50 -

40 -

30
P >
20 -

10}

Who was player X?

Will the shot be
successful?

O s

-10

0 20 20 60 80 100
Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Motivation

SRYUNECE 1re  7:32°

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Motivation

B R P e P SR A~

L R T e Rl L2 GRS

R R TR )

carry

" - protection - . out

locations matter!

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Key Player Definition

Lzl STL| O Joo MTL] T NEDEREREY

o -

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Model and Approach
e Shared-Compare [TeagecioryNetwark

e Stacked Trajectory Network

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared-Compare Trajectory Network

N
%

/ T
b N
N

7N N\
Gl |
] /d A\ A
| \ Pass
: v Dump out
Classify Dumo in
Shared-Compare |:> P
Trajectory Puck
Protection
Network
carry

[ -

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared-Compare Trajectory Network

(G '/%'
% \’I;\ | ‘

L
@
M

/ vy v VL \
(| Pass
Shared Trajectory Shared Comparison I
[J] Dump out
Net m Net E '-0?
c .
o) ) Dump in
dallaa||l oo || < ® g
- = (N an) S > — Puck
(featd) ?stack g 8 g 8 g 8 g 8 'I :C; © Protection
feat.4
o | e | e | i l © carry
- =

/
|

Shared-Compare Trajectory Network



Shared Trajectory Network

e Consists of 1D convolution and max-pooling
e [ earning generic representation for each ind

Mehrasa, Z

1D max-pooling layer

H — * *
Kernel Size =C *K* M Shared Trajectory

GHEE®)

EEE®E
0000

>
o
2
«Q

, Tung, B

=Y

brnn,

OO

Net

Pooling stride =2

0000

OO0
000

Mori, Learning

) Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared-Compare Trajectory Network

>
O
o

Gl | )

v VL

Shared Trajectory Shared Comparison \Y > I o

Net ——(feat.2 }— Net B
-(stack) % =y
(feat.3 ] < ® > S
=D o HE2|[E2 227 g 2

SIS &||8&]|l8& S

stack I
feat.5 N

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Shared Compare Network
Input:

e Pairs of individual trajectory features provided

/ Shared Comparison \ > I °
by Shared Trajectory Network Geal2 )t m o Net I
gie=cas oSN TR EA RS A I
1 H 7 " feat.4 — 8 € 8 s 8 & 8 = —»I 8
e Pairs are formed relative to a “key player

Learning: l

Enforce an ordering

e The relative motion patterns of pairs among the players

e |Interaction cues of players
Output: relative motion pattern representation of each pair

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Players Ordering

.

] @“\
an e
D )
T %

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Relative Ordering

e Spatial proximity to the key player
e Key person may not be available in a general non-sports setting

e Average pooling strategy when key player is not provided

%

P <) N

M (o

[ \ %,Ol'; .} °© \ %OL[; J

N/ TN N4

D) ° i ) d

e B \J NN f/"’”“\

IR [ == )

\ % N

Key Person \\ :f\ | —

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Model and Approach

e Shared-Compare Trajectory Network

o Stacked Tjedtoyy\Network

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Stacked Trajectory Network

A\

e

| &
ATL
_/ A BOS | ¢=

Stacked NOP

Trajectory —» °

Network ()

()
\_ / GSW

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Stacked Trajectory Network

e | earning overall group dynamics

|

e

Stacked
Trajectory Net

I

]

N

1 - o
>_
c O

I 8¢&

Stack

Conv2
Pool2

Conv3
Pool3

Conv4
Pool4

Convb

Pool5

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017

Classify

ATL

BOS

NOP

GSwW
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Experiments
o EventRecognitiomomhthg@portiogitpDataset

e Team ldentification on the NBA Dataset

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017



Event recognition using Sportloglq dataset

Task Definition @
) TU
e Event classification A~ .
e 6 event classes | /é ®

o pass, dump in, dump out, shot, carry, puck protectiof
e Dataset: Sportlogiq hockey dataset

—4

Shared-Compare
Trajectory Network

v

Predict event label

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017 93



Event recognition using

ACS RN CWINECE 1re 19:53

Sportlogiq dataset

How the Sportlogiq
dataset looks

.i’/ / i V‘M\\ \ \\».s
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Event recognition using Sportlogiq dataset

e Sportlogig Dataset Information

o State of the art algorithms are used to automatically
detect and track players in raw broadcast video

< .
oTrajectory data are estimated using homography & N
& I
o Trajectory length: 16 frames 5
c\’&%-
o # players used is fixed: 5 S

o # of samples of each event 0 500 1000 1500 2000 2500

Number of samples

o 4 games for training, 2 games for validation, and 2 games for testing

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017

3000 3500
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Event recognition using Sportlogiq dataset

Baselines: )
[1] (ﬁ/
o DT \G{
Same input data as in our method <f/

O

o Each trajectory as IDT Trajectory shape descriptor
o Normalized displacement vector of trajectory

o SVM with RBF kernel and ‘one vs. rest’ mechanism

[ Trajectory Shape Descriptor 1

Player (1) Player (2! Player 3 Player @) Player &)
IDT IDT IDT IDT IDT

[ svm |

v

Classify

96

[11 Wang et al., Dense trajectories and motion boundary descriptors for action recognition. IJCV 2013.



