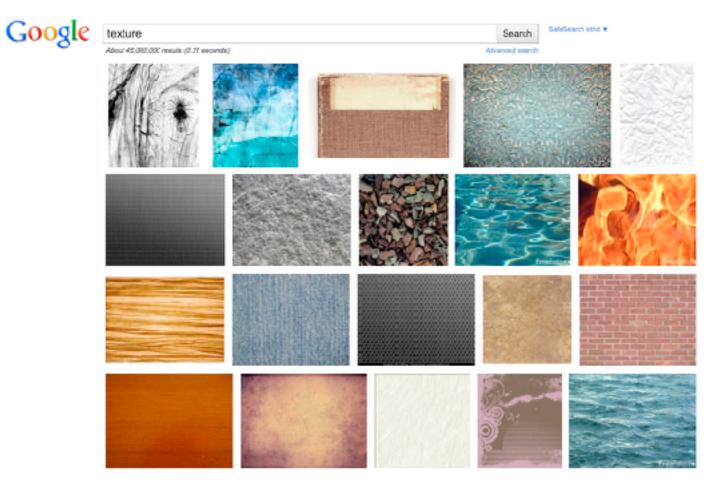
Lecture 11: Texture

COS 429: Computer Vision

Acknowledgment: slides from Antonio Torralba, Kristen Grauman, Jitendra Malik, Alyosha Efros, Tom Funkhouser, Szymon Rusinkiewicz

Texture

What is a texture?

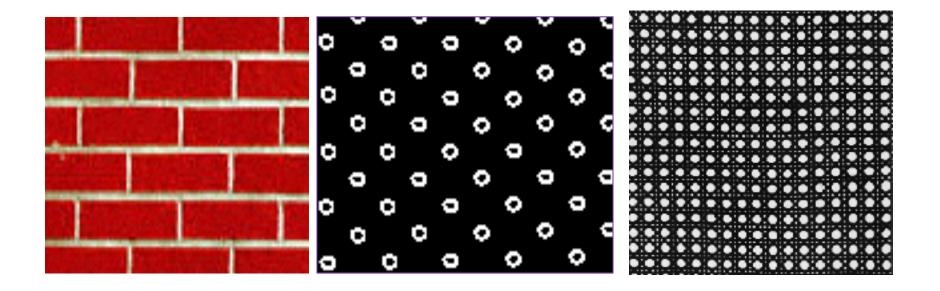


Torralba

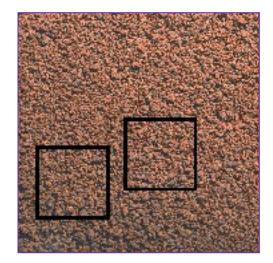
What is a texture?

Torralba

What is a texture?



- Texture: stochastic pattern that is stationary ("looks the same" at all locations)
- May be structured or random



Wei & Levoy

Texture

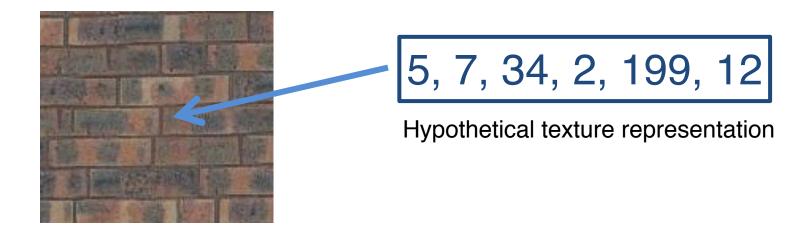
Stochastic Stationary

Texture

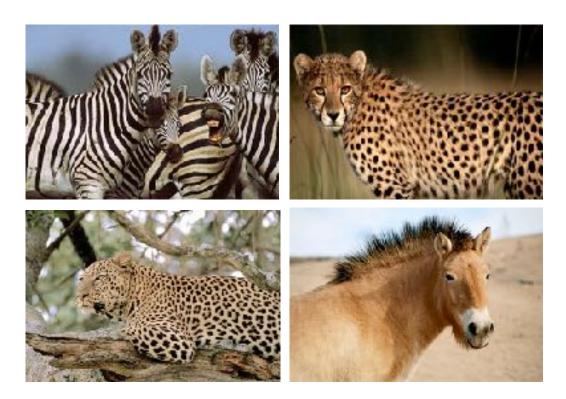
Stochastic Stationary

Goal

- Computational representation of texture
 - Textures generated by same stationary stochastic process have same representation
 - Perceptually similar textures have similar representations

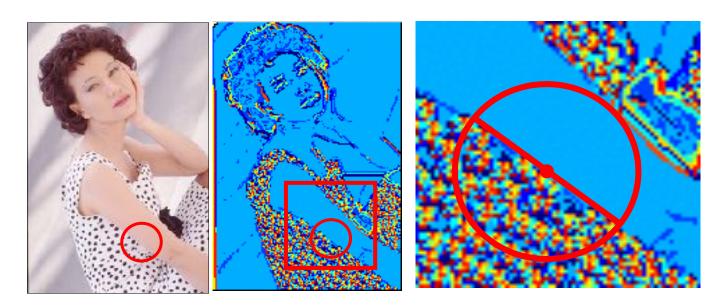


- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

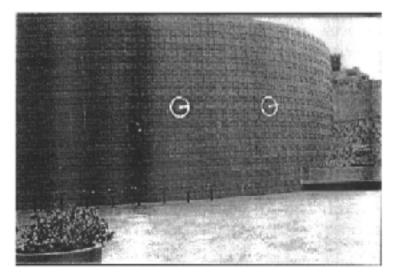


http://animals.nationalgeographic.com/

- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

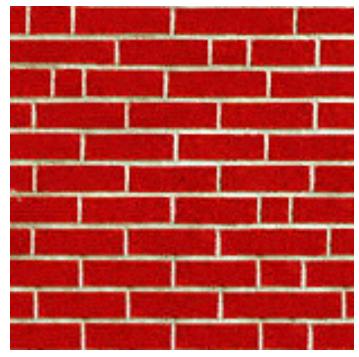


- Segmentation
- 3D Reconstruction
- Classification
- Synthesis



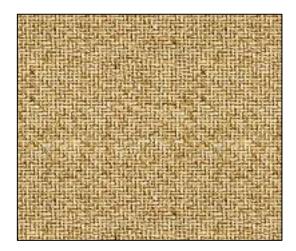
- Segmentation
- 3D Reconstruction
- Classification
- Synthesis

- Segmentation
- 3D Reconstruction
- Classification
- Synthesis



Texture Representation?

- What makes a good texture representation?
 - Textures generated by same stationary stochastic process have same representation
 - Perceptually similar textures have similar representations



Statistics of filter banks

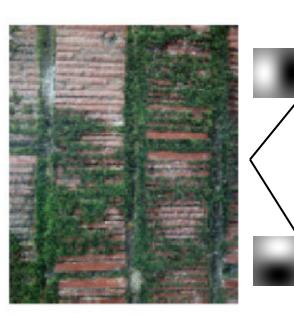
Filter-Based Texture Representation

 Research suggests that the human visual system performs local spatial frequency analysis (Gabor filters)

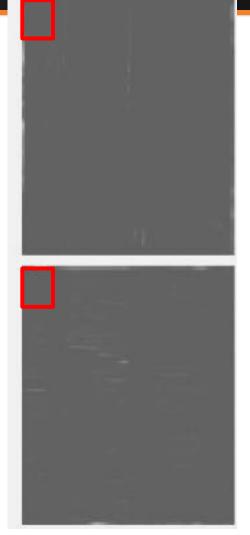
> J. J. Kulikowski, S. Marcelja, and P. Bishop. Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. *Biol. Cybern*, 43:187-198, 1982.

Texture Representation

- Analyze textures based on the responses of linear filters
 - Use filters that look like patterns (spots, edges, bars, ...)
 - Compute magnitudes of filter responses
- Represent textures with statistics of filter responses within local windows
 - Histogram of feature responses for all pixels in window



