
COS 429: Computer Vision

Lecture 11: Texture

Acknowledgment: slides from Antonio Torralba, Kristen Grauman, Jitendra Malik, Alyosha Efros, Tom Funkhouser, Szymon Rusinkiewicz

Texture

What is a texture?

Torralba

Texture

What is a texture?

Torralba

Texture

What is a texture?

Torralba

Texture

• Texture: stochastic pattern  
that is stationary 
(“looks the same” at all locations)

• May be structured or random

Wei & Levoy

Texture

Stochastic Stationary

Texture

Stochastic Stationary

Goal

• Computational representation of texture
– Textures generated by same stationary stochastic

process have same representation
– Perceptually similar textures have similar

representations

5, 7, 34, 2, 199, 12
Hypothetical texture representation

Applications

• Segmentation
• 3D Reconstruction
• Classification
• Synthesis

http://animals.nationalgeographic.com/

Applications

• Segmentation
• 3D Reconstruction
• Classification
• Synthesis

Applications

• Segmentation
• 3D Reconstruction
• Classification
• Synthesis

Grauman

Applications

• Segmentation
• 3D Reconstruction
• Classification
• Synthesis

Grauman

Applications

• Segmentation
• 3D Reconstruction
• Classification
• Synthesis

Input Output
Efros

Texture Representation?

• What makes a good texture representation?
– Textures generated by same stationary stochastic

process have same representation
– Perceptually similar textures have similar

representations

Statistics of filter banks

Filter-Based Texture Representation

• Research suggests that the human visual system
performs local spatial frequency analysis 
(Gabor filters)

J. J. Kulikowski, S. Marcelja, and P. Bishop.  
Theory of spatial position and spatial frequency relations in the  
receptive fields of simple cells in the visual cortex.  
Biol. Cybern, 43:187-198, 1982.

Texture Representation

• Analyze textures based on the  
responses of linear filters
– Use filters that look like patterns  

(spots, edges, bars, …)
– Compute magnitudes of filter responses

• Represent textures with statistics of  
filter responses within local windows
– Histogram of feature responses for all pixels in window

Grauman

Texture Representation Example

original image

derivative filter
responses, squared

statistics to summarize
patterns in small

windows

mean d/
dx

value

mean d/
dy

value
Win. #1 4 10

…

Grauman

Texture Representation Example

original image

derivative filter
responses, squared

statistics to summarize
patterns in small

windows

mean d/
dx

value

mean d/
dy

value
Win. #1 4 10

Win.#2 18 7

…

Grauman

Texture Representation Example

original image

derivative filter
responses, squared

statistics to summarize
patterns in small

windows

mean d/
dx

value

mean d/
dy

value
Win. #1 4 10

Win.#2 18 7

Win.#9 20 20

…

…

Grauman

Texture Representation Example

statistics to summarize
patterns in small

windows

mean d/
dx

value

mean d/
dy

value
Win. #1 4 10

Win.#2 18 7

Win.#9 20 20

…

…

Dimension 1 (mean d/dx value)D
im

en
si

on
 2

 (m
ea

n
d/

dy
 v

al
ue

)

Grauman

Texture Representation Example

statistics to summarize
patterns in small

windows

mean d/
dx

value

mean d/
dy

value
Win. #1 4 10

Win.#2 18 7

Win.#9 20 20

…

…

Dimension 1 (mean d/dx value)D
im

en
si

on
 2

 (m
ea

n
d/

dy
 v

al
ue

)

Far: dissimilar 
textures

Close: similar 
textures

Grauman

Filter Banks

• Previous example used two filters, resulting in  
2-dimensional feature vector
– x and y derivatives revealed local structure

• Filter bank: many filters
– Higher-dimensional feature space
– Distance still related to similarity of local structure

Grauman

Filter banks

• What filters to put in the bank?
– Combination of different scales, orientations, patterns

scales

orientations

“Edges” “Bars”

“Spots”

Grauman

Im
ag

e
fro

m
 h

ttp
://

w
w

w.
te

xa
se

xp
lo

re
r.c

om
/a

us
tin

ca
p2

.jp
g

Grauman

Showing magnitude of responses

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

Grauman

You Try: Can you match the texture to the
response?

Mean abs responses

Filters A

B

C

1

2

3

Derek Hoiem

Application: Retrieval

• Retrieve  
similar images 
based on texture

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a
metric for image retrieval. International Journal of Computer Vision, 40(2):
99-121, November 2000,

Textons

• Elements (“textons”) either identical or come from
some statistical distribution

• Can analyze in natural images

Olhausen & Field

Clustering Textons

• Output of bank of n filters can be thought of as
vector in n-dimensional space

• Can cluster these vectors using k-means [Malik et
al.]