Event recognition using Sportlogiq dataset

Baselines:
[1]
e C3D
o Trained from scratch | 4 N\
§;_> Shared C3D
=
. o = © @© © © © © 7]
o Fine-tuned from a model o N © ¥y 1010 —» 0
> = > AN > ™ > > > >0 —
58| 58/ 588/ 558|558/ 3l O
O || Oall Oa|l ool ooall L |L

}

pretrained on Sports-1M ﬁ

o Same ordering as in our
approach

97 [ 37

[1] Tran et al., Learning spatiotemporal features with 3d convolutional networks. CVPR 2015.




Event recognition using Sportlogiq dataset

e [raining phase:

o Key player is provided
o Remaining players are ranked by proximity to the key player

e Test phase:

o Both cases of known and unknown key player

o Average pooling strategy for the case of unknown key player

Key Player

98



Event recognition on Sportlogiq dataset

(Unknown Key Player |

IDT| C3D|Fine-tuned C3D|Shared-Cmp
pass 72.86%]|71.10% 77.45% 78.13% e In comparison to IDT
dump out 13 7 5%1(11.66% 18.15% 22.14% 13.2 higher mAP
dump in 35%| 7.58% 19.04% 26.63%
shot 13 0 7%123.37% 38.96% 40.52% :
carry 45.66%\64.75% 65.65% 61.10% e In comparison to C3D
puck protection| 6.28%| 6.50% 7.98% 8.72% trame_d from scratch
mAP  [26.32%[30.83% 37.87%|  3954% 8.7 higher mAP
[ Known Key Player ] e In comparison to fine-
IDT| C3D|Fine-tuned C3D|Shared-Cmp tuned C3D 1.7 higher
pass 73.35%|77.30% 84.34% 81.33% mAP
dump out  [14.34%10.17% 17.10% 23.11%
dump in 5.77%(10.25% 24.83% 50.04%
shot 13.07%(34.17% 58.88% 48.51%
carry 47.38%\86.37% 90.10% 85.96%
puck protection| 7.28%(11.83% 13.99% 11.54%
mAP 26.86%|38.35% 48.21% 50.08%




Event recognition on Sportlogiq dataset

Precision-recall curve

1.0 ‘ pass . 1.0 ‘ dulmp gut ‘ 1.0 ‘ dgmp Iin . 1.0 . ‘shot' 1.0 carry 1.0 puck Iprotgctiop
0.8} | 10.8 10.8 | 83 10.8¢
0.6 {06 {06 138 | 0.6}

0.5}
'8.0 02 04 06 08 1.0 '8.0 0.2 04 0.6 0.8 1.0°0.0 0.2 0.4 0.6 0.8 1.0 80 0.2 0.4 0.6 0.8 1.0 2)0 02 0.4 0.6 0.8 1.0 '8.0 0.2 04 0.6 0.8 1.0
1-0 1-0 T T T T 1-0 T T T T T T T T 1-0 .0 T T T T
0.8} 10.8 || — Fine-tuned C3D

— IDT

0.6 0.6 '| — shared-Cmp.
g': Unknown key | g-: ’
| player '

0. .
%0 0.2 0.4 0.6 0.8 1.0 %0 0.2 0.4 0.6 0.8 1.0 %0 0.2 0.4 0.6 0.8 1.0 80 0.2 0.4 0.6 0.8 1.0 %0 0.2 0.4 0.6 0.8 1.0 80 02 0.4 0.6 0.8 10
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Experiments

e Event Recognition on the Sportlogig Dataset

e Team ldentiificatioroonthelRBAataset

101



Team ldentification on the NBA Dataset

Task Definition |
Team Identification b é‘}i @
> I |\i

Stacked Trajectory Network i L_,ﬁ
30 NBA teams
Dataset: NBA basketball dataset

-

Network

v

Team
Identification

[ Stacked Trajectory }

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017 102



Team ldentification on the NBA Dataset

How the NBA

70

dataset looks like

50
40
30+
20

10+

-10

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017

),

C

D

20

40

60

80

100
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Team Identification using NBA dataset

e Dataset Information

o Trajectory data are acquired by a multi-camera system

o Sampling rate: 25Hz 5000

4000

3000

o Extract 137176 possessions from 1076 games

Number of samples

2000

o 200 frames per possession
OO@O \yo \y\/@v @\«@Y\%‘{- &

o 82375 poss. for training, 27437 poss. for testing, and 27437 poss. for validation

o Number of poss. per team

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017 104



Team ldentification on the NBA Dataset

Results

layers acc hit@2 hit@3 | game acc
2conv 10.68% | 18.09% | 24.31% | 50.00%
3conv 18.86% | 28.89% | 36.47% | 87.05%
4conv 22.34% | 33.03% | 40.47% | 93.41%
Sconv 24.78% | 35.61% | 42.95% | | 95.91%
Sconv+2fe | 25.08% | 35.83% | 42.85% | 94.32%