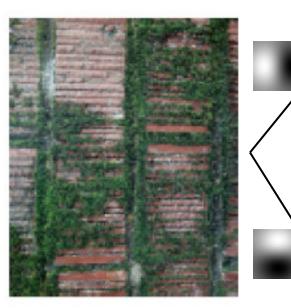
original image



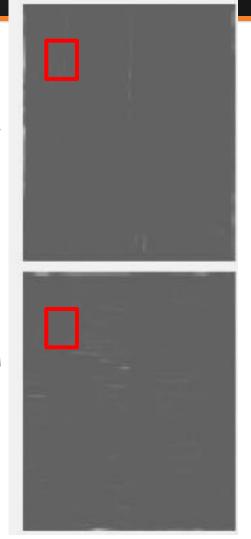
derivative filter	
responses, squared	

	<u>mean d/</u> <u>dx</u> <u>value</u>	<u>mean d/</u> <u>dy</u> <u>value</u>
Win. #1	4	10
	-	

statistics to summarize patterns in small windows



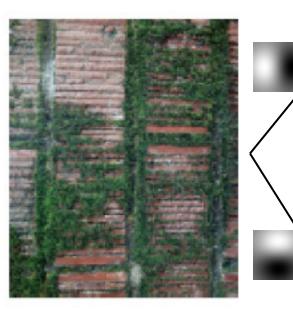
original image



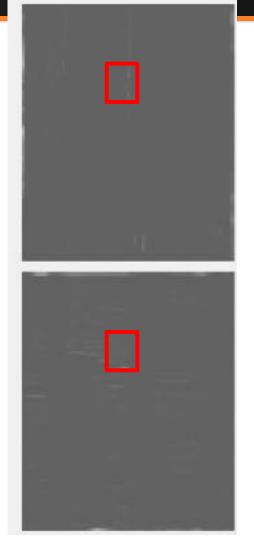
derivative filter	
responses, squared	

	<u>mean d/</u> <u>dx</u> <u>value</u>	<u>mean d/</u> <u>dy</u> <u>value</u>
Win. #1	4	10
Win.#2	18	7

statistics to summarize patterns in small windows



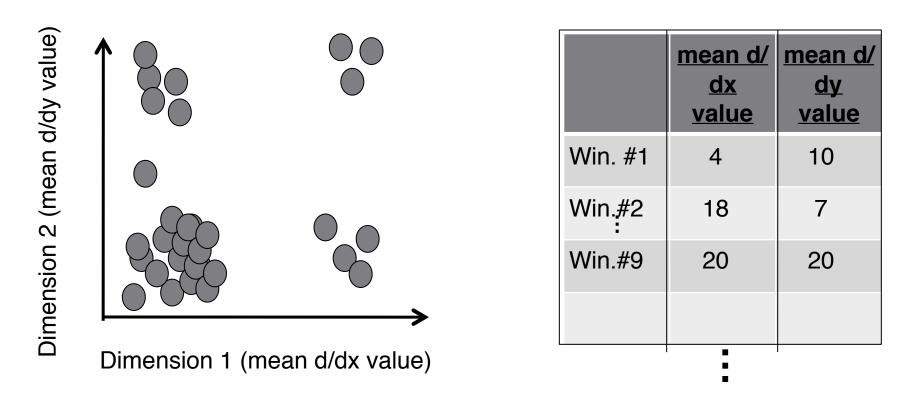
original image



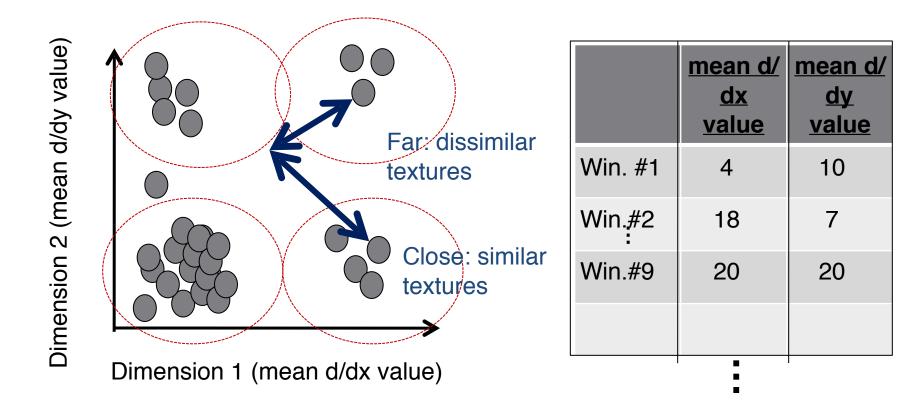
derivative filter	
responses, squared	

	<u>mean d/</u> <u>dx</u> <u>value</u>	<u>mean d/</u> <u>dy</u> <u>value</u>
Win. #1	4	10
Win.#2	18	7
Win.#9	20	20
		· · · · · · · · · · · · · · · · · · ·

statistics to summarize patterns in small windows



statistics to summarize patterns in small windows

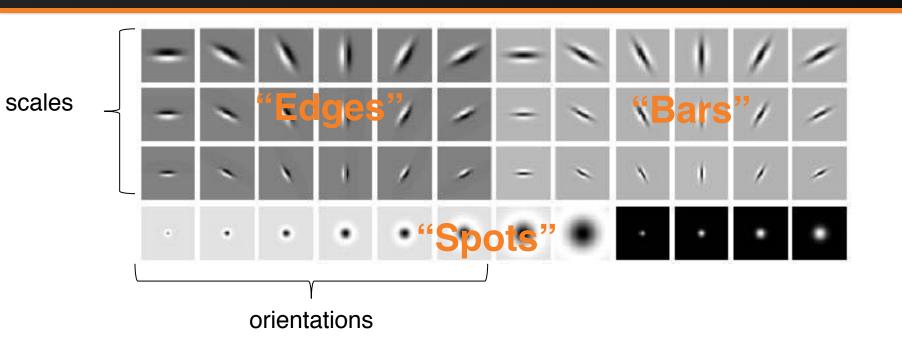


statistics to summarize patterns in small windows

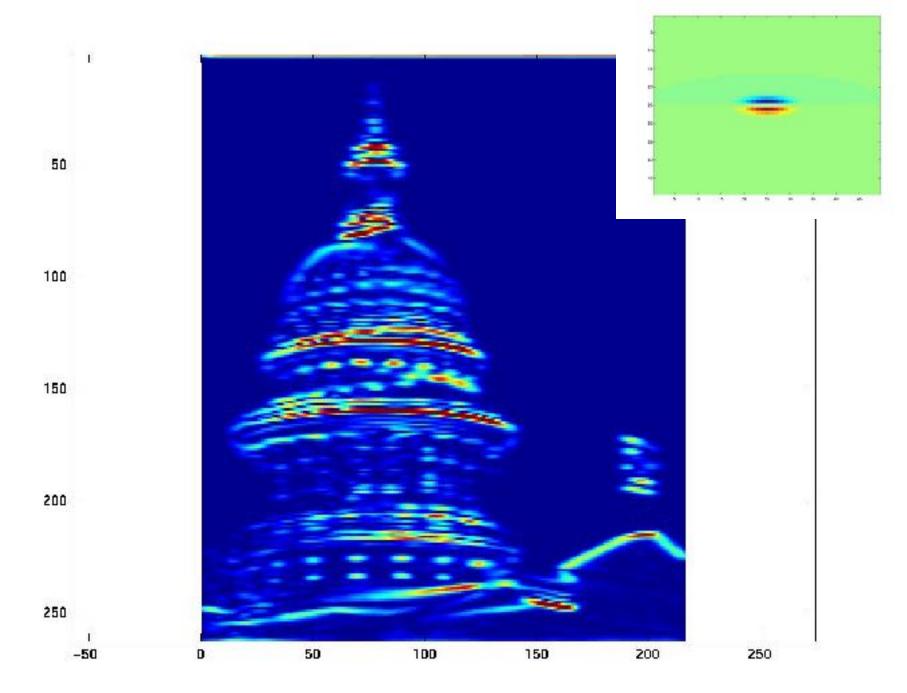
Filter Banks

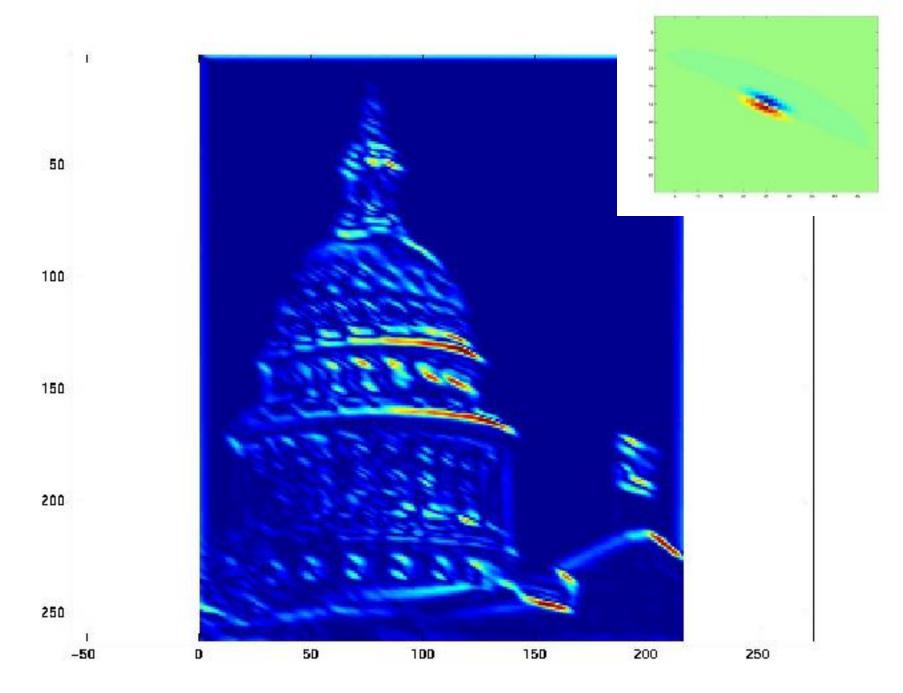
- Previous example used two filters, resulting in 2-dimensional feature vector
 - x and y derivatives revealed local structure
- Filter bank: many filters
 - Higher-dimensional feature space
 - Distance still related to similarity of local structure

