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1 Overview

In class, in the context of regression, we noted that there is a whole menagerie of loss
functions to pick from. In this precept, we consider the different use cases of these losses and
some computational concerns. With the material we’ve covered in class so far, we can start
looking at fundamental problems used by statisticians, and propose efficient algorithms.

Some warm-up thoughts:

• Suppose you’re trying to find a global minimum b of a convex function, by querying
local gradients. Which function is easier to minimize: `(z) = |z−b|, or `(z) = (z−b)2 ?

• How much should a predictor f̂ be penalized for being wrong? Linearly (|f̂(z)− f(z)|)
or quadratically ((f̂(z)− f(z))2)?

2 Review of linear regression

Recall the problem of linear regression (using notation from the slides), where we would like
to find an unknown linear relationship that maps every independent variable1 x ∈ Rn to a
dependent variable2 y ∈ R.

The algorithmic problem at hand: we are given a training set {(x1, y1), . . . , (xm, ym)},
and we would like to find some vector w for which yi ≈ 〈w,x〉, “as closely as possible”.3 We
pick a loss function `(·) (a penalty for erroneous predictions), and write down the problem
of finding a loss:

min
w∈Rn

1

m

m∑
i=1

`(〈w,xi〉 − yi).

1a.k.a. feature vector, regressor, controlled variable, explanatory variable, input, etc.
2a.k.a. response, output, explained variable, regressand, etc.
3Side note: incorporating bias y = 〈w,x〉+ b requires no more work. Just add a “dummy” feature to x

whose value is always 1. Then, the corresponding “dummy” coefficient in w will be the bias.
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For short, let fi(w) denote the summand, and f(w) the entire sum, so we have

f(w) =
1

m

m∑
i=1

fi(w).

If ` is convex, then so is each fi, and thus f . We are now armed with two techniques to
solve this optimization problem:

• Gradient descent: repeatedly move w in the direction of −∇f(w).

• Stochastic gradient descent: repeatedly move w in the direction of −∇fi(w), for a
randomly sampled i each time.

We analyzed both in class (as special cases of online gradient descent), showing that both
algorithms converge! This means that for any convex loss function, we now have an algorithm
to find a w arbitrarily close to the minimizer of f .

3 p-norms and losses they induce

Let us consider two widely-used loss functions. For convenience, let z ∈ Rm denote the
residual vector, whose entries are the prediction errors zi = 〈w,xi〉 − yi.

• `(z) = 1
2
z2 (`2 loss, a.k.a. squared error), so that f(w) = 1

2m
‖z‖22, the Euclidean

distance between the prediction and the truth. In this case, we can write f(w) =
1
2m
‖Xw − y‖2, where X ∈ Rm×n is the matrix whose rows are xi, and y ∈ Rm is the

vector of yi’s.
4

• `(z) = |z| (`1 loss, a.k.a. absolute error), so that f(w) = 1
m
‖z‖1. This replaces the

Euclidean distance with the “Manhattan” distance: to get from (42, 7) to (34, 5), any
shortest path takes 8 + 2 blocks.

In short, `2 loss penalizes error quadratically, while `1 penalizes linearly. Let us address the
warm-up questions now:

• The least-squares penalty is smooth and strongly convex, as long as XTX is well-
conditioned (equivalently, the regressors are not too correlated with each other). When
this is true, GD/SGD exhibit exponentially fast convergence. This resolves the com-
putational question: least-squares is generally easier. On a quadratic function, when
you’re far away from the minimum, the gradient is informative about the location of
the minimum.

4This should look familiar: it’s the same form as the potential we defined two precepts ago, to solve
a system of linear equations! This is no surprise: you can view as linear regression as trying to solve an
overdetermined system of linear equations, with your choice of penalty on only approximately satisfying a
linear constraint.
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• The question of when to use which loss is more subtle; it is one of the central questions
of in data science. If you know that your data is clean (no horrendous outliers), `2
regression requires fewer samples to stabilize. On the other hand, `1 loss is more
resistant to outliers.

• (Skip if short on time.) The argument about outliers can be made formal. Suppose
you knew that your data were corrupted by noise, i.e. yi = 〈w,xi〉 + ξi, with some
independent random variables ξi. As it turns out, if the noise is Gaussian (each ξi ∼
N (0, σ2)), the least-squares fit w gives the maximum-likelihood estimator. The `1 fit
is the MLE for Laplace noise, which produce more outliers than Gaussian noise.

A natural question (and excuse to bring up some more math) is whether it makes sense
to penalize other powers. We can define a whole family of losses `(z) = |z|p, so that

f(w) =
1

m

d∑
i=1

|zi|p =
1

m
‖z‖pp.

Here, ‖z‖p is the p-norm of the residual z.e Some notes (in decreasing order of relevance, so
some may not be discussed in precept):

• For any 1 ≤ p < ∞, ‖z‖pp is a convex function in z. So, for any such choice, we can
optimize for w efficiently with GD or SGD. A solution w is called an p-norm estimator.

• As p → ∞, it can be shown that ‖z‖p approaches maxi |zi|, the largest absolute
deviation. Thus, we define ‖z‖∞ = maxi |zi|, which is also convex. This is not to be
confused with ‖z‖1, the sum of absolute deviations.

• As p increases, outliers are penalized more harshly. When p =∞, the empirical loss is
completely determined by the worst outlier!

• For 0 < p < 1, ‖z‖p is well-defined, but non-convex. By an abuse of notation, we
define ‖z‖0 to be the number of nonzero entries in z; this is very non-convex.

• When p = 1 or ∞, f(w) is not only convex, but is piecewise linear. Although this
insight doesn’t help gradient-based methods, it does lend additional structure. Spe-
cialized methods exist for these cases, based on linear programming. There is also a
rich theory on accelerating algorithms for p = 2; some of this work is happening right
now at Princeton.

4 Some more exotic losses

Here are some other loss functions that you might encounter in the wild:

• Huber loss: a hybrid between `1 and `2, obtained by stitching together a quadratic
around the origin (for stability) and linear tails outside some threshold (for outlier
tolerance).
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• ε-insensitive loss: `(z) = max(|z| − ε, 0). Use this when you want to assign zero
penalty within some tolerance ε. Of course, you can modify any loss in this way to get
an insensitive version.

• Symmetrized exponential loss: `(z) = ez + e−z. Penalize outliers exponentially, which
is more aggressively than |z|p for any constant p.

• Relatedly: `(z) = ez−δ + e−z−δ. Similar to above, but creates a basin of insensitivity
around the origin.

• Smoothed `1 loss: `(z) = log(1 + ez) + log(1 + e−z). Similar to Huber.
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