• Result: dictionary of most common textures

K-means clustering

Revisiting k-means

Most well-known and popular clustering algorithm:

Start with some initial cluster centers

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a cluster

Credit: David Kauchak

K-means: an example

Credit: David Kauchak

K-means: Initialize centers randomly

Credit: David Kauchak

K-means: assign points to nearest center

Credit: David Kauchak

K-means: readjust centers

Credit: David Kauchak

K-means: assign points to nearest center

Credit: David Kauchak

K-means: readjust centers

Credit: David Kauchak

K-means: assign points to nearest center

Credit: David Kauchak

K-means: readjust centers

Credit: David Kauchak

K-means: assign points to nearest center

No changes: Done
Credit: David Kauchak

K-means

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a

cluster

How do we do this?
Credit: David Kauchak

K-means

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a

cluster

Where are the cluster centers?
Credit: David Kauchak

K-means

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a

cluster

How do we calculate these?
Credit: David Kauchak

Iterate:
– Assign/cluster each example to closest center
– Recalculate centers as the mean of the points in a

cluster

K-means

Mean of the points in the cluster:

µ(C) = 1
|C |

x
x∈C
∑

Credit: David Kauchak

K-means loss function

K-means tries to minimize what is called the “k-
means” loss function:

loss= d(xi,µk)
2 where µk is cluster center for xi

i=1

n

∑

that is, the sum of the squared distances from
each point to the associated cluster center

Credit: David Kauchak

Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk)
2 where µk is cluster center for xi

i=1

n

∑

Does each step of k-means move towards reducing this loss
function (or at least not increasing)?

Credit: David Kauchak

Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk)
2 where µk is cluster center for xi

i=1

n

∑

This isn’t quite a complete proof/argument, but:

1. Any other assignment would end up in a larger loss

1. The mean of a set of values minimizes the squared error

Credit: David Kauchak

Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk)
2 where µk is cluster center for xi

i=1

n

∑

Does this mean that k-means will always find the minimum
loss/clustering?

Credit: David Kauchak

Minimizing k-means loss

Iterate:
1. Assign/cluster each example to closest center
2. Recalculate centers as the mean of the points in a cluster

loss= d(xi,µk)
2 where µk is cluster center for xi

i=1

n

∑

NO! It will find a minimum.

Unfortunately, the k-means loss function is generally not
convex and for most problems has many, many minima

We’re only guaranteed to find one of them

Credit: David Kauchak

K-means: Initialize centers randomly

What would happen here?

Seed selection ideas?
Credit: David Kauchak

K-means: Initialize furthest from centers

Pick a random point for the first center

Credit: David Kauchak

K-means: Initialize furthest from centers

What point will be chosen next?

Credit: David Kauchak

K-means: Initialize furthest from centers

Furthest point from center

What point will be chosen next?
Credit: David Kauchak

K-means: Initialize furthest from centers

Furthest point from center

What point will be chosen next?
Credit: David Kauchak

K-means: Initialize furthest from centers

Furthest point from center

Any issues/concerns with this approach?
Credit: David Kauchak

Furthest points concerns

If k = 4, which points will get chosen?

Credit: David Kauchak

Furthest points concerns

If we do a number of trials, will we get
different centers?

Credit: David Kauchak

Furthest points concerns

Doesn’t deal well with outliers

Credit: David Kauchak

K-means

• But usually k-means works pretty well
• Especially with large number of points and large

number of centers k
• Variations: kmeans++, etc
• Alternatives: spectral clustering, hierarchical

(bottom-up, agglomerative or top-down, divisive)

Coming back to textons

Clustering Textons

• Output of bank of n filters can be thought of as
vector in n-dimensional space

• Can cluster these vectors using k-means [Malik et
al.]

• Result: dictionary of most common textures

Clustering Textons

Image

Clustered Textons
Texton to Pixel Mapping

Malik

Using Texture in Segmentation

• Compute histogram of how many times each of
the k clusters occurs in a neighborhood

• Define similarity of histograms hi and hj using χ2

• Different histograms → separate regions

�2 =
1

2

X

k

(hi(k)� hj(k))2

hi(k) + hj(k)

Application: Segmentation

Malik

Texture synthesis

Markov Random Fields

• Different way of thinking about textures
• Premise: probability distribution of a pixel  

depends on values of neighbors
• Probability the same throughout image
– Extension of Markov chains

Motivation from Language

• Shannon (1948) proposed a way to synthesize
new text using N-grams
– Use a large text to compute probability distributions of

each letter given N–1 previous letters
– Starting from a seed repeatedly sample the conditional

probabilities to generate new letters
– Can do this with image patches!

Efros

Texture Synthesis Based on MRF

• For each pixel in destination:
– Take already-synthesized neighbors
– Find closest match in original texture
– Copy pixel to destination

• Efros & Leung 1999
– Speedup by Wei & Levoy 2000
– Extension to copying whole blocks 

by Efros & Freeman 2001

Wei & Levoy

• Compute output pixels
in scanline order  
(top-to-bottom, 
left-to-right)

Efros & Leung Algorithm

Efros

• Find candidate pixels
based on similarities of
pixel features in
neighborhoods

Efros & Leung Algorithm

Efros

Efros & Leung Algorithm

• Similarities of pixel neighborhoods can be  
computed with squared differences (SSD) 
of pixel colors and/or filter bank responses

||(–)||2

Efros

Efros & Leung Algorithm

• For each pixel p:
– Find the best matching K windows from the input image
– Pick one matching window at random
– Assign p to be the center pixel of that window

input image

p

Efros

Synthesis Results

Efros

Synthesis Results

white bread brick wall

Efros

Hole Filling

• Fill pixels in “onion skin” order
– Within each “layer”, pixels with most neighbors  

are synthesized first
– Normalize error by the number of known pixels
– If no close match can be found, the pixel is not

synthesized until the end

Hole Filling

Efros

Extrapolation

Special video

https://ghc.anitab.org/ghc-17-livestream/

(Wednesday keynote, 16:20 min - 44:00 min)