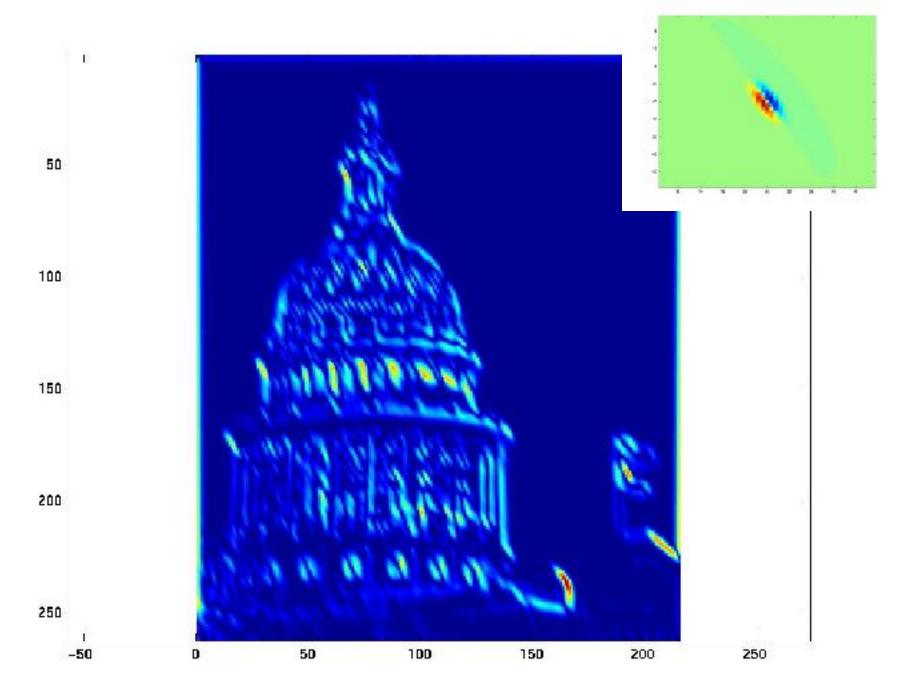
Filter banks

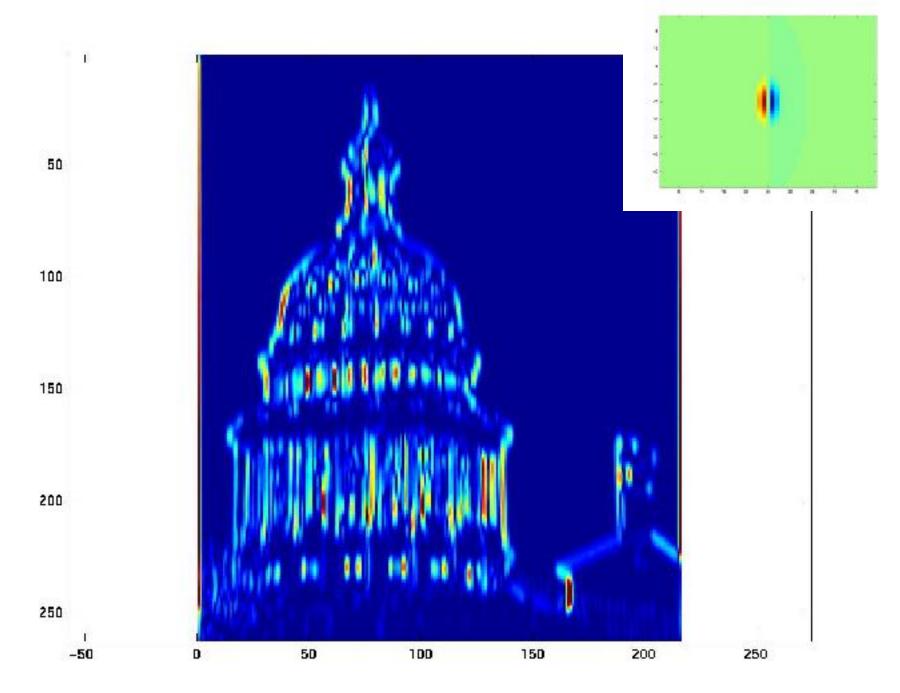


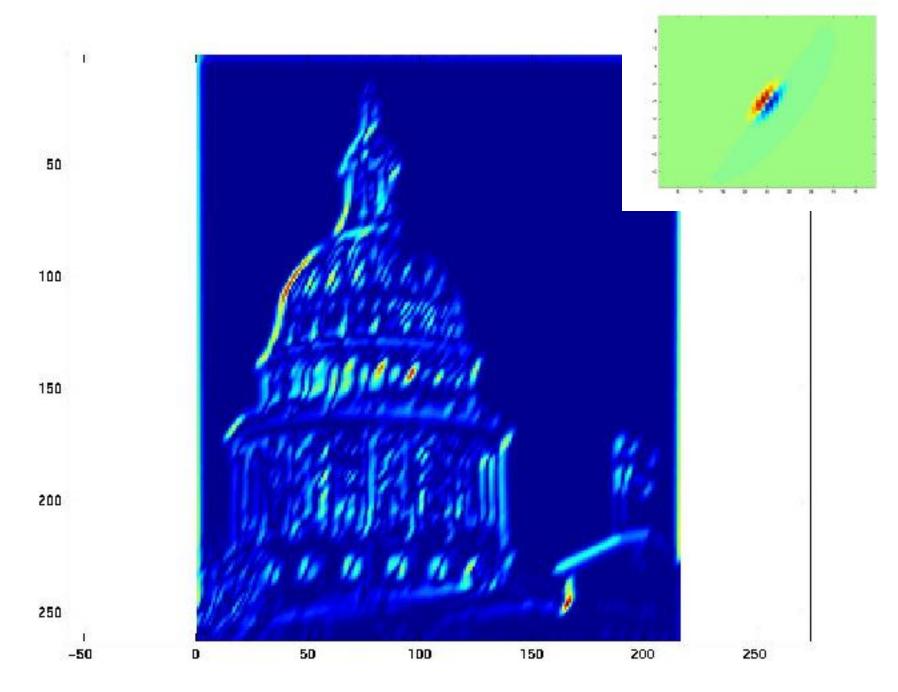
- What filters to put in the bank?
 - Combination of different scales, orientations, patterns

