
COS 429: Computer Vision

Lecture 11: Texture

Acknowledgment: slides from Antonio Torralba, Kristen Grauman, Jitendra Malik, Alyosha Efros, Tom Funkhouser, Szymon  Rusinkiewicz
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Texture

• Texture: stochastic pattern  
that is stationary 
(“looks the same” at all locations)

• May be structured or random

Wei & Levoy
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Goal

• Computational representation of texture
– Textures generated by same stationary stochastic 

process have same representation
– Perceptually similar textures have similar 

representations

5, 7, 34, 2, 199, 12
Hypothetical texture representation



Applications

• Segmentation
• 3D Reconstruction
• Classification
• Synthesis

http://animals.nationalgeographic.com/
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Applications

• Segmentation
• 3D Reconstruction
• Classification
• Synthesis

Input Output
Efros



Texture Representation?

• What makes a good texture representation?
– Textures generated by same stationary stochastic 

process have same representation
– Perceptually similar textures have similar 

representations



Statistics of filter banks



Filter-Based Texture Representation

• Research suggests that the human visual system 
performs local spatial frequency analysis 
(Gabor filters)

J. J. Kulikowski, S. Marcelja, and P. Bishop.  
Theory of spatial position and spatial frequency relations in the  
receptive fields of simple cells in the visual cortex.  
Biol. Cybern, 43:187-198, 1982. 



Texture Representation

• Analyze textures based on the  
responses of linear filters 
– Use filters that look like patterns  

(spots, edges, bars, …)
– Compute magnitudes of filter responses

• Represent textures with statistics of  
filter responses within local windows
– Histogram of feature responses for all pixels in window

Grauman



Texture Representation Example

original image

derivative filter 
responses, squared

statistics to summarize 
patterns in small 
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mean d/
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Filter Banks

• Previous example used two filters, resulting in  
2-dimensional feature vector
– x and y derivatives revealed local structure

• Filter bank: many filters
– Higher-dimensional feature space
– Distance still related to similarity of local structure

Grauman



Filter banks

• What filters to put in the bank?
– Combination of different scales, orientations, patterns

scales

orientations

“Edges” “Bars”

“Spots”

Grauman
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Showing magnitude of responses
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You Try: Can you match the texture to the 
response?

Mean abs responses

Filters A

B

C

1

2

3

Derek Hoiem



Application: Retrieval

• Retrieve  
similar images 
based on texture

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a 
metric for image retrieval. International Journal of Computer Vision, 40(2):
99-121, November 2000, 



Textons

• Elements (“textons”) either identical or come from 
some statistical distribution

• Can analyze in natural images

Olhausen & Field



Clustering Textons

• Output of bank of n filters can be thought of as 
vector in n-dimensional space

• Can cluster these vectors using k-means [Malik et 
al.]

• Result: dictionary of most common textures



K-means clustering



Revisiting k-means

Most well-known and popular clustering algorithm:

Start with some initial cluster centers

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a cluster

Credit: David Kauchak



K-means: an example

Credit: David Kauchak



K-means: Initialize centers randomly

Credit: David Kauchak



K-means: assign points to nearest center

Credit: David Kauchak



K-means: readjust centers
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K-means: readjust centers
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K-means: assign points to nearest center

No changes:  Done
Credit: David Kauchak



K-means

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a 

cluster

How do we do this?
Credit: David Kauchak
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K-means

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a 

cluster

How do we calculate these?
Credit: David Kauchak



Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a 

cluster

K-means

Mean of the points in the cluster:

µ(C) = 1
|C |

x
x∈C
∑

Credit: David Kauchak



K-means loss function

K-means tries to minimize what is called the “k-
means” loss function:

loss= d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

that is, the sum of the squared distances from 
each point to the associated cluster center 

Credit: David Kauchak



Minimizing k-means loss

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Does each step of k-means move towards reducing this loss 
function (or at least not increasing)?