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, arXiv 2017 105



Team ldentification on the NBA Dataset

Baseline:

(1]

o DT

o Same input data as in our method

o Each trajectory as IDT Trajectory shape descriptor
o SVM with RBF kernel and ‘one vs. rest’ mechanism

models acc game acc
IDT 5.74% 9.10%
Stacked Traj. Net | 25.78% | 95.91%

e

-

Trajectory Shape Descriptor 1

S
| Player#1 | Player#2 | Player#3 Player#4 || Player#5 || Ball |
DT IDT DT IDT IDT IDT
[ -
Classify

[11 Wang et al., Dense trajectories and motion boundary descriptors for action recognition. IJCV 2013.



Summary

e [ earning person trajectory representations for group
activity analysis

e Using deep neural network models for learning
trajectory features

e Experiments shows our model is capable of
capturing:
o Complex spatial-temporal dependencies

o Distinctive group dynamics

107



Conclusion

Methods for handling structures in deep networks

Label structure: message passing algorithms for multi-level image/video labeling;
purely from image data or with partial labels

Temporal structure: action detection in time; efficient glimpsing of video frames

Group structure: network structures to connect related people, gating functions or
modules for reasoning about relations

108
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Example: RaIIy in a Volleyball Game
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Image
Classifier
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Group activity
label
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Challenge:

high level description
aggregate information
over whole scene
focus on relevant
people
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Person Tracks

« Extract trajectories by tracking each person forward/backward in time




Stage 1 : Learning Individual Action Features

Walking Walking Walking
t t t
LSTM — LSTM — LSTM
t t t

.’" l
| [ ;



Stagel : Learning Individual Action Features

Person 1

Person 2

Person 3

Person N

—

!

—

1

Person 1 feature
Representation

Person 2 feature
Representation

Person 3 feature
Representation

Person n feature

Representation



Stage 2: Learning Frame Representations

ﬁ Ny Person 1 feature
Representation
Person 2 _.ﬁ Ny Person 2 feature
e Representation
BN Person 3 feature /
Representation

=< Person n feature
Representation
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Summary

“Right Set”




Collective Activity Dataset

« Same label set for people and group activities
« 1925 video clips for training, 638 video clips for testing

1 Crossing 2. Queueing 3. Talking

Choi et al., VSWS 2009



Collective Activity Dataset

Method Accuracy

Image Classification 63.0
Person Classification 61.8
Person - Fine tuned 66.3
Temp Model - Person 62.2
Temp Model - Image 64.2
Our Model w/o LSTM1 70.1
Our Model w/o LSTM?2 76.8
Our Model 81.5




Collective Activity Dataset

Image Classification 63.0
Person Classification 61.8
Contextual Model
[Lan et al. NIPS'10] 791 Person - Fine tuned 66.3
Temp Model - Person 62.2
Deep Structured Model
[Deng et al. BMVC‘15] 80.6
Temp Model - Image 64.2
Our Model 81.5 Our Model w/o LSTM1 70.1
Cardinality Kernel Our Model w/o LSTM?2 76.8
[Hajimirsadeghi & Mori 83.4
CVPR115] Our Model 81.5




Volleyball Dataset — Frame Labels

« 4830 frames annotated from 55 volleyball videos
« 2/3 videos for training, 1/3 testing

« 9 player action labels

* 4 scene labels

"~ sping W seng W pasing

] Xz ¥ A ' b ; B
V A (1] 'y . " S ‘
0 (* - - 3

Win point

U o of. '
Ol R T

Jh N Ray LOAVOIEYD ~
il 2w

Left/right team variants



Volleyball Dataset — People Labels

’y

Blocking




Experimental results on Volleyball Dataset

Method Accuracy

Ipass 0.44
Image Classification 66.7
rpass 0.48
Person Classification 64.5 . 0:00
rset 0.00
Person - Fine tuned 66.8 e 0.00
rspike 0.00
Temp Model - Person 67.5 Iwin 3.92 0.00
rwin [ 1.15 A5 0.00 0.00 0.00 0.00
Temp MOdeI _ Image 631 Ipass  rpass Iset rset  Ispike rspike lwin win
Our Model w/o LSTM1 73.3
Our Model w/o LSTM2 80.9 Dense trajectories: 73.4-78.7
Our Model 81.6




Visualization of results
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Summary

* A two stage hierarchical model for group activity
recognition

« LSTMs as a highly effective temporal model and
temporal feature source

* People-relation modeling with simple pooling