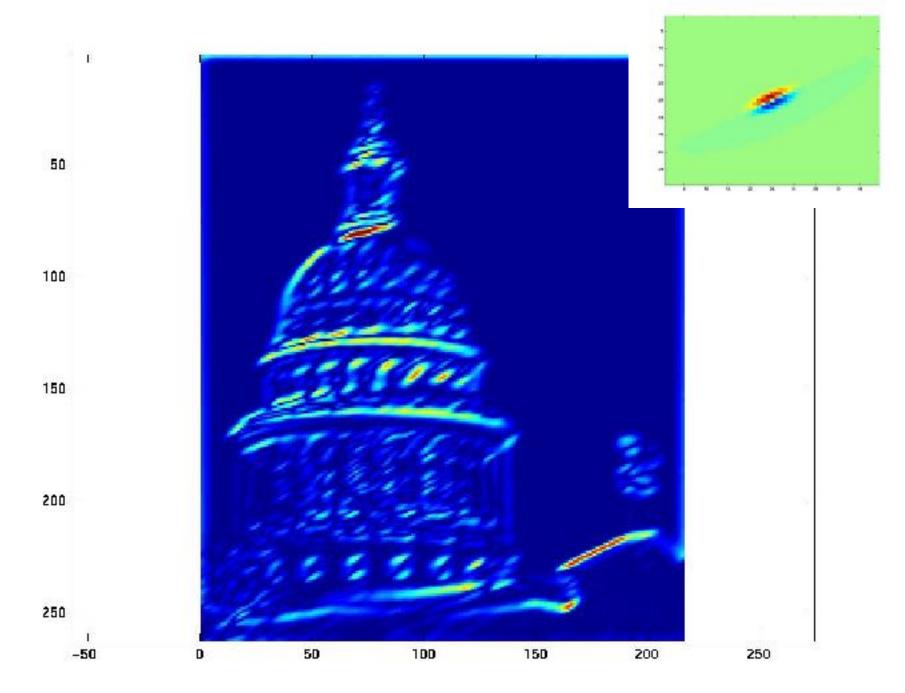


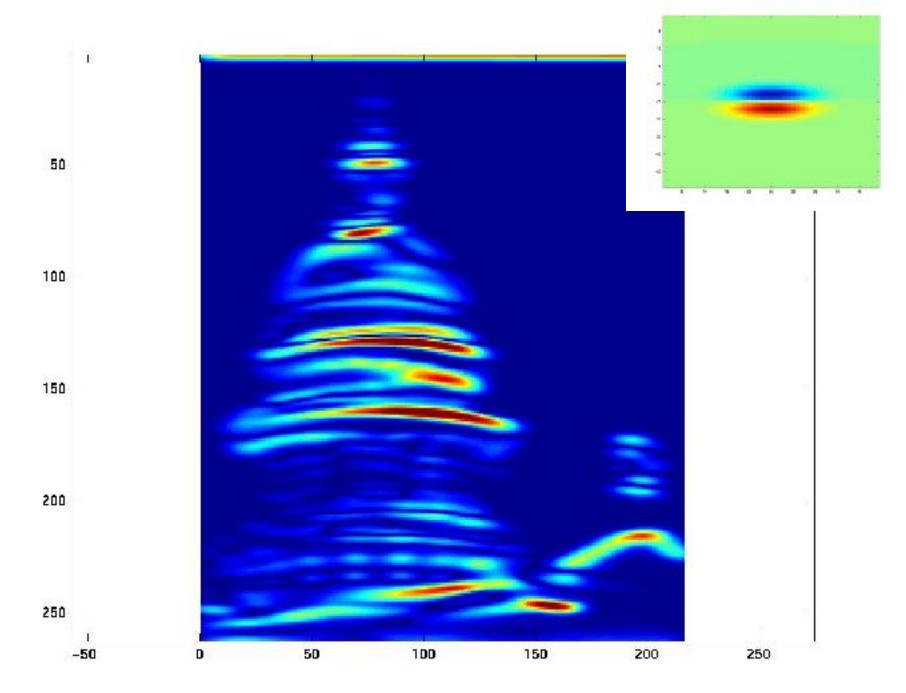


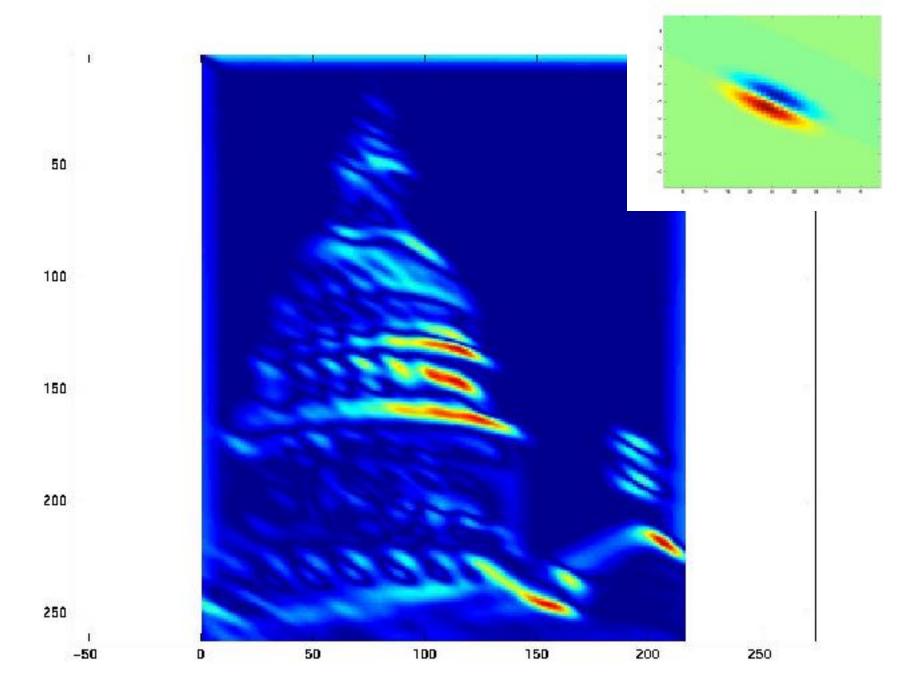


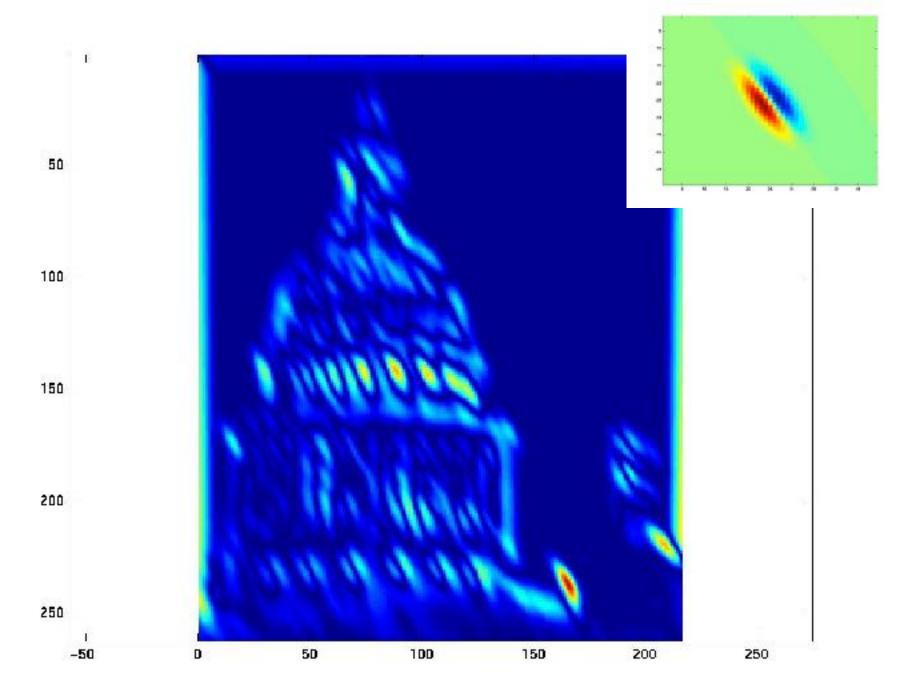


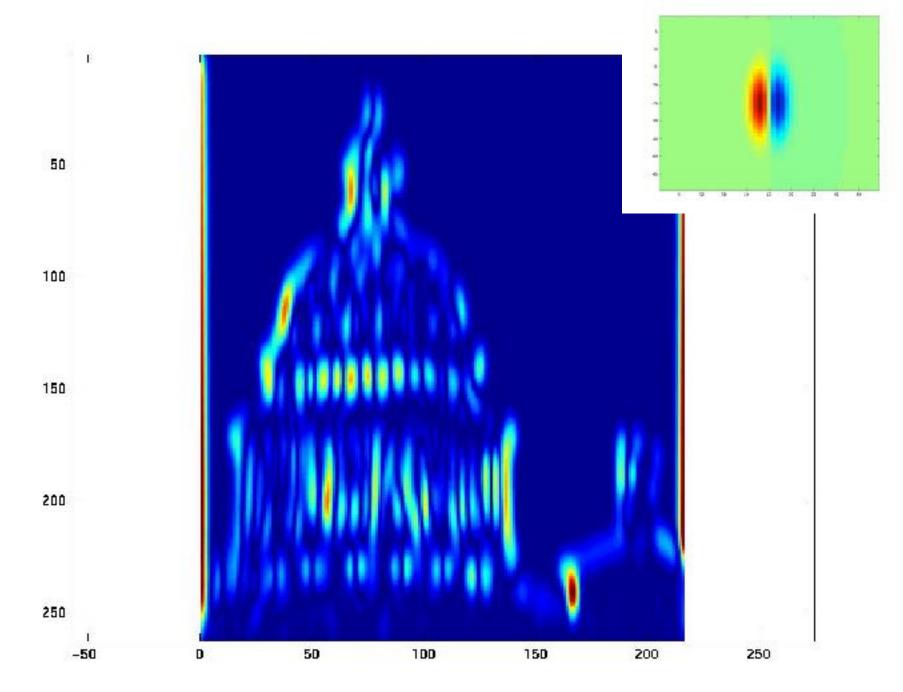


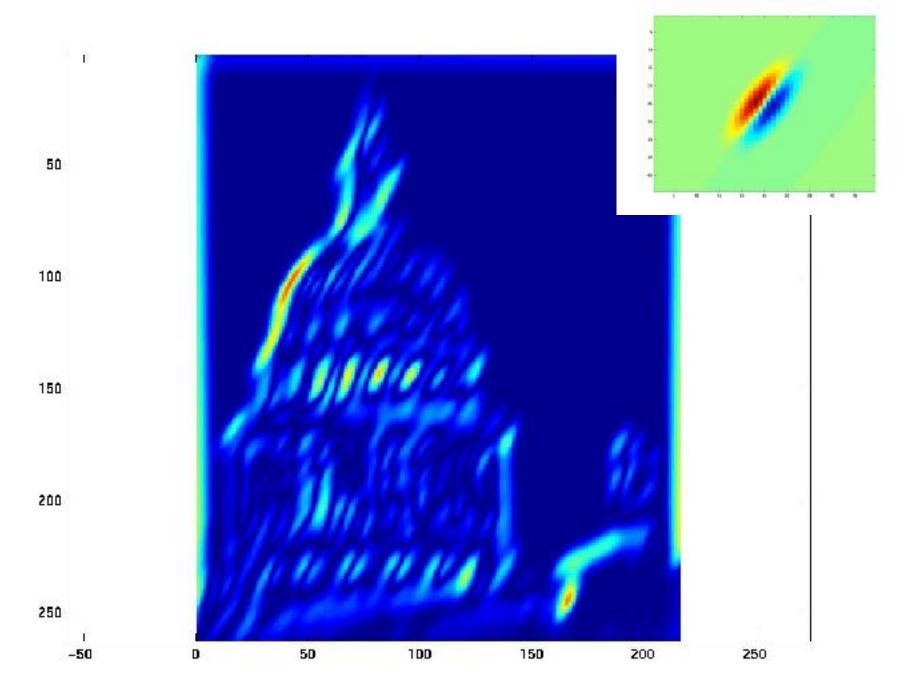


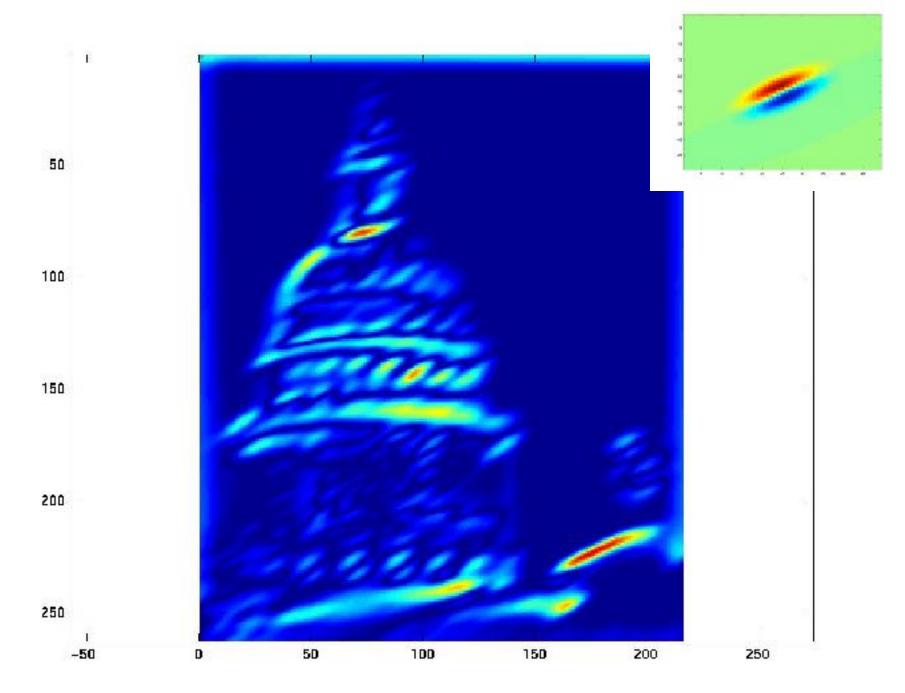


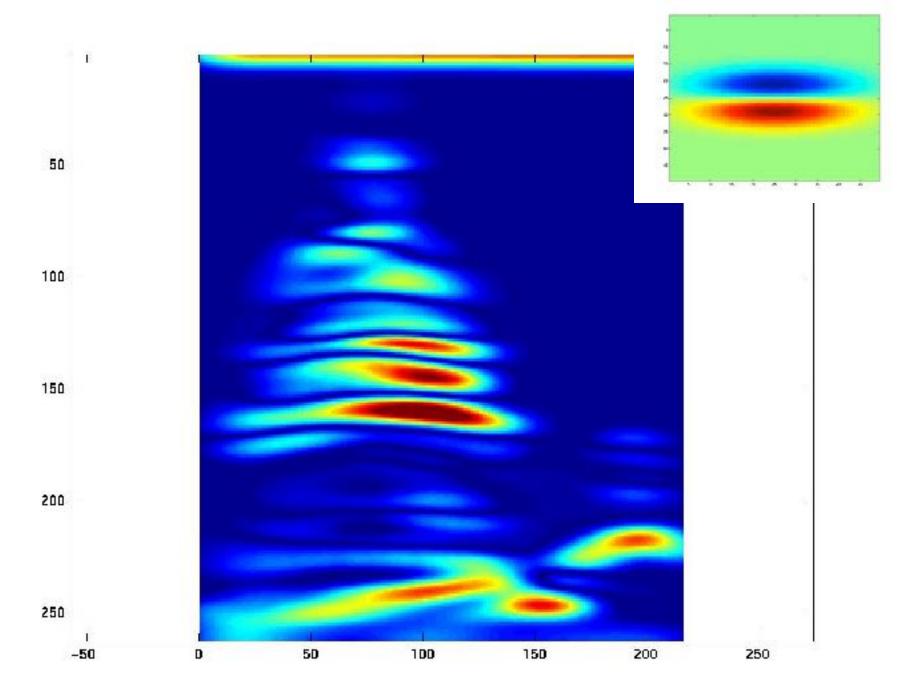


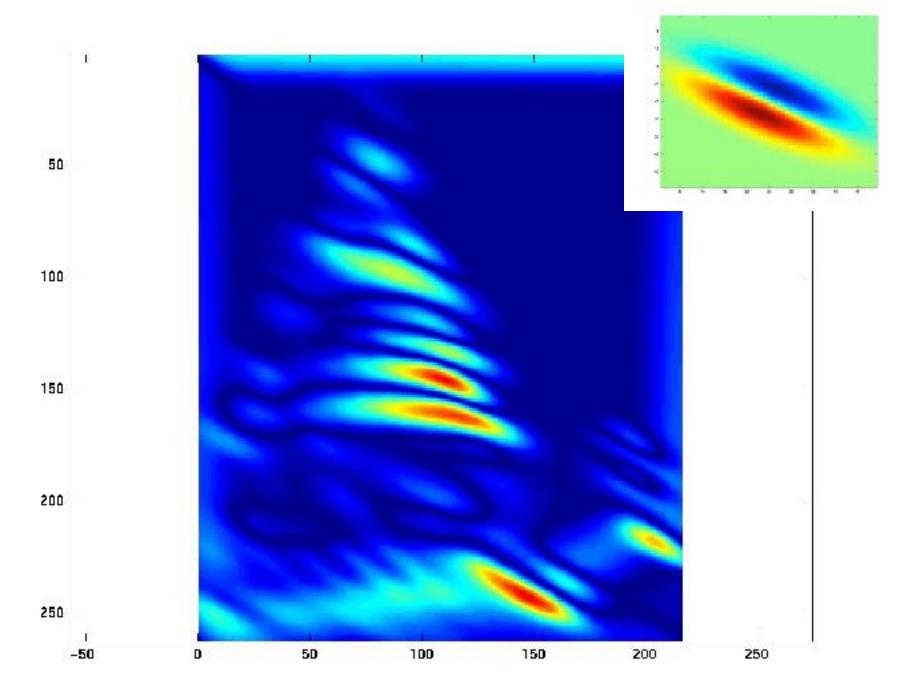


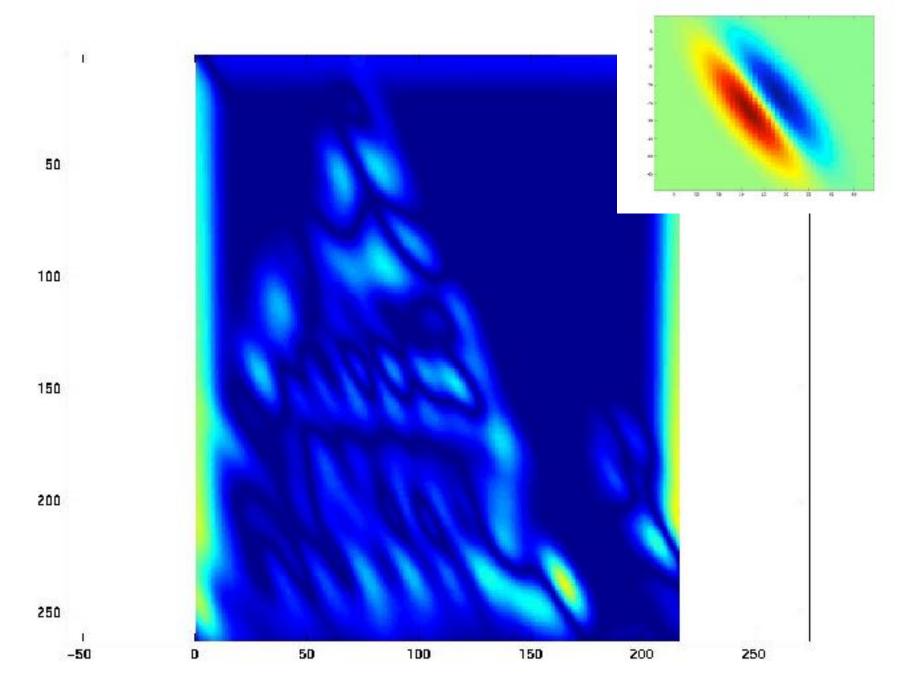


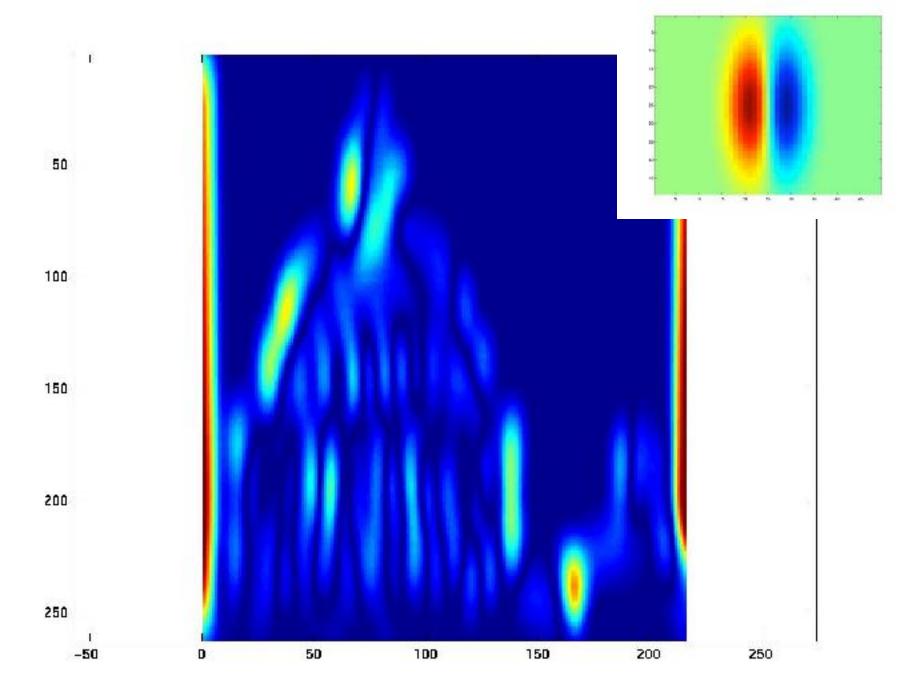