Credit: David Kauchak



Minimizing k-means loss

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

This isn’t quite a complete proof/argument, but: 

1. Any other assignment would end up in a larger loss 

1. The mean of a set of values minimizes the squared error

Credit: David Kauchak



Minimizing k-means loss

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

Does this mean that k-means will always find the minimum 
loss/clustering?

Credit: David Kauchak



Minimizing k-means loss

Iterate: 
1. Assign/cluster each example to closest center 
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk )
2   where µk  is cluster center for xi

i=1

n

∑

NO!  It will find a minimum. 

Unfortunately, the k-means loss function is generally not 
convex and for most problems has many, many minima 

We’re only guaranteed to find one of them

Credit: David Kauchak



K-means: Initialize centers randomly

What would happen here?

Seed selection ideas?
Credit: David Kauchak



K-means: Initialize furthest from centers

Pick a random point for the first center

Credit: David Kauchak



K-means: Initialize furthest from centers
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K-means: Initialize furthest from centers

Furthest point from center

Any issues/concerns with this approach?
Credit: David Kauchak



Furthest points concerns

If k = 4, which points will get chosen?

Credit: David Kauchak



Furthest points concerns

If we do a number of trials, will we get 
different centers?

Credit: David Kauchak



Furthest points concerns

Doesn’t deal well with outliers

Credit: David Kauchak



K-means

• But usually k-means works pretty well
• Especially with large number of points and large 

number of centers k
• Variations: kmeans++, etc
• Alternatives: spectral clustering, hierarchical 

(bottom-up, agglomerative or top-down, divisive)



Coming back to textons



Clustering Textons

• Output of bank of n filters can be thought of as 
vector in n-dimensional space

• Can cluster these vectors using k-means [Malik et 
al.]

• Result: dictionary of most common textures



Clustering Textons

Image

Clustered Textons
Texton to Pixel Mapping

Malik



Using Texture in Segmentation

• Compute histogram of how many times each of 
the k clusters occurs in a neighborhood

• Define similarity of histograms hi and hj using χ2

• Different histograms → separate regions

�2 =
1

2

X

k

(hi(k)� hj(k))2

hi(k) + hj(k)



Application: Segmentation

Malik



Texture synthesis



Markov Random Fields

• Different way of thinking about textures
• Premise: probability distribution of a pixel  

depends on values of neighbors
• Probability the same throughout image
– Extension of Markov chains



Motivation from Language

• Shannon (1948) proposed a way to synthesize 
new text using N-grams
– Use a large text to compute probability distributions of 

each letter given N–1 previous letters 
– Starting from a seed repeatedly sample the conditional 

probabilities to generate new letters
– Can do this with image patches!

Efros



Texture Synthesis Based on MRF

• For each pixel in destination:
– Take already-synthesized neighbors
– Find closest match in original texture
– Copy pixel to destination

• Efros & Leung 1999
– Speedup by Wei & Levoy 2000
– Extension to copying whole blocks 

by Efros & Freeman 2001

Wei & Levoy



• Compute output pixels 
in scanline order  
(top-to-bottom, 
left-to-right)

Efros & Leung Algorithm

Efros



• Find candidate pixels 
based on similarities of 
pixel features in 
neighborhoods

Efros & Leung Algorithm

Efros



Efros & Leung Algorithm

• Similarities of pixel neighborhoods can be  
computed with squared differences (SSD) 
of pixel colors and/or filter bank responses

||(      –      )||2

Efros



Efros & Leung Algorithm

• For each pixel p:
– Find the best matching K windows from the input image
– Pick one matching window at random
– Assign p to be the center pixel of that window

input image 

p

Efros



Synthesis Results

Efros



Synthesis Results

white bread brick wall

Efros



Hole Filling

• Fill pixels in “onion skin” order
– Within each “layer”, pixels with most neighbors  

are synthesized first
– Normalize error by the number of known pixels
– If no close match can be found, the pixel is not 

synthesized until the end



Hole Filling

Efros



Extrapolation



Special video

https://ghc.anitab.org/ghc-17-livestream/

(Wednesday keynote, 16:20 min - 44:00 min)