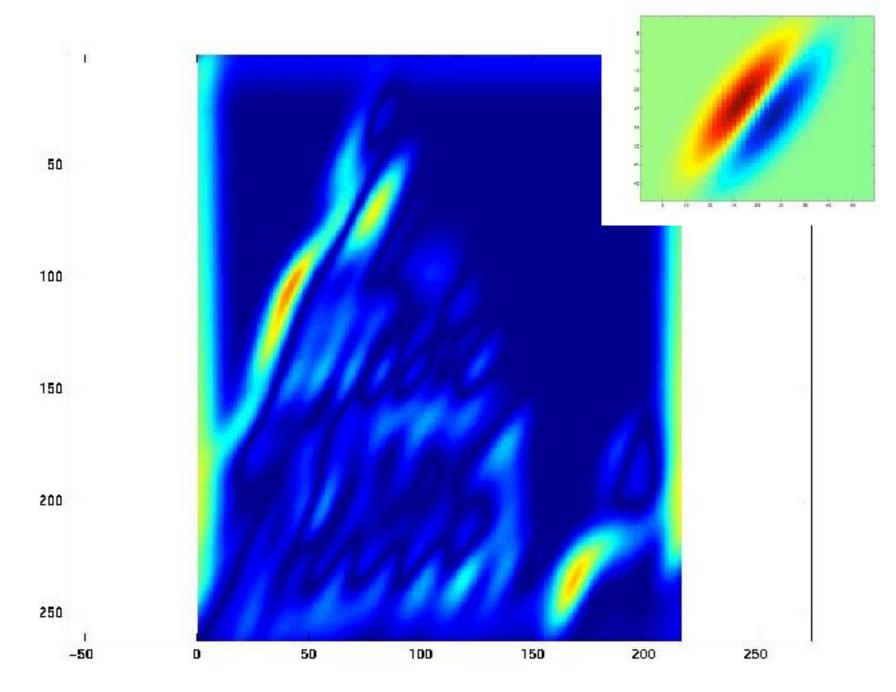


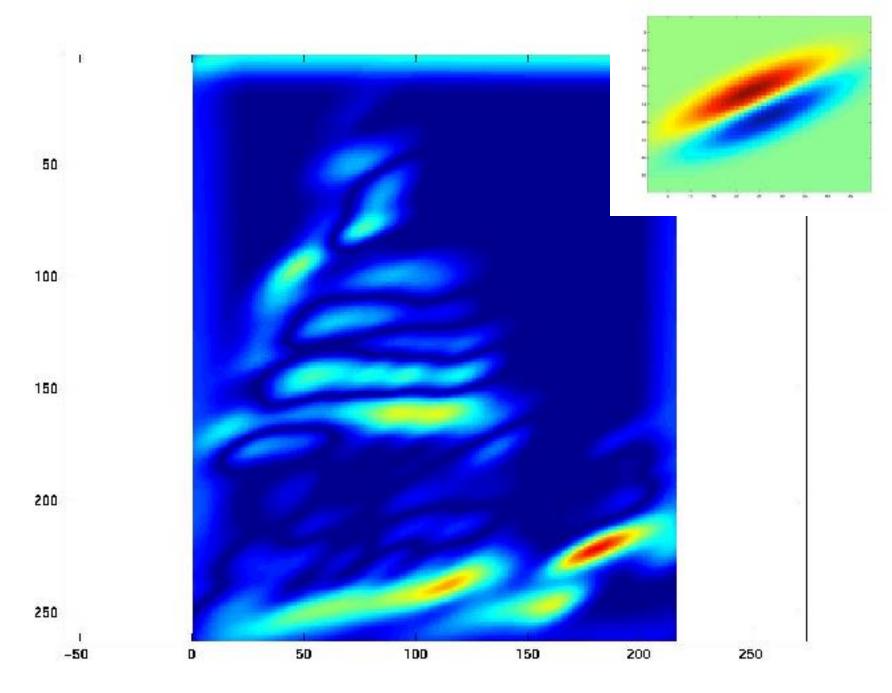


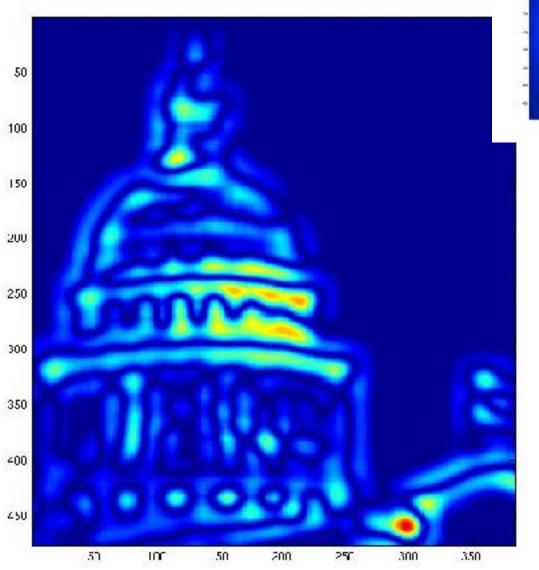


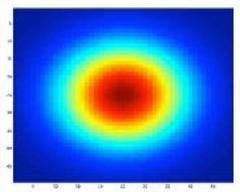




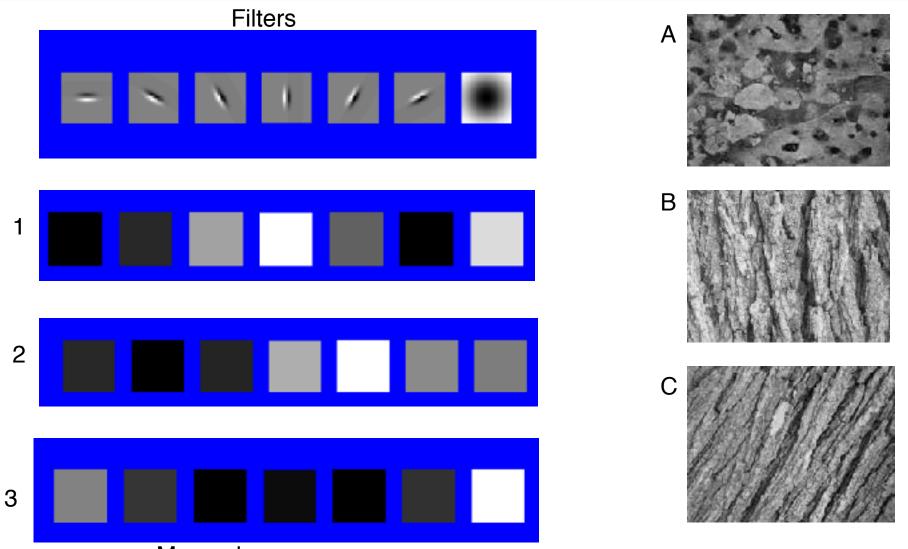








You Try: Can you match the texture to the response?

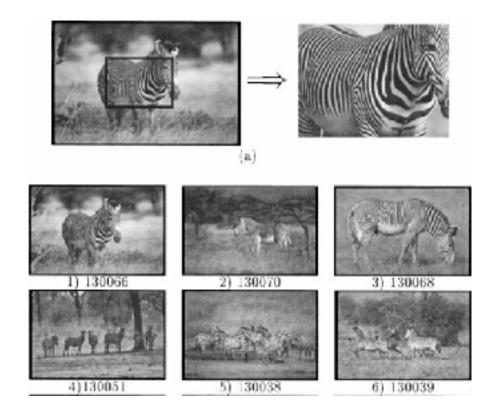


Mean abs responses

Derek Hoiem

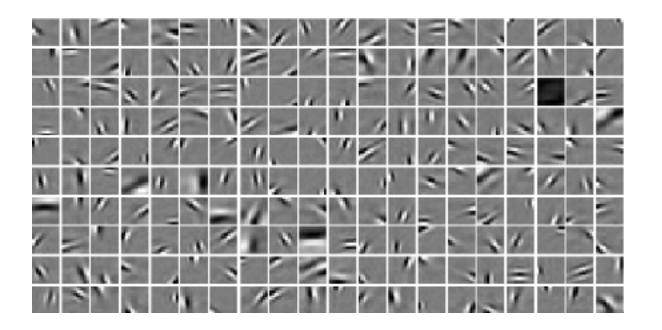
Application: Retrieval

 Retrieve similar images based on texture



Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for image retrieval. *International Journal of Computer Vision*, 40(2): 99-121, November 2000,

- Elements ("textons") either identical or come from some statistical distribution
- Can analyze in natural images



Olhausen & Field

Clustering Textons

- Output of bank of *n* filters can be thought of as vector in *n*-dimensional space
- Can *cluster* these vectors using *k*-means [Malik et al.]
- Result: dictionary of most common textures

K-means clustering

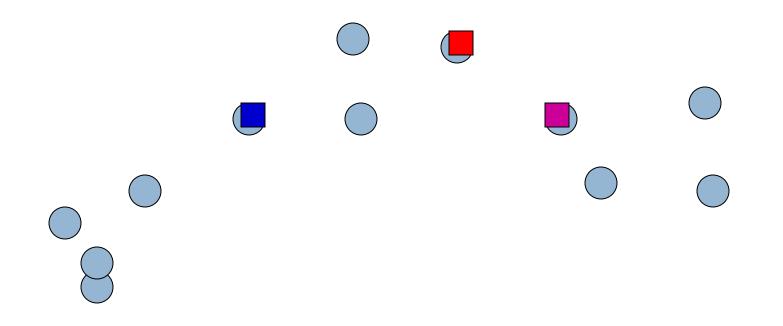
Most well-known and popular clustering algorithm:

Start with some initial cluster centers

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

K-means: an example

K-means: Initialize centers randomly



K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

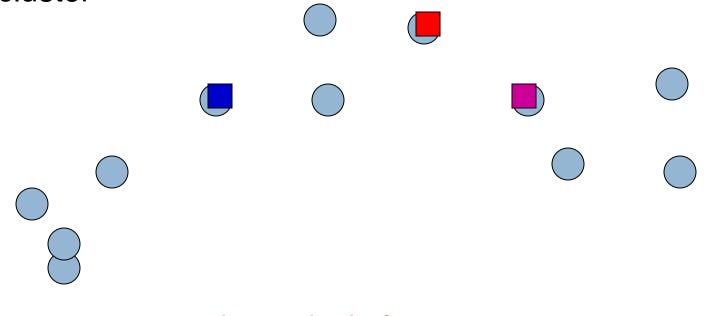
K-means: assign points to nearest center

K-means: readjust centers

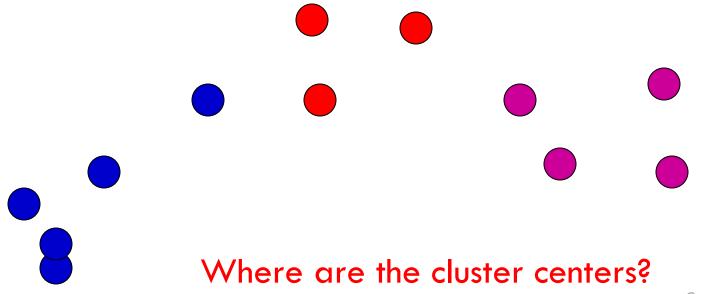
K-means: assign points to nearest center

No changes: Done

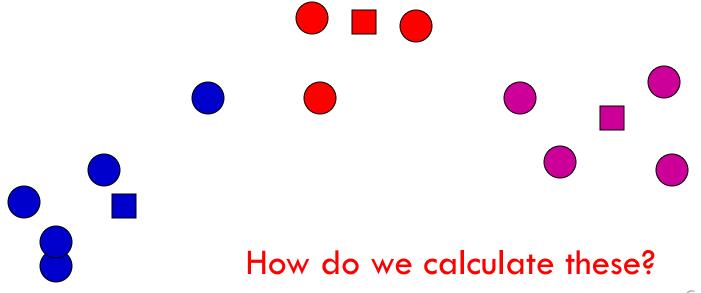
- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster



- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster



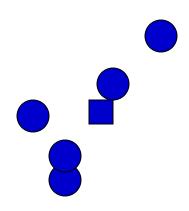
- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster



Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Mean of the points in the cluster:



$$\mu(\mathbf{C}) = \frac{1}{|\mathbf{C}|} \sum_{\mathbf{x} \in \mathbf{C}} \mathbf{X}$$

K-means tries to minimize what is called the "kmeans" loss function:

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2 \text{ where } \mu_k \text{ is cluster center for } x_i$$

that is, the sum of the squared distances from each point to the associated cluster center

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2 \text{ where } \mu_k \text{ is cluster center for } x_i$$

Does each step of k-means move towards reducing this loss function (or at least not increasing)?

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2 \text{ where } \mu_k \text{ is cluster center for } x_i$$

This isn't quite a complete proof/argument, but:

- 1. Any other assignment would end up in a larger loss
- 1. The mean of a set of values minimizes the squared error

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2 \text{ where } \mu_k \text{ is cluster center for } x_i$$

Does this mean that k-means will always find the minimum loss/clustering?

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

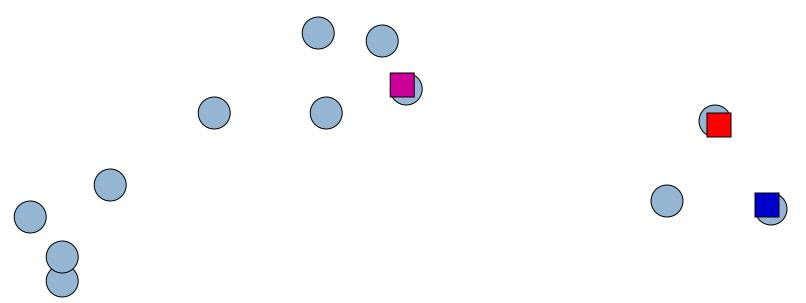
$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2 \text{ where } \mu_k \text{ is cluster center for } x_i$$

NO! It will find a minimum.

Unfortunately, the k-means loss function is generally not convex and for most problems has many, many minima

We're only guaranteed to find one of them

K-means: Initialize centers randomly



What would happen here?

Seed selection ideas?

K-means: Initialize furthest from centers

Pick a random point for the first center

K-means: Initialize furthest from centers

What point will be chosen next?

K-means: Initialize furthest from centers

Furthest point from center

What point will be chosen next?

K-means: Initialize furthest from centers

Furthest point from center

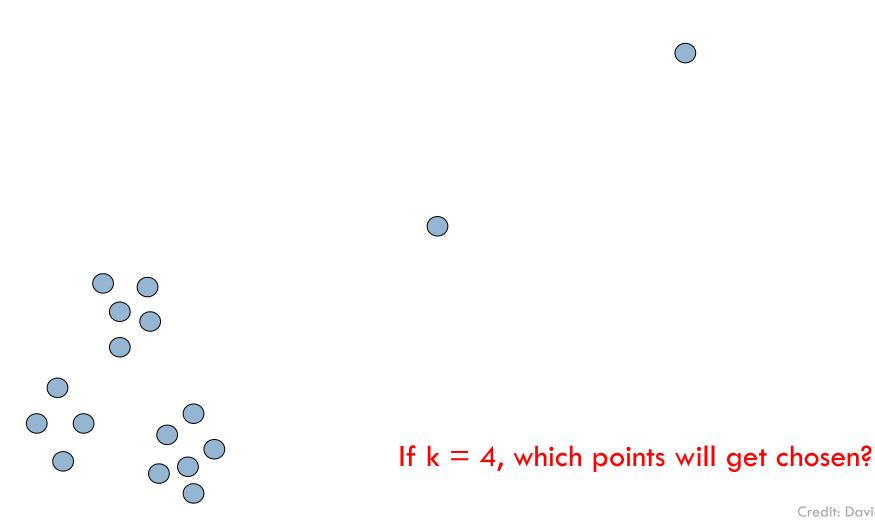
What point will be chosen next?

K-means: Initialize furthest from centers

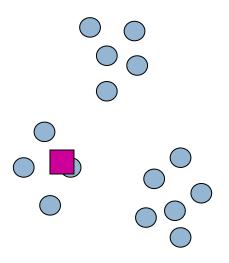
Furthest point from center

Any issues/concerns with this approach?

Furthest points concerns



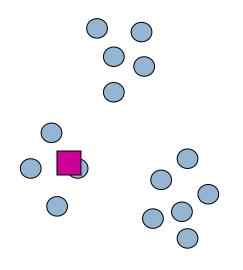
Furthest points concerns



If we do a number of trials, will we get different centers?

Furthest points concerns

Doesn't deal well with outliers



K-means

- But usually k-means works pretty well
 - Especially with large number of points and large number of centers k
- Variations: kmeans++, etc
- Alternatives: spectral clustering, hierarchical (bottom-up, agglomerative or top-down, divisive)

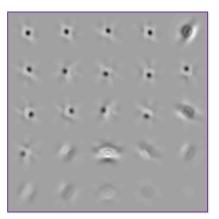
Coming back to textons

Clustering Textons

- Output of bank of *n* filters can be thought of as vector in *n*-dimensional space
- Can *cluster* these vectors using *k*-means [Malik et al.]
- Result: dictionary of most common textures

Clustering Textons

Image



Clustered Textons

Texton to Pixel Mapping

Using Texture in Segmentation

- Compute histogram of how many times each of the k clusters occurs in a neighborhood
- Define similarity of histograms h_i and h_j using χ^2

$$\chi^2 = \frac{1}{2} \sum_k \frac{(h_i(k) - h_j(k))^2}{h_i(k) + h_j(k)}$$

• Different histograms \rightarrow separate regions

Application: Segmentation

Malik

Texture synthesis

Markov Random Fields

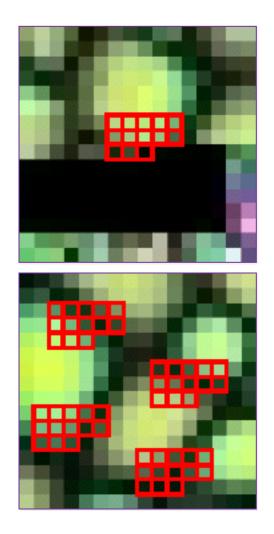
- Different way of thinking about textures
- Premise: probability distribution of a pixel depends on values of neighbors
- Probability the same throughout image
 - Extension of Markov chains

Motivation from Language

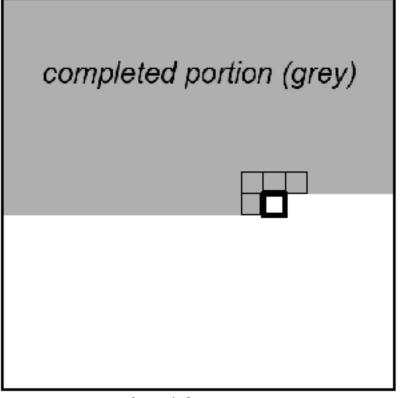
- Shannon (1948) proposed a way to synthesize new text using N-grams
 - Use a large text to compute probability distributions of each letter given N–1 previous letters
 - Starting from a seed repeatedly sample the conditional probabilities to generate new letters
 - Can do this with image patches!

Texture Synthesis Based on MRF

- For each pixel in destination:
 - Take already-synthesized neighbors
 - Find closest match in original texture
 - Copy pixel to destination
- Efros & Leung 1999
 - Speedup by Wei & Levoy 2000
 - Extension to copying whole blocks by Efros & Freeman 2001

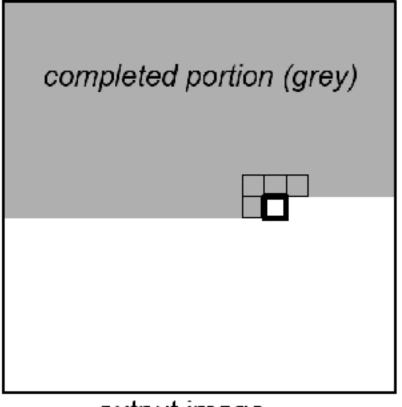


Wei & Levoy



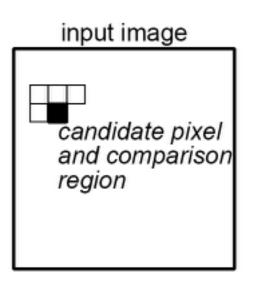
 Compute output pixels in scanline order (top-to-bottom, left-to-right)

output image

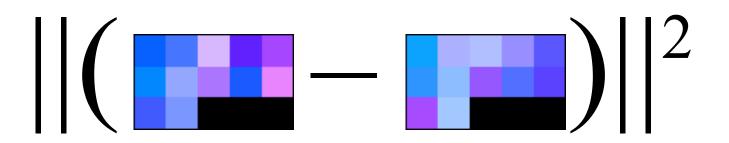


output image

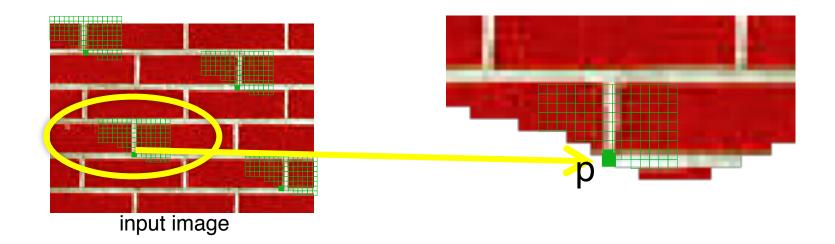
 Find candidate pixels based on similarities of pixel features in neighborhoods



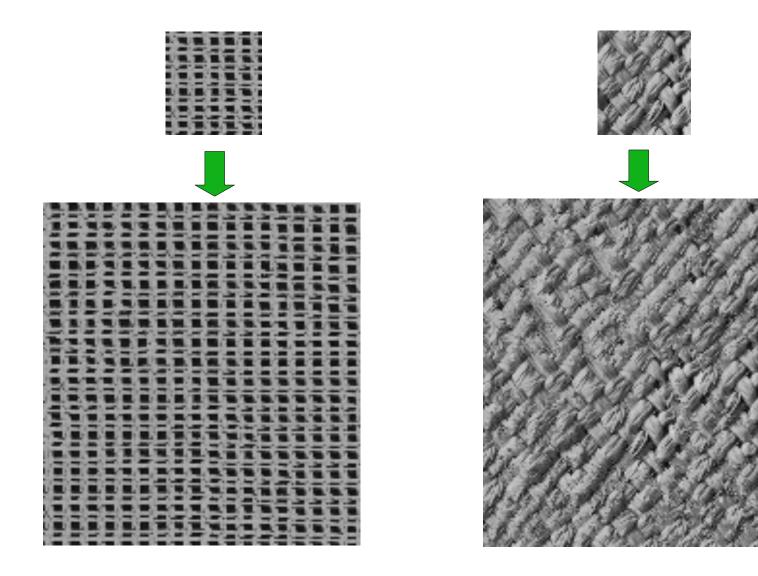
 Similarities of pixel neighborhoods can be computed with squared differences (SSD) of pixel colors and/or filter bank responses



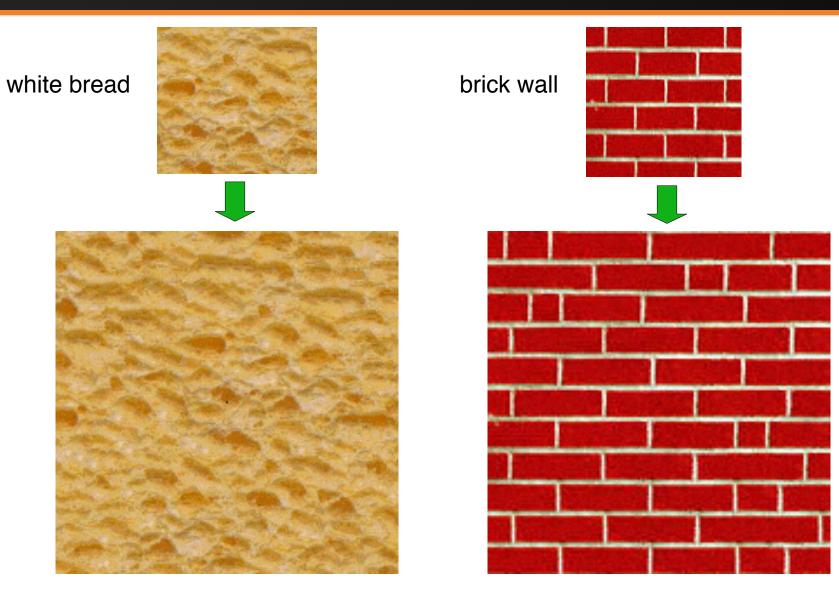
- For each pixel p:
 - Find the best matching K windows from the input image
 - Pick one matching window at random
 - Assign p to be the center pixel of that window



Synthesis Results



Synthesis Results



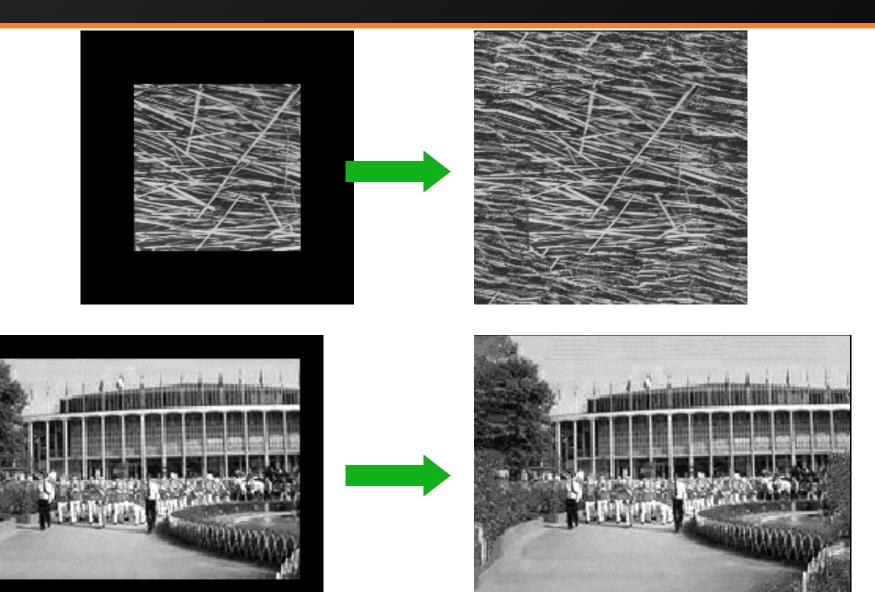
Efros

Hole Filling

- Fill pixels in "onion skin" order
 - Within each "layer", pixels with most neighbors are synthesized first
 - Normalize error by the number of known pixels
 - If no close match can be found, the pixel is not synthesized until the end

Hole Filling

Extrapolation



https://ghc.anitab.org/ghc-17-livestream/

(Wednesday keynote, 16:20 min - 44:00 min)